Yang Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6633820/publications.pdf Version: 2024-02-01

		759233	752698
23	413	12	20
papers	citations	h-index	g-index
23	23	23	233
all docs	docs citations	times ranked	citing authors

YANC FENO

#	Article	IF	CITATIONS
1	Low-Cost Mass Manufacturing Technique for the Shutdown-Functionalized Lithium-Ion Battery Separator Based on Al ₂ 0 ₃ Coating Online Construction during the I²-iPP Cavitation Process. ACS Applied Materials & Interfaces, 2022, 14, 6714-6728.	8.0	26
2	Low-Cost and Large-Scale Fabricating Technology for High-Performance Lithium-Ion Battery Composite Separators with Connected Nano-Al ₂ O ₃ Coating. ACS Applied Energy Materials, 2022, 5, 615-626.	5.1	12
3	Facile Preparation of a Trilayer Separator with a Shutdown Function Based on the Compounding of β-Crystal Polypropylene and Hydrogenated Petroleum Resin. Industrial & Engineering Chemistry Research, 2022, 61, 9015-9024.	3.7	0
4	Structural evolution of \hat{l}^2 -iPP with different supermolecular structures during the simultaneous biaxial stretching process. Polymer Journal, 2021, 53, 331-344.	2.7	7
5	The unusual delamination phenomenon of three kinds of lithiumâ€ion battery separators. Polymer International, 2021, 70, 288-297.	3.1	3
6	Preparation of highly oriented β polypropylene and its pore formation mechanism during stretching. Polymer Crystallization, 2021, 4, e10183.	0.8	9
7	Development of Multilayer Polypropylene Separators for Lithium-Ion Batteries via an Industrial Process. Industrial & Engineering Chemistry Research, 2021, 60, 11611-11620.	3.7	5
8	Investigation on cavitation behavior of ultrahigh molecular weight polyethylene during stretching in wet process and dry process. Polymer, 2021, 230, 124081.	3.8	19
9	Facile Preparation of a Lithium-Ion Battery Separator with Thermal Shutdown Function Based on Polypropylene/Polyethylene Microsphere Composites. Industrial & Engineering Chemistry Research, 2021, 60, 18530-18539.	3.7	11
10	Effect of annealing on the microvoid formation and evolution during biaxial stretching of β nucleated isotactic polypropylene. Polymer-Plastics Technology and Materials, 2020, 59, 1595-1607.	1.3	0
11	Three-dimensional crystal structure evolution and micropore formation of β-iPP during biaxial stretching. Polymer, 2020, 196, 122471.	3.8	14
12	The Influence of Multiple Stimulations on the Unusual Delamination Phenomenon of a Li-Ion Battery Separator Prepared by a Wet Process. Industrial & Engineering Chemistry Research, 2020, 59, 4568-4579.	3.7	11
13	The compression behavior, microstructure evolution and properties variation of three kinds of commercial battery separators under compression load. Journal of Power Sources, 2020, 451, 227819.	7.8	37
14	Pore formation and evolution mechanism during biaxial stretching of β-iPP used for lithium-ion batteries separator. Materials and Design, 2019, 179, 107880.	7.0	37
15	Deformation and pore formation mechanism of \hat{l}^2 nucleated polypropylene with different supermolecular structures. European Polymer Journal, 2017, 91, 134-148.	5.4	26
16	Investigation of deformation and pore formation in isotactic polypropylene containing active nano-CaCO ₃ . Polymer International, 2017, 66, 1498-1509.	3.1	9
17	Influence of oriented βâ€lamellae on deformation and pore formation in βâ€nucleated polypropylene. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1745-1759.	2.1	15
18	Influence of lamellar structure on the stress–strain behavior of β nucleated polypropylene under tensile loading at elevated temperatures. RSC Advances, 2015, 5, 43496-43507.	3.6	18

Yang Feng

#	Article	IF	CITATIONS
19	Carbamate end-capped poly(oxymethylene) copolymer with enhanced thermal stability prepared by reactive extrusion. Polymer Degradation and Stability, 2015, 111, 131-141.	5.8	3
20	Investigation on double yielding behavior under tensile loading in isotactic polypropylene. Materials & Design, 2014, 60, 153-163.	5.1	26
21	Pore formation mechanism of β nucleated polypropylene stretched membranes. RSC Advances, 2014, 4, 36689-36701.	3.6	69
22	Influence of lamellar structure on double yield behavior and pore size distribution in β nucleated polypropylene stretched membranes. RSC Advances, 2014, 4, 43012-43023.	3.6	44
23	Degradation and Stabilization of Co-POM. Polymer-Plastics Technology and Engineering, 2009, 48, 530-534.	1.9	12