Christian Nanoff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6633866/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adenosine receptors: G protein-mediated signalling and the role of accessory proteins. Cellular Signalling, 2002, 14, 99-108.	3.6	235
2	Calmodulin Dependence of Presynaptic Metabotropic Glutamate Receptor Signaling. Science, 1999, 286, 1180-1184.	12.6	153
3	Binding of Calmodulin to the D2-Dopamine Receptor Reduces Receptor Signaling by Arresting the G Protein Activation Switch. Journal of Biological Chemistry, 2000, 275, 32672-32680.	3.4	122
4	The Ubiquitin-Specific Protease Usp4 Regulates the Cell Surface Level of the A2a Receptor. Molecular Pharmacology, 2006, 69, 1083-1094.	2.3	122
5	Tight Association of the Human Mel _{1a} -Melatonin Receptor and G _i : Precoupling and Constitutive Activity. Molecular Pharmacology, 1999, 56, 1014-1024.	2.3	100
6	G protein antagonists. Trends in Pharmacological Sciences, 1999, 20, 237-245.	8.7	96
7	Truncation of the A1 Adenosine Receptor Reveals Distinct Roles of the Membrane-proximal Carboxyl Terminus in Receptor Folding and G Protein Coupling. Journal of Biological Chemistry, 2003, 278, 30283-30293.	3.4	61
8	Mapping of Calmodulin and Gβγ Binding Domains within the C-terminal Region of the Metabotropic Glutamate Receptor 7A. Journal of Biological Chemistry, 2001, 276, 30662-30669.	3.4	60
9	Sensitization of Dopamine-Stimulated Adenylyl Cyclase in the Striatum of 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Treated Rhesus Monkeys and Patients with Idiopathic Parkinson's Disease. Journal of Neurochemistry, 1992, 58, 1997-2004.	3.9	52
10	Removal of the carboxy terminus of the A 2A -adenosine receptor blunts constitutive activity: differential effect on cAMP accumulation and MAP kinase stimulation. Naunyn-Schmiedeberg's Archives of Pharmacology, 2002, 366, 287-298.	3.0	52
11	The Human D2 Dopamine Receptor Synergizes with the A2A Adenosine Receptor to Stimulate Adenylyl Cyclase in PC12 Cells. Neuropsychopharmacology, 2003, 28, 1317-1327.	5.4	49
12	Kinetics of Ternary Complex Formation with Fusion Proteins Composed of the A1-Adenosine Receptor and G Protein α-Subunits. Journal of Biological Chemistry, 1999, 274, 30571-30579.	3.4	46
13	Recruitment of a Cytoplasmic Chaperone Relay by the A2A Adenosine Receptor. Journal of Biological Chemistry, 2013, 288, 28831-28844.	3.4	38
14	Pharmacochaperoning of the A ₁ Adenosine Receptor Is Contingent on the Endoplasmic Reticulum. Molecular Pharmacology, 2010, 77, 940-952.	2.3	37
15	P ₂ â€; but not P ₁ â€purinoceptors mediate formation of 1,4,5â€inositol trisphosphate and its metabolites via a pertussis toxinâ€insensitive pathway in the rat renal cortex. British Journal of Pharmacology, 1990, 100, 63-68.	5.4	36
16	Solubilization and Characterization of the A2-Adenosine Receptor. Journal of Receptors and Signal Transduction, 1993, 13, 961-973.	1.2	33
17	The Carboxyl Terminus of the Cα-Subunit Is the Latch for Triggered Activation of Heterotrimeric G Proteins. Molecular Pharmacology, 2006, 69, 397-405.	2.3	33
18	Inhibition of Adenylyl and Guanylyl Cyclase Isoforms by the Antiviral Drug Foscarnet. Journal of Biological Chemistry, 2001, 276, 3010-3016.	3.4	28

