
Nicholas A Meanwell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6633826/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Applications of Fluorine in Medicinal Chemistry. Journal of Medicinal Chemistry, 2015, 58, 8315-8359.	6.4	2,464
2	Synopsis of Some Recent Tactical Application of Bioisosteres in Drug Design. Journal of Medicinal Chemistry, 2011, 54, 2529-2591.	6.4	2,216
3	Fluorine and Fluorinated Motifs in the Design and Application of Bioisosteres for Drug Design. Journal of Medicinal Chemistry, 2018, 61, 5822-5880.	6.4	1,524
4	Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect. Nature, 2010, 465, 96-100.	27.8	882
5	A Survey of the Role of Noncovalent Sulfur Interactions in Drug Design. Journal of Medicinal Chemistry, 2015, 58, 4383-4438.	6.4	582
6	The expanding role of prodrugs in contemporary drug design and development. Nature Reviews Drug Discovery, 2018, 17, 559-587.	46.4	478
7	Improving Drug Candidates by Design: A Focus on Physicochemical Properties As a Means of Improving Compound Disposition and Safety. Chemical Research in Toxicology, 2011, 24, 1420-1456.	3.3	450
8	Metabolic and Pharmaceutical Aspects of Fluorinated Compounds. Journal of Medicinal Chemistry, 2020, 63, 6315-6386.	6.4	358
9	A small molecule HIV-1 inhibitor that targets the HIV-1 envelope and inhibits CD4 receptor binding. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11013-11018.	7.1	339
10	Targeting acute ischemic stroke with a calcium-sensitive opener of maxi-K potassium channels. Nature Medicine, 2001, 7, 471-477.	30.7	295
11	Discovery of 4-Benzoyl-1-[(4-methoxy-1H- pyrrolo[2,3-b]pyridin-3-yl)oxoacetyl]-2- (R)-methylpiperazine (BMS-378806): A Novel HIV-1 Attachment Inhibitor That Interferes with CD4-gp120 Interactionsâ€. Journal of Medicinal Chemistry, 2003, 46, 4236-4239.	6.4	206
12	Identification of Hepatitis C Virus NS5A Inhibitors. Journal of Virology, 2010, 84, 482-491.	3.4	182
13	Preclinical Profile and Characterization of the Hepatitis C Virus NS3 Protease Inhibitor Asunaprevir (BMS-650032). Antimicrobial Agents and Chemotherapy, 2012, 56, 5387-5396.	3.2	173
14	Synthesis and Structureâ^'Activity Relationships of 3-Aryloxindoles:  A New Class of Calcium-Dependent, Large Conductance Potassium (Maxi-K) Channel Openers with Neuroprotective Properties. Journal of Medicinal Chemistry, 2002, 45, 1487-1499.	6.4	171
15	Bioisosteres of the Phenyl Ring: Recent Strategic Applications in Lead Optimization and Drug Design. Journal of Medicinal Chemistry, 2021, 64, 14046-14128.	6.4	171
16	Biochemical and Genetic Characterizations of a Novel Human Immunodeficiency Virus Type 1 Inhibitor That Blocks gp120-CD4 Interactions. Journal of Virology, 2003, 77, 10528-10536.	3.4	166
17	The synthesis and characterization of BMS-204352 (MaxiPostâ,,¢) and related 3-fluorooxindoles as openers of maxi-K potassium channels. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1023-1026.	2.2	161
18	Azetidin-2-one derivatives as inhibitors of thrombin. Bioorganic and Medicinal Chemistry, 1995, 3, 1123-1143.	3.0	152

#	Article	IF	CITATIONS
19	Applications of fluorine-containing amino acids for drug design. European Journal of Medicinal Chemistry, 2020, 186, 111826.	5.5	150
20	Improving Drug Design: An Update on Recent Applications of Efficiency Metrics, Strategies for Replacing Problematic Elements, and Compounds in Nontraditional Drug Space. Chemical Research in Toxicology, 2016, 29, 564-616.	3.3	148
21	Orally Active Fusion Inhibitor of Respiratory Syncytial Virus. Antimicrobial Agents and Chemotherapy, 2004, 48, 413-422.	3.2	136
22	<i>In Vitro</i> Antiviral Characteristics of HIV-1 Attachment Inhibitor BMS-626529, the Active Component of the Prodrug BMS-663068. Antimicrobial Agents and Chemotherapy, 2012, 56, 3498-3507.	3.2	118
23	Inhibition of influenza virus replication via small molecules that induce the formation of higher-order nucleoprotein oligomers. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15366-15371.	7.1	116
24	Targeting a binding pocket within the trimer-of-hairpins: Small-molecule inhibition of viral fusion. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15046-15051.	7.1	102
25	The Discovery of Asunaprevir (BMS-650032), An Orally Efficacious NS3 Protease Inhibitor for the Treatment of Hepatitis C Virus Infection. Journal of Medicinal Chemistry, 2014, 57, 1730-1752.	6.4	101
26	Inhibitors of Human Immunodeficiency Virus Type 1 (HIV-1) Attachment. 5. An Evolution from Indole to Azaindoles Leading to the Discovery of 1-(4-Benzoylpiperazin-1-yl)-2-(4,7-dimethoxy-1 <i>H</i> -pyrrolo[2,3- <i>c</i>]pyridin-3-yl)ethane-1,2-dione (BMS-488043), a Drug Candidate That Demonstrates Antiviral Activity in HIV-1-Infected Subjects. Journal of Medicinal Chemistry, 2009, 52, 7778-7787.	6.4	98
27	Inhibitors of HIV-1 Attachment: The Discovery and Development of Temsavir and its Prodrug Fostemsavir. Journal of Medicinal Chemistry, 2018, 61, 62-80.	6.4	98
28	The crystal structure of NS5A domain 1 from genotype 1a reveals new clues to the mechanism of action for dimeric HCV inhibitors. Protein Science, 2014, 23, 723-734.	7.6	96
29	Discovery of Daclatasvir, a Pan-Genotypic Hepatitis C Virus NS5A Replication Complex Inhibitor with Potent Clinical Effect. Journal of Medicinal Chemistry, 2014, 57, 5057-5071.	6.4	96
30	Synthesis of Cyclobutane-Fused Tetracyclic Scaffolds via Visible-Light Photocatalysis for Building Molecular Complexity. Journal of the American Chemical Society, 2020, 142, 3094-3103.	13.7	92
31	A base-catalyzed, direct synthesis of 3,5-disubstituted 1,2,4-triazoles from nitriles and hydrazides. Tetrahedron Letters, 2005, 46, 3429-3432.	1.4	83
32	Discovery and Preclinical Characterization of the Cyclopropylindolobenzazepine BMS-791325, A Potent Allosteric Inhibitor of the Hepatitis C Virus NS5B Polymerase. Journal of Medicinal Chemistry, 2014, 57, 1855-1879.	6.4	83
33	DISCOVERY OF A NOVEL CLASS OF BK CHANNEL OPENERS: ENANTIOSPECIFIC SYNTHESIS AND BK CHANNEL OPENING ACTIVITY OF 3-(5-CHLORO-2-HYDROXYPHENYL)-1,3-DIHYDRO-3-HYDROXY-6-(TRIFLUOROMETHYL)-2H-INDOL-2-ONE. Bioorganic and Medicinal Chemistry Letters. 1997. 7. 1255-1260.	2.2	82
34	Tailorâ€Made Amino Acids and Fluorinated Motifs as Prominent Traits in Modern Pharmaceuticals. Chemistry - A European Journal, 2020, 26, 11349-11390.	3.3	81
35	A Novel Small Molecule Inhibitor of Hepatitis C Virus Entry. PLoS Pathogens, 2010, 6, e1001086.	4.7	79
36	Inhibitors of HCV NS5A: From Iminothiazolidinones to Symmetrical Stilbenes. ACS Medicinal Chemistry Letters, 2011, 2, 224-229.	2.8	79

