
Basil D Brooke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6633815/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anopheles funestus resistant to pyrethroid insecticides in South Africa. Medical and Veterinary Entomology, 2000, 14, 181-189.	1.5	416
2	Bioassay and biochemical analyses of insecticide resistance in southern African <i>Anopheles funestus</i> (Diptera: Culicidae). Bulletin of Entomological Research, 2001, 91, 265-272.	1.0	193
3	Cuticle thickening associated with pyrethroid resistance in the major malaria vector Anopheles funestus. Parasites and Vectors, 2010, 3, 67.	2.5	188
4	Laboratory selection for and characteristics of pyrethroid resistance in the malaria vector Anopheles funestus. Medical and Veterinary Entomology, 2005, 19, 271-275.	1.5	179
5	Fungal infection counters insecticide resistance in African malaria mosquitoes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17443-17447.	7.1	126
6	Independent mutations in the Rdl locus confer dieldrin resistance to Anopheles gambiae and An. arabiensis. Insect Molecular Biology, 2005, 14, 179-183.	2.0	122
7	Anopheles arabiensis and An. quadriannulatus resistance to DDT in South Africa. Medical and Veterinary Entomology, 2003, 17, 417-422.	1.5	116
8	Over expression of a Cytochrome P450 (CYP6P9) in a Major African Malaria Vector, <i>Anopheles Funestus,</i> Resistant to Pyrethroids. Insect Molecular Biology, 2008, 17, 19-25.	2.0	113
9	Insecticide resistance in Anopheles arabiensis (Diptera: Culicidae) from villages in central, northern and south west Ethiopia and detection of kdr mutation. Parasites and Vectors, 2010, 3, 40.	2.5	98
10	Lethal and Pre-Lethal Effects of a Fungal Biopesticide Contribute to Substantial and Rapid Control of Malaria Vectors. PLoS ONE, 2011, 6, e23591.	2.5	77
11	Electrostatic coating enhances bioavailability of insecticides and breaks pyrethroid resistance in mosquitoes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12081-12086.	7.1	71
12	Characterisation of DDT, pyrethroid and carbamate resistance in Anopheles funestus from Obuasi, Ghana. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2008, 102, 591-598.	1.8	66
13	Insecticide resistance in the malarial mosquito Anopheles arabiensis and association with the kdr mutation. Medical and Veterinary Entomology, 2007, 21, 97-102.	1.5	63
14	Pyrethroid resistance in the major malaria vector Anopheles arabiensis from Gwave, a malaria-endemic area in Zimbabwe. Malaria Journal, 2008, 7, 247.	2.3	63
15	kdr: can a single mutation produce an entire insecticide resistance phenotype?. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2008, 102, 524-525.	1.8	61
16	The effect of multiple blood-feeding on the longevity and insecticide resistant phenotype in the major malaria vector Anopheles arabiensis (Diptera: Culicidae). Parasites and Vectors, 2014, 7, 390.	2.5	61
17	Insecticide resistance and role in malaria transmission of Anopheles funestus populations from Zambia and Zimbabwe. Parasites and Vectors, 2014, 7, 464.	2.5	61
18	A new malaria vector mosquito in South Africa. Scientific Reports, 2017, 7, 43779.	3.3	53

#	Article	IF	CITATIONS
19	Resistance of the malaria vector <i>Anopheles gambiae</i> s.s. to pyrethroid insecticides, in south-western Nigeria. Annals of Tropical Medicine and Parasitology, 2002, 96, 849-852.	1.6	52
20	The infectivity of the entomopathogenic fungus Beauveria bassiana to insecticide-resistant and susceptible Anopheles arabiensis mosquitoes at two different temperatures. Malaria Journal, 2010, 9, 71.	2.3	50
21	The Role of Oxidative Stress in the Longevity and Insecticide Resistance Phenotype of the Major Malaria Vectors Anopheles arabiensis and Anopheles funestus. PLoS ONE, 2016, 11, e0151049.	2.5	49