CHRISTIAN NANOFF

#	Article	IF	CITATIONS
19	Comparison of the Â-Adrenergic Receptor Antagonists Landiolol and Esmolol: Receptor Selectivity, Partial Agonism, and Pharmacochaperoning Actions. Journal of Pharmacology and Experimental Therapeutics, 2016, 359, 73-81.	2.5	27
20	G Protein coupling of the rat A1-adenosine receptor—Partial purification of a protein which stabilizes the receptor-G protein association. Neuropharmacology, 1997, 36, 1211-1219.	4.1	26
21	Biased inhibition by a suramin analogue of A 1 -adenosine receptor/G protein coupling in fused receptor/G protein tandems: the A 1 -adenosine receptor is predominantly coupled to Go α in human brain. Naunyn-Schmiedeberg's Archives of Pharmacology, 2002, 365, 8-16.	3.0	26
22	Metal-dependent nucleotide binding to the <i>Escherichia coli</i> rotamase SlyD. Biochemical Journal, 1999, 342, 33-39.	3.7	23
23	Suramin and the suramin analogue NF307 discriminate among calmodulin-binding sites. Biochemical Journal, 2001, 355, 827-833.	3.7	23
24	The C2 Catalytic Domain of Adenylyl Cyclase Contains the Second Metal Ion (Mn2+) Binding Siteâ€. Biochemistry, 1998, 37, 16183-16191.	2.5	21
25	A Two-state Model for the Diffusion of the A2A Adenosine Receptor in Hippocampal Neurons. Journal of Biological Chemistry, 2014, 289, 9263-9274.	3.4	21
26	The value of [11C]-acetate PET and [18F]-FDG PET in hepatocellular carcinoma before and after treatment with transarterial chemoembolization and bevacizumab. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 1732-1741.	6.4	20
27	The noradrenaline transporter as site of action for the anti-Parkinson drug amantadine. Neuropharmacology, 2012, 62, 1708-1716.	4.1	19
28	Chaperoning of the A ₁ -Adenosine Receptor by Endogenous Adenosine—An Extension of the Retaliatory Metabolite Concept. Molecular Pharmacology, 2015, 87, 39-51.	2.3	17
29	Stimulation of adenylate cyclase activity via A2-adenosine receptors in isolated tubules of the rabbit renal cortex. European Journal of Pharmacology, 1987, 138, 137-140.	3.5	13
30	G protein-dependent signalling and ageingâ [*] †. Experimental Gerontology, 2000, 35, 133-143.	2.8	13
31	Constitutive activity of the A2A adenosine receptor and compartmentalised cyclic AMP signalling fine-tune noradrenaline release. Purinergic Signalling, 2012, 8, 677-692.	2.2	12
32	Functional impact of the G279S substitution in the adenosine A1-receptor (A1R-G279S), a mutation associated with Parkinson's disease. Molecular Pharmacology, 2020, 98, MOLPHARM-AR-2020-000003.	2.3	12
33	ER-Bound Steps in the Biosynthesis of G Protein-Coupled Receptors. Sub-Cellular Biochemistry, 2012, 63, 1-21.	2.4	11
34	Metal-dependent nucleotide binding to the Escherichia coli rotamase SlyD. Biochemical Journal, 1999, 342, 33.	3.7	10
35	The fallacy of non-selectivity of radioactive ligands. Trends in Pharmacological Sciences, 1988, 9, 261-264.	8.7	8
36	Characterization of the Î ² -Adrenoceptor Blocking Property of Diprafenone in Rats. Journal of Cardiovascular Pharmacology, 1991, 18, 837-842.	1.9	5

CHRISTIAN NANOFF

#	Article	IF	CITATIONS
37	Relax, Cool Down and Scaffold: How to Restore Surface Expression of Folding-Deficient Mutant GPCRs and SLC6 Transporters. International Journal of Molecular Sciences, 2017, 18, 2416.	4.1	5
38	Development of Gs-Selective Inhibitory Compounds. Methods in Enzymology, 2002, 344, 469-480.	1.0	4
39	Hyponatremia and V2 vasopressin receptor upregulation: a result of HSP90 inhibition. Cancer Chemotherapy and Pharmacology, 2017, 80, 673-684.	2.3	3
40	Limitations in Adjuvant Breast Cancer Therapy: The Predictive Potential of Pharmacogenetics and Pharmacogenomics. Breast Care, 2008, 3, 401-406.	1.4	2
41	The fallacy of small sample size - Comment on: Geier D.A., Kern J.K., Homme K.G., Geier M.R., 2018. The risk of neurodevelopmental disorders following thimerosal-containing Hib vaccine in comparison to thimerosal-free Hib vaccine administered from 1995 to 1999 in the United States. Int. J. Hyg. Environ. Health. 221: 677–683. International Journal of Hygiene and Environmental Health. 2019. 222. 307-308.	4.3	2
42	Functional Impact of the G279S Substitution in the Adenosine A ₁ -Receptor (A ₁ R-G279S ^{7.44}), a Mutation Associated with Parkinson's Disease. Molecular Pharmacology, 2020, 98, 250-266.	2.3	2
43	Beyond G proteins: The role of accessory proteins in G protein-coupled receptor signalling. Pharmacochemistry Library, 2002, , 161-173.	0.1	0