#	Article	IF	CITATIONS
37	Hepatitis C Virus NS5A Replication Complex Inhibitors: The Discovery of Daclatasvir. Journal of Medicinal Chemistry, 2014, 57, 2013-2032.	6.4	74
38	Oral Efficacy of a Respiratory Syncytial Virus Inhibitor in Rodent Models of Infection. Antimicrobial Agents and Chemotherapy, 2004, 48, 2448-2454.	3.2	73
39	HIV-1 entry – an expanding portal for drug discovery. Drug Discovery Today, 2000, 5, 183-194.	6.4	71
40	Discovery and Development of Hepatitis C Virus NS5A Replication Complex Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 1643-1672.	6.4	68
41	A General Method for the Preparation of 4- and 6-Azaindoles. Journal of Organic Chemistry, 2002, 67, 2345-2347.	3.2	66
42	Preparation and reactions of sulfonimidoyl fluorides. Journal of Organic Chemistry, 1983, 48, 1-3.	3.2	65
43	Diethyl 2,4-dioxoimidazolidine-5-phosphonates: Horner-Wadsworth-Emmons reagents for the mild and efficient preparation of C-5 unsaturated hydantoin derivatives. Journal of Organic Chemistry, 1991, 56, 6897-6904.	3.2	64
44	Utilization of C(<i>sp</i> ³) arboxylic Acids and Their Redoxâ€Active Esters in Decarboxylative Carbonâ^Carbon Bond Formation. Advanced Synthesis and Catalysis, 2021, 363, 3693-3736.	4.3	64
45	Opening of large-conductance calcium-activated potassium channels by the substituted benzimidazolone NS004. Journal of Neurophysiology, 1994, 71, 1873-1882.	1.8	63
46	Respiratory syncytial virus fusion inhibitors. Part 4: Optimization for oral bioavailability. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 895-901.	2.2	63
47	Fundamental structure–Activity relationships associated with a new structural class of respiratory syncytial virus inhibitor. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 2141-2144.	2.2	61
48	Antiviral activity and molecular mechanism of an orally active respiratory syncytial virus fusion inhibitor. Journal of Antimicrobial Chemotherapy, 2005, 55, 289-292.	3.0	61
49	Discovery and Early Clinical Evaluation of BMS-605339, a Potent and Orally Efficacious Tripeptidic Acylsulfonamide NS3 Protease Inhibitor for the Treatment of Hepatitis C Virus Infection. Journal of Medicinal Chemistry, 2014, 57, 1708-1729.	6.4	61
50	A Strategy for the Synthesis of Aryl α-Ketoamides Based upon the Acylation of Anions Derived from Cyanomethylamines Followed by Oxidative Cleavageâ€. Organic Letters, 2002, 4, 1103-1105.	4.6	59
51	A general method for the synthesis of isatins: Preparation of regiospecifically functionalized isatins from anilines. Tetrahedron Letters, 1994, 35, 7303-7306.	1.4	58
52	The mono-functionalization of symmetrical polyamines. Tetrahedron, 2002, 58, 3111-3128.	1.9	58
53	Inhibitors of HIV-1 attachment. Part 2: An initial survey of indole substitution patterns. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 1977-1981.	2.2	58
54	Identification and Characterization of BMS-955176, a Second-Generation HIV-1 Maturation Inhibitor with Improved Potency, Antiviral Spectrum, and Gag Polymorphic Coverage. Antimicrobial Agents and Chemotherapy, 2016, 60, 3956-3969.	3.2	58

#	Article	IF	CITATIONS
55	The effects of NS5A inhibitors on NS5A phosphorylation, polyprotein processing and localization. Journal of General Virology, 2011, 92, 2502-2511.	2.9	57
56	Preclinical Characterization of BMS-791325, an Allosteric Inhibitor of Hepatitis C Virus NS5B Polymerase. Antimicrobial Agents and Chemotherapy, 2014, 58, 3485-3495.	3.2	56
57	Identification of N-Hydroxamic Acid and N-Hydroxyimide Compounds that Inhibit the Influenza Virus Polymerase. Antiviral Chemistry and Chemotherapy, 1996, 7, 353-360.	0.6	55
58	1,2-Benzisothiazol-3-one 1,1-Dioxide Inhibitors of Human Mast Cell Tryptase. Journal of Medicinal Chemistry, 1998, 41, 4854-4860.	6.4	52
59	An Effective Procedure for the Acylation of Azaindoles at C-3. Journal of Organic Chemistry, 2002, 67, 6226-6227.	3.2	51
60	Structure–activity relationships for a series of thiobenzamide influenza fusion inhibitors derived from 1,3,3-Trimethyl-5-hydroxy-cyclohexylmethylamine. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 3379-3382.	2.2	51
61	3-[(5-Chloro-2-hydroxyphenyl)methyl]-5-[4-(trifluoromethyl)phenyl]-1,3,4-oxadiazol-2(3H)-one, BMS-191011:Â Opener of Large-Conductance Ca2+-Activated Potassium (Maxi-K) Channels, Identification, Solubility, and SAR. Journal of Medicinal Chemistry, 2007, 50, 528-542.	6.4	51
62	New first and second generation inhibitors of human immunodeficiency virus-1 integrase. Expert Opinion on Therapeutic Patents, 2011, 21, 1173-1189.	5.0	51
63	Discovery of Potent Hepatitis C Virus NS5A Inhibitors with Dimeric Structures. Antimicrobial Agents and Chemotherapy, 2011, 55, 3795-3802.	3.2	51
64	Nonprostanoid prostacyclin mimetics. 5. Structure-activity relationships associated with [3-[4-(4,5-diphenyl-2-oxazolyl)-5-oxazolyl]phenoxy]acetic acid. Journal of Medicinal Chemistry, 1993, 36, 3884-3903.	6.4	50
65	Regiospecific Functionalization of 1,3-Dihydro-2H-benzimidazol-2-one and Structurally Related Cyclic Urea Derivatives. Journal of Organic Chemistry, 1995, 60, 1565-1582.	3.2	49
66	Inhibitors of HIV-1 attachment. Part 4: A study of the effect of piperazine substitution patterns on antiviral potency in the context of indole-based derivatives. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 5140-5145.	2.2	49
67	Inhibitors of Human Immunodeficiency Virus Type 1 (HIV-1) Attachment 6. Preclinical and Human Pharmacokinetic Profiling of BMS-663749, a Phosphonooxymethyl Prodrug of the HIV-1 Attachment Inhibitor 2-(4-Benzoyl-1-piperazinyl)-1-(4,7-dimethoxy-1 <i>H</i> -pyrrolo[2,3- <i>c</i>]pyridin-3-yl)-2-oxoethanone	6.4	49
68	Active site-directed synthetic thrombin inhibitors: synthesis, in vitro and in vivo activity profile of BMY 44621 and analogs. An examination of the role of the amino group in the D-Phe-Pro-Arg-H series. Journal of Medicinal Chemistry, 1993, 36, 300-303.	6.4	48
69	Ketone methylenation with optical resolution. Total synthesis of the ginseng sesquiterpene (-)betapanasinsene and its enantiomer. Journal of the American Chemical Society, 1981, 103, 7667-7669.	13.7	47
70	Inhibitors of Human Immunodeficiency Virus Type 1 (HIV-1) Attachment. 12. Structure–Activity Relationships Associated with 4-Fluoro-6-azaindole Derivatives Leading to the Identification of 1-(4-Benzoylpiperazin-1-yl)-2-(4-fluoro-7-[1,2,3]triazol-1-yl-1 <i>H</i> -pyrrolo[2,3- <i>c</i>]pyridin-3-yl)ethane-1,2-d (BMS-585248). Journal of Medicinal Chemistry, 2013, 56, 1656-1669.	ione	47
71	Homology models of the <scp>HIV</scp> â€1 attachment inhibitor <scp>BMS</scp> â€626529 bound to gp120 suggest a unique mechanism of action. Proteins: Structure, Function and Bioinformatics, 2015, 83, 331-350.	2.6	47
			_