22	The effect of larval nutritional deprivation on the life history and DDT resistance phenotype in laboratory strains of the malaria vector Anopheles arabiensis. Malaria Journal, 2013, 12, 44.	2.3	48
23	The neonicotinoid imidacloprid, and the pyrethroid deltamethrin, are antagonists of the insect Rdl <scp>GABA</scp> receptor. Journal of Neurochemistry, 2015, 135, 705-713.	3.9	47
24	Reviewing South Africa's malaria elimination strategy (2012–2018): progress, challenges and priorities. Malaria Journal, 2016, 15, 438.	2.3	45
25	The effect of elevated temperatures on the life history and insecticide resistance phenotype of the major malaria vector Anopheles arabiensis (Diptera: Culicidae). Malaria Journal, 2017, 16, 73.	2.3	45
26	Absence of the kdr mutation in the molecular 'M' form suggests different pyrethroid resistance mechanisms in the malaria vector mosquito Anopheles gambiae s.s Tropical Medicine and International Health, 2003, 8, 420-422.	2.3	44
27	The larvicidal effects of black pepper (Piper nigrum L.) and piperine against insecticide resistant and susceptible strains of Anopheles malaria vector mosquitoes. Parasites and Vectors, 2016, 9, 238.	2.5	43
28	Stable Chromosomal Inversion Polymorphisms and Insecticide Resistance in the Malaria Vector Mosquito <i>Anopheles gambiae</i> (Diptera: Culicidae). Journal of Medical Entomology, 2002, 39, 568-573.	1.8	42
29	Relative developmental and reproductive fitness associated with pyrethroid resistance in the major southern African malaria vector, Anopheles funestus. Bulletin of Entomological Research, 2007, 97, 599-605.	1.0	42
30	A New Species Concealed by Anopheles funestus Giles, a Major Malaria Vector in Africa. American Journal of Tropical Medicine and Hygiene, 2009, 81, 510-515.	1.4	42
31	Resistance to dieldrin + fipronil assorts with chromosome inversion 2La in the malaria vector Anopheles gambiae. Medical and Veterinary Entomology, 2000, 14, 190-194.	1.5	40
32	The effect of a single blood meal on the phenotypic expression of insecticide resistance in the major malaria vector Anopheles funestus. Malaria Journal, 2008, 7, 226.	2.3	38
33	Evaluating the potential of the sterile insect technique for malaria control: relative fitness and mating compatibility between laboratory colonized and a wild population of Anopheles arabiensis from the Kruger National Park, South Africa. Parasites and Vectors, 2011, 4, 208.	2.5	37
34	The contribution of gut bacteria to insecticide resistance and the life histories of the major malaria vector Anopheles arabiensis (Diptera: Culicidae). Scientific Reports, 2019, 9, 9117.	3.3	36
35	Mating competitiveness of sterile genetic sexing strain males (GAMA) under laboratory and semi-field conditions: Steps towards the use of the Sterile Insect Technique to control the major malaria vector Anopheles arabiensis in South Africa. Parasites and Vectors, 2016, 9, 122.	2.5	34
36	Pyrethroid, DDT and malathion resistance in the malaria vector Anopheles gambiae from the Democratic Republic of Congo. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2013, 107, 8-14.	1.8	33

#	Article	IF	CITATIONS
37	Malaria vector control in South Africa. South African Medical Journal, 2013, 103, 784.	0.6	33
38	Indoor collections of the Anopheles funestus group (Diptera: Culicidae) in sprayed houses in northern KwaZulu-Natal, South Africa. Malaria Journal, 2007, 6, 30.	2.3	32
39	Anopheles parensis contributes to residual malaria transmission in South Africa. Malaria Journal, 2019, 18, 257.	2.3	32