Non-prostanoid prostacyclin mimetics. Drugs of the Future, 1994, 19, 361.

0.1 47

#	Article	IF	CITATIONS
73	Inhibitors of HIV-1 attachment. Part 7: Indole-7-carboxamides as potent and orally bioavailable antiviral agents. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 198-202.	2.2	46
74	Discovery of BMS-955176, a Second Generation HIV-1 Maturation Inhibitor with Broad Spectrum Antiviral Activity. ACS Medicinal Chemistry Letters, 2016, 7, 568-572.	2.8	45
75	Photocatalytic Dearomative Intermolecular [2 + 2] Cycloaddition of Heterocycles for Building Molecular Complexity. Journal of Organic Chemistry, 2021, 86, 1730-1747.	3.2	45
76	Characterizations of HCV NS5A replication complex inhibitors. Virology, 2013, 444, 343-354.	2.4	44
77	Resensitizing daclatasvir-resistant hepatitis C variants by allosteric modulation of NS5A. Nature, 2015, 527, 245-248.	27.8	44
78	Artificial Intelligence in Drug Discovery: Into the Great Wide Open. Journal of Medicinal Chemistry, 2020, 63, 8651-8652.	6.4	40
79	Structure–activity relationship studies of a bisbenzimidazole-based, Zn2+-dependent inhibitor of HCV NS3 serine protease. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 2355-2359.	2.2	39
80	Highly potent non-peptidic inhibitors of the HCV NS3/NS4A serine protease. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 3129-3133.	2.2	39
81	Respiratory syncytial virus fusion inhibitors. Part 7: Structure–activity relationships associated with a series of isatin oximes that demonstrate antiviral activity in vivo. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 4857-4862.	2.2	39
82	Cyclic tailor-made amino acids in the design of modern pharmaceuticals. European Journal of Medicinal Chemistry, 2020, 208, 112736.	5.5	39
83	Maraviroc, a chemokine CCR5 receptor antagonist for the treatment of HIV infection and AIDS. Current Opinion in Investigational Drugs, 2007, 8, 669-81.	2.3	39
84	[3-[4-(4,5-diphenyl-2-oxazolyl)-5-oxazolyl]phenoxy]acetic acid (BMY 45778) is a potent non-prostanoid prostacyclin partial agonist: Effects on platelet aggregation, adenylyl cyclase, cAMP levels, protein kinase, and iloprost binding. Prostaglandins, 1997, 53, 21-35.	1.2	38
85	4,5-Diphenyltriazol-3-ones:Â Openers of Large-Conductance Ca2+-Activated Potassium (Maxi-K) Channels. Journal of Medicinal Chemistry, 2002, 45, 2942-2952.	6.4	38
86	Respiratory syncytial virus fusion inhibitors. Part 3: Water-soluble benzimidazol-2-one derivatives with antiviral activity in vivo. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 1115-1122.	2.2	38
87	Respiratory syncytial virus fusion inhibitors. Part 6: An examination of the effect of structural variation of the benzimidazol-2-one heterocycle moiety. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 4784-4790.	2.2	38
88	Inhibitors of HIV-1 attachment. Part 3: A preliminary survey of the effect of structural variation of the benzamide moiety on antiviral activity. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 5136-5139.	2.2	38
89	1,3-Dihydro-2H-imidazo[4,5-b]quinolin-2-ones - inhibitors of blood platelet cAMP phosphodiesterase and induced aggregation. Journal of Medicinal Chemistry, 1991, 34, 2906-2916.	6.4	36
90	Preclinical pharmacokinetics of a novel HIV-1 attachment inhibitor BMS-378806 and prediction of its human pharmacokinetics. Biopharmaceutics and Drug Disposition, 2005, 26, 387-402.	1.9	36

#	Article	IF	CITATIONS
91	Inhibitors of HIV-1 attachment. Part 8: The effect of C7-heteroaryl substitution on the potency, and in vitro and in vivo profiles of indole-based inhibitors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 203-208.	2.2	36
92	Benzoylation of Dianions:Â Preparation of Monobenzoylated Derivatives of Symmetrical Secondary Diamines. Journal of Organic Chemistry, 1999, 64, 7661-7662.	3.2	35
93	The synthesis and structure–activity relationships of 1,3-diaryl 1,2,4-(4 H)-triazol-5-ones: A new class of calcium-dependent, large conductance, potassium (maxi-k) channel opener targeted for urge urinary incontinence. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1117-1120.	2.2	35
94	Selective Monoacylation of Symmetrical Diamines via Prior Complexation with Boron. Organic Letters, 2003, 5, 3399-3402.	4.6	35
95	Respiratory syncytial virus inhibitors. Part 2: Benzimidazol-2-one derivatives. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 1133-1137.	2.2	35
96	Novel 3′-deoxy analogs of the anti-HBV agent entecavir: synthesis of enantiomers from a single chiral epoxide. Tetrahedron Letters, 2004, 45, 739-742.	1.4	35
97	2015 Philip S. Portoghese Medicinal Chemistry Lectureship. Curing Hepatitis C Virus Infection with Direct-Acting Antiviral Agents: The Arc of a Medicinal Chemistry Triumph. Journal of Medicinal Chemistry, 2016, 59, 7311-7351.	6.4	35
98	pH-Dependent Changes in Photoaffinity Labeling Patterns of the H1 Influenza Virus Hemagglutinin by Using an Inhibitor of Viral Fusion. Journal of Virology, 1999, 73, 1785-1794.	3.4	35
99	Discovery of the Human Immunodeficiency Virus Type 1 (HIV-1) Attachment Inhibitor Temsavir and Its Phosphonooxymethyl Prodrug Fostemsavir. Journal of Medicinal Chemistry, 2018, 61, 6308-6327.	6.4	34
100	Structure-activity relationships associated with 3,4,5-triphenyl-1H-pyrazole-1-nonanoic acid, a nonprostanoid prostacyclin mimetic. Journal of Medicinal Chemistry, 1992, 35, 389-397.	6.4	33
101	Respiratory syncytial virus: recent progress towards the discovery of effective prophylactic and therapeutic agents. Drug Discovery Today, 2000, 5, 241-252.	6.4	33
102	Nonprostanoid prostacyclin mimetics. 2. 4,5-diphenyloxazole derivatives Journal of Medicinal Chemistry, 1992, 35, 3483-3497.	6.4	32
103	Dialkylaminoacetonitrile Derivatives as Amide Synthons. A One-Pot Preparation of Heteroaryl Amides via a Strategy of Sequential SNAr Substitution and Oxidation. Journal of Organic Chemistry, 2004, 69, 1360-1363.	3.2	32
104	Respiratory syncytial virus fusion inhibitors. Part 5: Optimization of benzimidazole substitution patterns towards derivatives with improved activity. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 4592-4598.	2.2	32
105	Synthesis and evaluation of C2-carbon-linked heterocyclic-5-hydroxy-6-oxo-dihydropyrimidine-4-carboxamides as HIV-1 integrase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 717-720.	2.2	32
106	Inhibitors of HIV-1 maturation: Development of structure–activity relationship for C-28 amides based on C-3 benzoic acid-modified triterpenoids. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1925-1930.	2.2	32
107	Development of New Benzenesulfonamides As Potent and Selective Na _v 1.7 Inhibitors for the Treatment of Pain. Journal of Medicinal Chemistry, 2017, 60, 2513-2525.	6.4	32
108	5,6,7,8-Tetrahydro-1,6-naphthyridine Derivatives as Potent HIV-1-Integrase-Allosteric-Site Inhibitors. Journal of Medicinal Chemistry, 2019, 62, 1348-1361.	6.4	32

#	Article	IF	CITATIONS
109	A Synopsis of the Properties and Applications of Heteroaromatic Rings in Medicinal Chemistry. Advances in Heterocyclic Chemistry, 2017, , 245-361.	1.7	31
110	The Influence of Bioisosteres in Drug Design: Tactical Applications to Address Developability Problems. Topics in Medicinal Chemistry, 2013, , 283-381.	0.8	30
111	Potent Inhibitors of Hepatitis C Virus NS3 Protease: Employment of a Difluoromethyl Group as a Hydrogen-Bond Donor. ACS Medicinal Chemistry Letters, 2018, 9, 143-148.	2.8	30
112	Nonprostanoid prostacyclin mimetics. 3. Structural variations of the diphenyl heterocycle moiety. Journal of Medicinal Chemistry, 1992, 35, 3498-3512.	6.4	29
113	Taking aim at a moving target — inhibitors of influenza virus Part 2: viral replication, packaging and release. Drug Discovery Today, 1996, 1, 388-397.	6.4	29
114	An approach to the identification of potent inhibitors of influenza virus fusion using parallel synthesis methodology. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 2393-2396.	2.2	29
115	Triketoacid inhibitors of HIV-integrase: A new chemotype useful for probing the integrase pharmacophore. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 2920-2924.	2.2	29
116	Inhibitors of HIV-1 attachment. Part 10. The discovery and structure–activity relationships of 4-azaindole cores. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 213-217.	2.2	29
117	HCV NS5A replication complex inhibitors. Part 3: discovery of potent analogs with distinct core topologies. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 779-784.	2.2	29
118	Geminal Diheteroatomic Motifs: Some Applications of Acetals, Ketals, and Their Sulfur and Nitrogen Homologues in Medicinal Chemistry and Drug Design. Journal of Medicinal Chemistry, 2021, 64, 9786-9874.	6.4	29
119	Taking aim at a moving target-inhibitors of influenza virus Part 1 : virus adsorption, entry and uncoating. Drug Discovery Today, 1996, 1, 316-324.	6.4	28
120	Acetonitrile Derivatives as Carbonyl Synthons. One-Pot Preparation of Diheteroaryl Ketones via a Strategy of Sequential SNAr Substitution and Oxidation. Journal of Organic Chemistry, 2004, 69, 1364-1367.	3.2	28
121	The NS5A Replication Complex Inhibitors: Difference Makers?. Clinics in Liver Disease, 2011, 15, 627-639.	2.1	28
122	HCV NS5A Replication Complex Inhibitors. Part 4.1 Optimization for Genotype 1a Replicon Inhibitory Activity. Journal of Medicinal Chemistry, 2014, 57, 1976-1994.	6.4	28
123	HCV NS5A replication complex inhibitors. Part 2: Investigation of stilbene prolinamides. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 6063-6066.	2.2	27
124	Inhibitors of HIV-1 attachment. Part 9: An assessment of oral prodrug approaches to improve the plasma exposure of a tetrazole-containing derivative. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 209-212.	2.2	27
125	Design strategies in the prodrugs of HIV-1 protease inhibitors to improve the pharmaceutical properties. European Journal of Medicinal Chemistry, 2017, 139, 865-883.	5.5	27
126	Ketone methylenation with optical resolution. Synthesis of (+)- and (â^')-hop ether. Tetrahedron Letters, 1982, 23, 5005-5008.	1.4	26