40	Multiple Insecticide Resistance in <i>Anopheles gambiae</i> (Diptera: Culicidae) from Pointe Noire, Republic of the Congo. Vector-Borne and Zoonotic Diseases, 2011, 11, 1193-1200.	1.5	31
41	Population Dynamics and Plasmodium falciparum (Haemosporida: Plasmodiidae) Infectivity Rates for the Malaria Vector Anopheles arabiensis (Diptera: Culicidae) at Mamfene, KwaZulu-Natal, South Africa. Journal of Medical Entomology, 2017, 54, 1758-1766.	1.8	31
42	Malaria vector composition and insecticide susceptibility status in Guinea Conakry, West Africa. Medical and Veterinary Entomology, 2009, 23, 326-334.	1.5	30
43	The effect of metal pollution on the life history and insecticide resistance phenotype of the major malaria vector Anopheles arabiensis (Diptera: Culicidae). PLoS ONE, 2018, 13, e0192551.	2.5	30
44	A new species concealed by Anopheles funestus Giles, a major malaria vector in Africa. American Journal of Tropical Medicine and Hygiene, 2009, 81, 510-5.	1.4	30
45	Benchmarking insecticide resistance intensity bioassays for Anopheles malaria vector species against resistance phenotypes of known epidemiological significance. Parasites and Vectors, 2017, 10, 198.	2.5	28
46	Field study site selection, species abundance and monthly distribution of anopheline mosquitoes in the northern Kruger National Park, South Africa. Malaria Journal, 2014, 13, 27.	2.3	24
47	Major effect genes or loose confederations? The development of insecticide resistance in the malaria vector Anopheles gambiae. Parasites and Vectors, 2010, 3, 74.	2.5	23
48	High levels of imported asymptomatic malaria but limited local transmission in KwaZulu-Natal, a South African malaria-endemic province nearing malaria elimination. Malaria Journal, 2020, 19, 152.	2.3	22
49	Evaluation of the pyrrole insecticide chlorfenapyr against pyrethroid resistant and susceptible <i>Anopheles funestus</i> (Diptera: Culicidae). Tropical Medicine and International Health, 2009, 15, 127-31.	2.3	20
50	The sympatric occurrence of two molecular forms of the malaria vector Anopheles gambiae Giles sensu stricto in Kanyemba, in the Zambezi Valley, Zimbabwe. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2004, 98, 393-396.	1.8	18
51	Isolation and sequence analysis of P450 genes from a pyrethroid resistant colony of the major malaria vectorAnopheles funestus. DNA Sequence, 2005, 16, 437-445.	0.7	18
52	The effects of larval organic fertiliser exposure on the larval development, adult longevity and insecticide tolerance of zoophilic members of the Anopheles gambiae complex (Diptera: Culicidae). PLoS ONE, 2019, 14, e0215552.	2.5	18
53	Age-related pyrethroid resistance is not a function of P450 gene expression in the major African malaria vector, Anopheles funestus (Diptera: Culicidae). Genetics and Molecular Research, 2011, 10, 3220-3229.	0.2	18
54	The effect of commercial herbicide exposure on the life history and insecticide resistance phenotypes of the major malaria vector Anopheles arabiensis (Diptera: culicidae). Acta Tropica, 2018, 188, 152-160.	2.0	16

#	Article	IF	CITATIONS
55	Member species of the Anopheles gambiae complex can be misidentified as Anopheles leesoni. Malaria Journal, 2020, 19, 89.	2.3	16
56	Second generation effects of larval metal pollutant exposure on reproduction, longevity and insecticide tolerance in the major malaria vector Anopheles arabiensis (Diptera: Culicidae). Parasites and Vectors, 2020, 13, 4.	2.5	15
57	Malaria Vectors and Vector Surveillance in Limpopo Province (South Africa): 1927 to 2018. International Journal of Environmental Research and Public Health, 2020, 17, 4125.	2.6	13
58	Staggered larval time-to-hatch and insecticide resistance in the major malaria vector Anopheles gambiae S form. Malaria Journal, 2010, 9, 360.	2.3	12