#	Article	IF	CITATIONS
127	Severe acute respiratory syndrome coronavirus entry into host cells: Opportunities for therapeutic intervention. Medicinal Research Reviews, 2006, 26, 414-433.	10.5	26
128	Discovery of a Hepatitis C Virus NS5B Replicase Palm Site Allosteric Inhibitor (BMS-929075) Advanced to Phase 1 Clinical Studies. Journal of Medicinal Chemistry, 2017, 60, 4369-4385.	6.4	26
129	Design, Synthesis, and Pharmacokinetic Evaluation of Phosphate and Amino Acid Ester Prodrugs for Improving the Oral Bioavailability of the HIV-1 Protease Inhibitor Atazanavir. Journal of Medicinal Chemistry, 2019, 62, 3553-3574.	6.4	26
130	Synthesis and excitatory amino acid pharmacology of some novel quinoxalinediones. Bioorganic and Medicinal Chemistry Letters, 1993, 3, 2801-2804.	2.2	25
131	N-Benzylated benzimidazol-2-one derivatives: activators of large-conductance Ca2+-dependent K+ channels. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 1641-1646.	2.2	25
132	Imidazoquinoline derivatives: Potent inhibitors of platelet cAMP phosphodiesterase which elevate cAMP levels and activate protein kinase in platelets. Thrombosis Research, 1991, 62, 31-42.	1.7	24
133	C-3 benzoic acid derivatives of C-3 deoxybetulinic acid and deoxybetulin as HIV-1 maturation inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 1757-1770.	3.0	24
134	Discovery of a Potent Acyclic, Tripeptidic, Acyl Sulfonamide Inhibitor of Hepatitis C Virus NS3 Protease as a Back-up to Asunaprevir with the Potential for Once-Daily Dosing. Journal of Medicinal Chemistry, 2016, 59, 8042-8060.	6.4	24
135	Improving Metabolic Stability with Deuterium: The Discovery of BMT-052, a Pan-genotypic HCV NS5B Polymerase Inhibitor. ACS Medicinal Chemistry Letters, 2017, 8, 771-774.	2.8	24
136	Nonprostanoid prostacyclin mimetics. 4. Derivatives of 2-[3-[2-(4,5-diphenyl-2-oxazolyl)ethyl]phenoxy]acetic acid substituted .alpha. to the oxazole ring. Journal of Medicinal Chemistry, 1993, 36, 3871-3883.	6.4	23
137	Solid Phase Synthesis of Novel Pyrrolidinedione Analogs as Potent HIV-1 Integrase Inhibitors. ACS Combinatorial Science, 2010, 12, 84-90.	3.3	23
138	Inhibitors of HIV-1 attachment: The discovery and structure–activity relationships of tetrahydroisoquinolines as replacements for the piperazine benzamide in the 3-glyoxylyl 6-azaindole pharmacophore. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 160-167.	2.2	23
139	Design, Synthesis, and SAR of C-3 Benzoic Acid, C-17 Triterpenoid Derivatives. Identification of the HIV-1 Maturation Inhibitor 4-((1 <i>R</i> ,3a <i>S</i> ,5a <i>R</i> ,5b <i>R</i> ,7a <i>R</i> ,11a <i>S</i> ,11b <i>R</i> ,13a <i>R</i> ,13b <i>R</i>)- Acid (GSK3532795, BMS-955176). Journal of Medicinal Chemistry, 2018, 61, 7289-7313.	3a-((2 -(1,)	1-Dioxidothi
140	A facile construction of 4-hydroxymethylbenzisothiazolone-1,1-dioxide. Tetrahedron Letters, 1998, 39, 1483-1486.	1.4	22
141	Salicylamide inhibitors of influenza virus fusion. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 1649-1652.	2.2	22
142	An effective procedure for the preparation of 3-substituted-4- or 6-azaindoles from ortho-methyl nitro pyridines. Tetrahedron Letters, 2006, 47, 5653-5656.	1.4	22
143	The Emerging Utility of Co-Crystals in Drug Discovery and Development. Annual Reports in Medicinal Chemistry, 2008, 43, 373-404.	0.9	22
144	Hepatitis C Virus NS5A Replication Complex Inhibitors. Part 6: Discovery of a Novel and Highly Potent Biarylimidazole Chemotype with Inhibitory Activity Toward Genotypes 1a and 1b Replicons. Journal of Medicinal Chemistry, 2014, 57, 1995-2012.	6.4	22

#	Article	IF	CITATIONS
145	Applications of Isosteres of Piperazine in the Design of Biologically Active Compounds: Part 1. Journal of Agricultural and Food Chemistry, 2022, 70, 10942-10971.	5.2	22
146	The discovery of novel openers of Ca2+-dependent large-conductance potassium channels: Pharmacophore search and physiological evaluation of flavonoids. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 759-762.	2.2	21
147	A one-pot synthesis of nitrogen-containing heteroaryl α-keto amides from heteroaryl halides. Tetrahedron Letters, 2005, 46, 3587-3589.	1.4	21
148	Discovery and Optimization of Novel Pyrazolopyrimidines as Potent and Orally Bioavailable Allosteric HIV-1 Integrase Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 2620-2637.	6.4	21
149	Respiratory syncytial virus - The discovery and optimization of orally bioavailable fusion inhibitors. Drugs of the Future, 2007, 32, 441.	0.1	21
150	Inhibitors of blood platelet cAMP phosphodiesterase. 4. Structural variation of the side-chain terminus of water-soluble 1,3-dihydro-2H-imidazo[4,5-b]quinolin-2-one derivatives. Journal of Medicinal Chemistry, 1993, 36, 3251-3264.	6.4	20
151	Novel Openers of Ca2+-Dependent Large-Conductance Potassium Channels: Symmetrical Pharmacophore and Electrophysiological Evaluation of Bisphenols. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 1437-1439.	2.2	19
152	Discovery of non-zwitterionic aryl sulfonamides as Nav1.7 inhibitors with efficacy in preclinical behavioral models and translational measures of nociceptive neuron activation. Bioorganic and Medicinal Chemistry, 2017, 25, 5490-5505.	3.0	19
153	Discovery of Indole- and Indazole-acylsulfonamides as Potent and Selective Na _V 1.7 Inhibitors for the Treatment of Pain. Journal of Medicinal Chemistry, 2019, 62, 831-856.	6.4	19
154	Mechanistic Studies and Modeling Reveal the Origin of Differential Inhibition of Gag Polymorphic Viruses by HIV-1 Maturation Inhibitors. PLoS Pathogens, 2016, 12, e1005990.	4.7	19
155	Active site-directed thrombin inhibitors-II. Studies related to arginine/guanidine bioisosteres. Bioorganic and Medicinal Chemistry, 1995, 3, 1145-1156.	3.0	18
156	3-Hydroxy-quinolin-2-ones: Inhibitors of [3H]-glycine binding to the site associated with the NMDA receptor. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 499-504.	2.2	18
157	Inhibitors of HIV-1 attachment. Part 11: The discovery and structure–activity relationships associated with 4,6-diazaindole cores. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 218-222.	2.2	18
158	Tactics in Contemporary Drug Design. Topics in Medicinal Chemistry, 2015, , .	0.8	18
159	The design, synthesis and structure-activity relationships associated with C28 amine-based betulinic acid derivatives as inhibitors of HIV-1 maturation. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1550-1557.	2.2	18
160	Novel quinolizidine salicylamide influenza fusion inhibitors. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 2177-2180.	2.2	17
161	Regioselective Monobenzoylation of Unsymmetrical Piperazines. Journal of Organic Chemistry, 2000, 65, 4740-4742.	3.2	17
162	HCV NS5A replication complex inhibitors. Part 5: Discovery of potent and pan-genotypic glycinamide cap derivatives. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4428-4435.	2.2	17

#	Article	IF	CITATIONS
163	The alkylation of isatinâ€derived oximes: Spectroscopic and Xâ€ray crystallographic structural characterization of oxime and nitrone products. Journal of Heterocyclic Chemistry, 2009, 46, 432-442.	2.6	16
164	A survey of core replacements in indole-based HIV-1 attachment inhibitors. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1423-1429.	2.2	16
165	Intramolecular [2+2] Cycloaddition of Nâ€Allylcinnamamines and <i>N</i> â€Allylcinnamamides by Visibleâ€Light Photocatalysis. European Journal of Organic Chemistry, 2020, 2020, 41-46.	2.4	16
166	Inhibitors of blood platelet cAMP phosphodiesterase. 2. Structure-activity relationships associated with 1,3-dihydro-2H-imidazo[4,5-b]quinolin-2-ones substituted with functionalized side chains. Journal of Medicinal Chemistry, 1992, 35, 2672-2687.	6.4	15
167	Synthesis of 3-Hydroxypyrimidine-2,4-diones. Addition of Anilines to Benzyloxy Isocyanate Synthons to GiveN-Hydroxyureas. Synthesis, 1994, 1994, 846-850.	2.3	15
168	A Facile Synthesis of 1-Substituted Cyclopropylsulfonamides. Synlett, 2006, 2006, 0725-0728.	1.8	15
169	Utilization of in vitro Cacoâ€2 permeability and liver microsomal halfâ€life screens in discovering BMSâ€488043, a novel HIVâ€1 attachment inhibitor with improved pharmacokinetic properties. Journal of Pharmaceutical Sciences, 2010, 99, 2135-2152.	3.3	15
170	Applications of Isosteres of Piperazine in the Design of Biologically Active Compounds: Part 2. Journal of Agricultural and Food Chemistry, 2022, 70, 10972-11004.	5.2	15
171	Alkenyl sulphoxides as precursors to cyclopentenones and prostanoid \hat{I}^2 -side chains. Tetrahedron Letters, 1983, 24, 405-408.	1.4	14
172	2-[3-[2-(4,5-diphenyl-2-oxazolyl) ethyl] phenoxy] acetic acid (BMY 42393): A new, structurally-novel Thrombosis Research, 1994, 74, 115-123.	1.7	14
173	Benzyl amide-ketoacid inhibitors of HIV-integrase. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 4886-4890.	2.2	14
174	Second Generation Inhibitors of HIV-1 Maturation. ACS Medicinal Chemistry Letters, 2019, 10, 287-294.	2.8	14
175	Selective benzoylation of primary amines in the presence of secondary amines. Tetrahedron Letters, 1999, 40, 6745-6747.	1.4	13
176	Solid-phase synthesis of benzisothiazolones as serine protease inhibitors. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 663-666.	2.2	13
177	Enabled clinical use of an HIV-1 attachment inhibitor through drug delivery. Drug Discovery Today, 2014, 19, 1288-1293.	6.4	13
178	GSK3640254 Is a Novel HIV-1 Maturation Inhibitor with an Optimized Virology Profile. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0187621.	3.2	13
179	Inhibition of hERG Channel Trafficking: An Underâ€Explored Mechanism for Drugâ€Induced QT Prolongation. ChemMedChem, 2008, 3, 1501-1502.	3.2	12
180	A scalable synthesis of (1R,3S,5R)-2-(tert-butoxycarbonyl)-2-azabicyclo[3.1.0]hexane-3-carboxylic acid. Tetrahedron Letters, 2013, 54, 6722-6724.	1.4	12

#	Article	IF	CITATIONS
181	The discovery and preclinical evaluation of BMS-707035, a potent HIV-1 integrase strand transfer inhibitor. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2124-2130.	2.2	12
182	Discovery of BMS-986144, a Third-Generation, Pan-Genotype NS3/4A Protease Inhibitor for the Treatment of Hepatitis C Virus Infection. Journal of Medicinal Chemistry, 2020, 63, 14740-14760.	6.4	12
183	Advances in the synthesis of three-dimensional molecular architectures by dearomatizing photocycloadditions. Tetrahedron, 2022, 103, 132087.	1.9	12
184	Ligandâ€Enabled βâ€C(sp ³)â^'H Lactamization of Tosylâ€Protected Aliphatic Amides Using a Practical Oxidant. Angewandte Chemie - International Edition, 2022, 61, .	13.8	12
185	Inhibitors of blood platelet cAMP phosphodiesterase. 3. 1,3-Dihydro-2H-imidazo[4,5-b]quinolin-2-one derivatives with enhanced aqueous solubility. Journal of Medicinal Chemistry, 1992, 35, 2688-2696.	6.4	11
186	Recent Developments in the Virology and Antiviral Research of Severe Acute Respiratory Syndrome Coronavirus. Infectious Disorders - Drug Targets, 2007, 7, 29-41.	0.8	11
187	The discovery of a pan-genotypic, primer grip inhibitor of HCV NS5B polymerase. MedChemComm, 2017, 8, 796-806.	3.4	11
188	Coupling of an Acyl Migration Prodrug Strategy with Bio-activation To Improve Oral Delivery of the HIV-1 Protease Inhibitor Atazanavir. Journal of Medicinal Chemistry, 2018, 61, 4176-4188.	6.4	11
189	Reaction of allylsulphenic acid with alkynes to give thiolan 1-oxide derivatives. Tetrahedron Letters, 1980, 21, 4379-4382.	1.4	10
190	A synthesis of 4-thiomethylbenzisothiazolone-1,1-dioxide using HDPT. Tetrahedron Letters, 1998, 39, 5309-5312.	1.4	10
191	Introduction to Hepatitis C Virus (HCV) Therapies Special Thematic Issue. Journal of Medicinal Chemistry, 2014, 57, 1625-1626.	6.4	10
192	Tactical Applications of Fluorine in Drug Design and Development. , 2014, , 1-54.		10
193	Multigram Synthesis of BMS-929075, an Allosteric, Palm Site Inhibitor of HCV NS5B Replicase, Involving the Synthesis of a Highly Functionalized Benzofuran through a Telescoped Process. Organic Process Research and Development, 2020, 24, 1157-1163.	2.7	10
194	Hepatitis C virus NS3 serine protease as a drug discovery target. Drugs of the Future, 2003, 28, 465.	0.1	10
195	Inhibitors of the entry of HIV into host cells. Current Opinion in Drug Discovery & Development, 2003, 6, 451-61.	1.9	10
196	Design, Synthesis, and Preclinical Profiling of GSK3739936 (BMS-986180), an Allosteric Inhibitor of HIV-1 Integrase with Broad-Spectrum Activity toward 124/125 Polymorphs. Journal of Medicinal Chemistry, 2022, 65, 4949-4971.	6.4	10
197	Chapter 20 Progress towards the Discovery and Development of Specifically Targeted Inhibitors of Hepatitis C Virus. Annual Reports in Medicinal Chemistry, 2009, , 397-440.	0.9	9
198	Evaluation of HIV-1 inhibition by stereoisomers and analogues of the sesquiterpenoid hydroquinone peyssonol A. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 2192-2196.	2.2	9