59	Insecticide resistance in the malaria vector Anopheles arabiensis in Mamfene, KwaZulu-Natal. South African Journal of Science, 2015, 111, 3.	0.7	11
60	Use of alternative bioassays to explore the impact of pyrethroid resistance on LLIN efficacy. Parasites and Vectors, 2020, 13, 179.	2.5	11
61	The effect of blood feeding on insecticide resistance intensity and adult longevity in the major malaria vector Anopheles funestus (Diptera: Culicidae). Scientific Reports, 2022, 12, 3877.	3.3	10
62	Odyssean malaria outbreaks in Gauteng Province, South Africa, 2007 - 2013. South African Medical Journal, 2014, 104, 335.	0.6	8
63	Dieldrin resistance in the malaria vector Anopheles gambiae in Ghana. Medical and Veterinary Entomology, 2006, 20, 294-299.	1.5	7
64	Evaluation of the toxicity and repellence of an organic fatty acids mixture (C8910) against insecticide susceptible and resistant strains of the major malaria vector Anopheles funestus Giles (Diptera:) Tj ETQq0 0 0 rgl	3T ‡Qs verloo	ck 710 Tf 50 3
65	Effects of inorganic fertilizer on larval development, adult longevity and insecticide susceptibility in the malaria vector Anopheles arabiensis (Diptera: Culicidae). Pest Management Science, 2020, 76, 1560-1568.	3.4	7
66	The Effect of Entomopathogenic Fungus Infection on Female Fecundity of the Major Malaria Vector, <i>Anopheles funestus</i> . African Entomology, 2011, 19, 725-729.	0.6	6
67	Embryonic Development and Rates of Metabolic Activity in Early and Late Hatching Eggs of the Major Malaria Vector Anopheles gambiae. PLoS ONE, 2014, 9, e114381.	2.5	6
68	Larval salinity tolerance of two members of the <i>Anopheles funestus</i> group. Medical and Veterinary Entomology, 2014, 28, 187-192.	1.5	6
69	Detection of Insect-Specific Flaviviruses in Mosquitoes (Diptera: Culicidae) in Northeastern Regions of South Africa. Viruses, 2021, 13, 2148.	3.3	6
70	Insecticide Resistance and Its Impact on Vector Control. , 2016, , 287-312.		5
71	Estimates of the population size and dispersal range of Anopheles arabiensis in Northern KwaZulu-Natal, South Africa: implications for a planned pilot programme to release sterile male mosquitoes. Parasites and Vectors, 2021, 14, 205.	2.5	5
72	The effects of ingestion of hormonal host factors on the longevity and insecticide resistance phenotype of the major malaria vector Anopheles arabiensis (Diptera: Culicidae). PLoS ONE, 2017, 12, e0180909.	2.5	3

#	Article	IF	CITATIONS
73	Inheritance of pyrethroid resistance in the major malaria vector in southern Africa,Anopheles funestus. Annals of Tropical Medicine and Parasitology, 2008, 102, 275-281.	1.6	2
74	Sub-Lethal Pyrethroid Exposure at the Larval or Adult Life Stage and Selection for Resistance in the Major African Malaria VectorAnopheles funestus(Diptera: Culicidae). African Entomology, 2014, 22, 636-642.	0.6	2
75	Potential Mosquito Vectors for Shuni Virus, South Africa, 2014–2018. Emerging Infectious Diseases, 2021, 27, 3142-3146.	4.3	2
76	Malaria risk and receptivity: Continuing development of insecticide resistance in the major malaria vector Anopheles arabiensis in northern KwaZulu-Natal, South Africa. South African Journal of Science, 2022, 118, .	0.7	2
77	Metabolic rate does not vary with seasonal change in Anopheles arabiensis adults in South Africa. Journal of Insect Physiology, 2019, 118, 103942.	2.0	1
78	Characterisation of the epigenetic architecture of the major malaria vector Anopheles arabiensis (Diptera: Culicidae) after treatment with epigenetic modulators and heavy metals. Acta Tropica, 2022, 226, 106259.	2.0	1
79	Frans Mbokazi, 1962–2017. Public Health Action, 2018, 8, S55-S55.	1.2	0