#	Article	IF	CITATIONS
199	Inhibitors of Human Immunodeficiency Virus Type 1 (HIV-1) Attachment 13. Synthesis and Profiling of a Novel Amminium Prodrug of the HIV-1 Attachment Inhibitor BMS-585248. Journal of Medicinal Chemistry, 2013, 56, 1670-1676.	6.4	9
200	A practical and efficient synthesis of 6-carboalkoxy-13-cycloalkyl-5H-indolo[2,1-a][2]benzazepine-10-carboxylic acid derivatives. Tetrahedron Letters, 2014, 55, 1148-1153.	1.4	9
201	Discovery and preclinical evaluation of potent, orally bioavailable, metabolically stable cyclopropylindolobenzazepine acylsulfonamides as thumb site 1 inhibitors of the hepatitis c virus NS5B RNA-dependent, RNA polymerase. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 936-940.	2.2	9
202	Discovery of morpholine-based aryl sulfonamides as Na v 1.7 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 958-962.	2.2	9
203	Bioactivation of cyclopropyl rings by P450: an observation encountered during the optimisation of a series of hepatitis C virus NS5B inhibitors. Xenobiotica, 2018, 48, 1215-1226.	1.1	9
204	Discovery and Preclinical Profiling of GSK3839919, a Potent HIV-1 Allosteric Integrase Inhibitor. ACS Medicinal Chemistry Letters, 2022, 13, 972-980.	2.8	9
205	Exploration of the diketoacid integrase inhibitor chemotype leading to the discovery of the anilide-ketoacids chemotype. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5818-5821.	2.2	8
206	Development of the Large-Scale Synthesis of Tetrahydropyran Glycine, a Precursor to the HCV NS5A Inhibitor BMS-986097. Journal of Organic Chemistry, 2017, 82, 10376-10387.	3.2	8
207	P3-P4 ureas and reverse carbamates as potent HCV NS3 protease inhibitors: Effective transposition of the P4 hydrogen bond donor. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1853-1859.	2.2	8
208	In Praise of Remarkably Powerful Centamolecular Therapeutic Agents. ACS Medicinal Chemistry Letters, 2019, 10, 1094-1097.	2.8	8
209	Utilization of Sulfoximines in the Synthesis of Optically Pure Substances. Phosphorous and Sulfur and the Related Elements, 1985, 24, 151-163.	0.2	7
210	Development of a photoaffinity label for respiratory syncytial virus inhibitors. Journal of Labelled Compounds and Radiopharmaceuticals, 2003, 46, 1105-1116.	1.0	7
211	Malononitrile as a carbonyl synthon: a one-pot preparation of heteroaryl amide via a S N Ar-oxidation–displacement strategy. Tetrahedron Letters, 2004, 45, 5909-5911.	1.4	7
212	Synergistic Activity of Combined NS5A Inhibitors. Antimicrobial Agents and Chemotherapy, 2016, 60, 1573-1583.	3.2	7
213	Drug-target interactions that involve the replacement or displacement of magnesium ions. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 5355-5372.	2.2	7
214	Heterocycle amide isosteres: An approach to overcoming resistance for HIV-1 integrase strand transfer inhibitors. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126784.	2.2	7
215	Design and exploration of C-3 benzoic acid bioisosteres and alkyl replacements in the context of CSK3532795 (BMS-955176) that exhibit broad spectrum HIV-1 maturation inhibition. Bioorganic and Medicinal Chemistry Letters, 2021, 36, 127823.	2.2	7
216	Synthesis of substituted aryl amidines from aminoacetonitriles. Tetrahedron Letters, 2005, 46, 4919-4923.	1.4	6

#	Article	lF	CITATIONS
217	Discovery of new indole-based acylsulfonamide Nav1.7 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 659-663.	2.2	6
218	Structure-based amelioration of PXR transactivation in a novel series of macrocyclic allosteric inhibitors of HIV-1 integrase. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127531.	2.2	6
219	Design, synthesis and SAR study of novel C2-pyrazolopyrimidine amides and amide isosteres as allosteric integrase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127516.	2.2	6
220	A survey of applications of tetrahydropyrrolo-3,4-azoles and tetrahydropyrrolo-2,3-azoles in medicinal chemistry. Advances in Heterocyclic Chemistry, 2021, , 31-100.	1.7	6
221	Design, synthesis and SAR study of bridged tricyclic pyrimidinone carboxamides as HIV-1 integrase inhibitors. Bioorganic and Medicinal Chemistry, 2020, 28, 115541.	3.0	6
222	Hepatitis C virus entry: an intriguing challenge for drug discovery. Current Opinion in Investigational Drugs, 2006, 7, 727-32.	2.3	6
223	Antithrombotic activity of BMY-43351, a new imidazoquinoline with enhanced aqueous solubility. Thrombosis Research, 1991, 63, 145-155.	1.7	5
224	Identification of a novel series of potent HCV NS5B Site I inhibitors. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1993-1997.	2.2	5
225	Discovery of BMS-961955, an allosteric inhibitor of the hepatitis C virus NS5B polymerase. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3294-3300.	2.2	5
226	Structure-activity relationships of 4-hydroxy-4-biaryl-proline acylsulfonamide tripeptides: A series of potent NS3 protease inhibitors for the treatment of hepatitis C virus. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 590-596.	2.2	5
227	Discovery and initial optimization of alkoxyanthranilic acid derivatives as inhibitors of HCV NS5B polymerase. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 295-298.	2.2	5
228	The Discovery and Development of Daclatasvir: An Inhibitor of the Hepatitis C Virus NS5A Replication Complex. Topics in Medicinal Chemistry, 2019, , 27-55.	0.8	5
229	Writing Your Next Medicinal Chemistry Article: Journal Bibliometrics and Guiding Principles for Industrial Authors. Journal of Medicinal Chemistry, 2020, 63, 14336-14356.	6.4	5
230	(Carbonyl)oxyalkyl linker-based amino acid prodrugs of the HIV-1 protease inhibitor atazanavir that enhance oral bioavailability and plasma trough concentration. European Journal of Medicinal Chemistry, 2020, 207, 112749.	5.5	5
231	The 2020 Nobel Prize in Physiology or Medicine. Journal of Medicinal Chemistry, 2020, 63, 13197-13204.	6.4	5
232	animal models of arterial thrombosis. Thrombosis Research, 1994, 74, 125-133.	1.7	4
233	Developments in Antiviral Drug Design, Discovery and Development in 2004. Current Drug Targets Infectious Disorders, 2005, 5, 307-400.	2.1	4
234	Functionalized triazines as potent HCV entry inhibitors. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 1089-1093.	2.2	4

#	Article	IF	CITATIONS
235	Journal of Medicinal Chemistry, Technological Advances: Highlights 2015–2016. Journal of Medicinal Chemistry, 2017, 60, 1-3.	6.4	4
236	Allosteric Modulators of Drug Targets. Journal of Medicinal Chemistry, 2019, 62, 1-2.	6.4	4
237	Innovation in the discovery of the HIV-1 attachment inhibitor temsavir and its phosphonooxymethyl prodrug fostemsavir. Medicinal Chemistry Research, 2021, 30, 1-26.	2.4	4
238	Hepatitis C Virus—Progress Toward Inhibiting the Nonenzymatic Viral Proteins. Annual Reports in Medicinal Chemistry, 2011, , 263-282.	0.9	4
239	The discovery and optimization of naphthalene-linked P2-P4 Macrocycles as inhibitors of HCV NS3 protease. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 43-48.	2.2	4
240	Azole-N-Acetonitriles as Carbonyl Synthons: A One-Pot Preparation of ÂHeteroaryl Amides from Halides. Synlett, 2004, 2004, 2323-2326.	1.8	3
241	Inhibitors of Protein-Protein Interactions in Paramyxovirus Fusion: A Focus on Respiratory Syncytial Virus. Topics in Medicinal Chemistry, 2012, , 167-196.	0.8	3
242	Azatricyclic Inverse Agonists of RORÎ ³ t That Demonstrate Efficacy in Models of Rheumatoid Arthritis and Psoriasis. ACS Medicinal Chemistry Letters, 2021, 12, 827-835.	2.8	3
243	Influenzathe case for combination therapy. Current Opinion in Investigational Drugs, 2009, 10, 746-9.	2.3	3
244	Scaffold modifications to the 4-(4,4-dimethylpiperidinyl) 2,6-dimethylpyridinyl class of HIV-1 allosteric integrase inhibitors. Bioorganic and Medicinal Chemistry, 2022, 67, 116833.	3.0	3
245	BMY 42393, An Orally Active Prostacyclin Partial Agonist Of Novel Structure. Cardiovascular Drug Reviews, 1995, 13, 289-304.	4.1	2
246	Synthesis of3H-labeled 2-hydroxy-N-[(1,3,3-trimethyl-[4,5,6-3H]cyclohexyl)methyl]-5-azidobenzamide, a photoaffinity analog of an influenza fusion inhibitor. Journal of Labelled Compounds and Radiopharmaceuticals, 1999, 42, 965-974.	1.0	2
247	Drug discoverers – you need us! – Reply. Drug Discovery Today, 2001, 6, 664-665.	6.4	2
248	(Z)-2,2-Dimethyl-5-carboxymethylene-1,3-dioxolan-4-one: a new synthon for the synthesis of α,γ-diketoacid derivatives. Tetrahedron Letters, 2010, 51, 3170-3173.	1.4	2
249	Structure–Property Basis for Solving Transporter-Mediated Efflux and Pan-Genotypic Inhibition in HCV NS5B Inhibitors. ACS Medicinal Chemistry Letters, 2018, 9, 1217-1222.	2.8	2
250	Facile Access to 1,4-Disubstituted Pyrrolo[1,2-a]pyrazines from α-Aminoacetonitriles. Synthesis, 2020, 52, 441-449.	2.3	2
251	Frontispiece: Tailorâ€Made Amino Acids and Fluorinated Motifs as Prominent Traits in Modern Pharmaceuticals. Chemistry - A European Journal, 2020, 26, .	3.3	2
252	Introduction: Drug Metabolism and Toxicology Special Issue. Journal of Medicinal Chemistry, 2020, 63, 6249-6250.	6.4	2

#	Article	IF	CITATIONS
253	The Practice of Medicinal Chemistry and its Contributions to Therapy. Medicinal Chemistry Reviews, 2015, , 359-393.	0.1	2
254	2007: a difficult year for HCV drug development. Current Opinion in Investigational Drugs, 2008, 9, 128-31.	2.3	2
255	Ligandâ€Enabled βâ€C(sp ³)â^H Lactamization of Tosylâ€Protected Aliphatic Amides Using a Practical Oxidant. Angewandte Chemie, 0, , .	2.0	2
256	Stereoselective reduction via lithium borotritide: synthesis of3H-labeled 2-hydroxy-N-[(5-hydroxy-[5-3H]-1,3,3-trimethylcyclohexyl)methyl]-5-methylbenzamide. Journal of Labelled Compounds and Radiopharmaceuticals, 1999, 42, 1061-1068.	1.0	1
257	Chapter 14. Antiviral agents. Annual Reports in Medicinal Chemistry, 2002, 37, 133-147.	0.9	1
258	Chapter 22. Non-HIV antiviral agents. Annual Reports in Medicinal Chemistry, 2003, 38, 213-228.	0.9	1
259	Selective Monoacylation of Symmetrical Diamines via Prior Complexation with Boron ChemInform, 2004, 35, no.	0.0	1
260	The Discovery and Early Clinical Evaluation of the HCV NS3/4A Protease Inhibitor Asunaprevir (BMS-650032). Topics in Medicinal Chemistry, 2019, , 317-354.	0.8	1
261	Epigenetics 2.0: Special Issue on Epigenetics—Call for Papers. Journal of Medicinal Chemistry, 2020, 63, 12129-12130.	6.4	1
262	Advances toward COVID-19 Therapies Special Issue Call for Papers. Journal of Medicinal Chemistry, 2020, 63, 15073-15074.	6.4	1
263	Case History: The Discovery of the First Hepatitis C Virus NS5A Replication Complex Inhibitor Daclatasvir (Daklinzaâ,,¢). Medicinal Chemistry Reviews, 2016, , 375-397.	0.1	1
264	The Genesis and Future Prospects of Small Molecule HIV-1 Attachment Inhibitors. Advances in Experimental Medicine and Biology, 2022, 1366, 45-64.	1.6	1
265	Patent Update: Modulators of Excitatory Amino Acids: Patent Activity June 1991 to June 1992. Current Opinion in Therapeutic Patents, 1992, 2, 1251-1259.	0.0	0
266	Corrigendum. Drug Discovery Today, 2000, 5, 285.	6.4	0
267	An Effective Procedure for the Acylation of Azaindoles at C-3 ChemInform, 2003, 34, no.	0.0	0
268	Novel Openers of Ca2+-Dependent Large-Conductance Potassium Channels: Symmetrical Pharmacophore and Electrophysiological Evaluation of Bisphenols ChemInform, 2003, 34, no.	0.0	0
269	Fundamental Structure—Activity Relationships Associated with a New Structural Class of Respiratory Syncytial Virus Inhibitor ChemInform, 2003, 34, no.	0.0	0
270	Respiratory Syncytial Virus Inhibitors. Part 2. Benzimidazol-2-one Derivatives. ChemInform, 2004, 35, no.	0.0	0

#	Article	IF	CITATIONS
271	Dialkylaminoacetonitrile Derivatives as Amide Synthons. A One-Pot Preparation of Heteroaryl Amides via a Strategy of Sequential SNAr Substitution and Oxidation ChemInform, 2004, 35, no.	0.0	0
272	Acetonitrile Derivatives as Carbonyl Synthons. One-Pot Preparation of Diheteroaryl Ketones via a Strategy of Sequential SNAr Substitution and Oxidation ChemInform, 2004, 35, no.	0.0	0
273	Malononitrile as a Carbonyl Synthon: A One-Pot Preparation of Heteroaryl Amide via a SNAr-Oxidation—Displacement Strategy ChemInform, 2004, 35, no.	0.0	0
274	A Base-Catalyzed, Direct Synthesis of 3,5-Disubstituted 1,2,4-Triazoles from Nitriles and Hydrazides ChemInform, 2005, 36, no.	0.0	0
275	A One-Pot Synthesis of Nitrogen-Containing Heteroaryl α-Keto Amides from Heteroaryl Halides ChemInform, 2005, 36, no.	0.0	0
276	Synthesis of Substituted Aryl Amidines from Aminoacetonitriles ChemInform, 2005, 36, no.	0.0	0
277	A Strategy for the Synthesis of Aryl αâ€Ketoamides Based upon the Acylation of Anions Derived from Cyanomethylamines Followed by Oxidative Cleavage ChemInform, 2002, 33, 58-58.	0.0	0
278	Protein-Protein Interaction Targets to Inhibit HIV-1 Infection. Topics in Medicinal Chemistry, 2012, , 105-165.	0.8	0
279	Inhibitors of hERG Channel Trafficking. Annual Reports in Medicinal Chemistry, 2013, 48, 335-352.	0.9	0
280	Allosteric Modulators of Drug Targets Special Issue. Journal of Medicinal Chemistry, 2018, 61, 1381-1381.	6.4	0
281	In This Issue, Volume 9, Issue 1. ACS Medicinal Chemistry Letters, 2018, 9, 1-1.	2.8	0
282	Simplifying Submission Requirements for the Journal of Medicinal Chemistry. Journal of Medicinal Chemistry, 2021, 64, 7877-7878.	6.4	0
283	Chemistry in the Pharmaceutical Industry. , 2012, , 391-418.		0