
Il Tae Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6633762/publications.pdf Version: 2024-02-01

ΙΙ ΤΛΕ ΚΙΜ

#	Article	IF	CITATIONS
1	Tailored <scp> HoFeO ₃ –Ho ₂ O ₃ </scp> hybrid perovskite nanocomposites as stable anode material for advanced lithiumâ€ion storage. International Journal of Energy Research, 2022, 46, 2051-2063.	2.2	10
2	Unraveling improved electrochemical kinetics of In2Te3-based anodes embedded in hybrid matrix for Li-ion batteries. Chemical Engineering Journal, 2022, 429, 132395.	6.6	18
3	Fabricating nanostructured HoFeO3 perovskite for lithium-ion battery anodes via co-precipitation. Scripta Materialia, 2022, 207, 114259.	2.6	18
4	High capacity and inexpensive multivalent cathode materials for aqueous rechargeable Zn-ion battery fabricated via in situ electrochemical oxidation of VO2 nanorods. Journal of Power Sources, 2022, 523, 231060.	4.0	22
5	Fabricating iron-tin-oxide nanocomposite electrodes for sodium-ion batteries. Ceramics International, 2022, 48, 19109-19115.	2.3	3
6	In Situ Growth of W2C/WS2 with Carbon-Nanotube Networks for Lithium-Ion Storage. Nanomaterials, 2022, 12, 1003.	1.9	8
7	Boron Oxide Enhancing Stability of MoS2 Anode Materials for Lithium-Ion Batteries. Materials, 2022, 15, 2034.	1.3	5
8	Ag-decorated novel h'-WO3 nanostructures for sustainable applications. Ceramics International, 2022, , .	2.3	4
9	Restructuring NiO to LiNiO2: Ultrastable and reversible anodes for lithium-ion batteries. Chemical Engineering Journal, 2022, 437, 135292.	6.6	14
10	Gallium-Indium-Tin Eutectic as a Self-Healing Room-Temperature Liquid Metal Anode for High-Capacity Lithium-Ion Batteries. Materials, 2022, 15, 168.	1.3	9
11	In situ crosslinkable acrylic random copolymer binders for silicon anodes in lithiumâ€ion batteries. International Journal of Energy Research, 2022, 46, 12565-12578.	2.2	7
12	Spinel Ni-ferrite advanced high-capacity anode for Li-ion batteries prepared via coprecipitation route. Ceramics International, 2022, 48, 31470-31477.	2.3	4
13	Self-healing gallium phosphide embedded in a hybrid matrix for high-performance Li-ion batteries. Energy Storage Materials, 2021, 34, 669-681.	9.5	36
14	Scraps to superior anodes for Li-ion batteries: Sustainable and scalable upgrading of waste rust. Journal of Hazardous Materials, 2021, 410, 124571.	6.5	12
15	Excellent photocatalytic activity of ternary Ag@WO3@rGO nanocomposites under solar simulation irradiation. Journal of Science: Advanced Materials and Devices, 2021, 6, 108-117.	1.5	25
16	Next-Generation Materials for Energy Storage and Conversion. Materials, 2021, 14, 696.	1.3	1
17	Novel carbon-free niobium silicide/oxide nanocomposites for lithium-ion battery anodes. Applied Materials Today, 2021, 22, 100917.	2.3	4
18	Ag Nanoparticle-Decorated MoS2 Nanosheets for Enhancing Electrochemical Performance in Lithium Storage. Nanomaterials, 2021, 11, 626.	1.9	21

#	Article	lF	CITATIONS
19	Zn anode with flexible β-PVDF coating for aqueous Zn-ion batteries with long cycle life. Chemical Engineering Journal, 2021, 411, 128584.	6.6	157
20	Photocatalytic materials for indoor air purification systems: An updated mini-review. Environmental Technology and Innovation, 2021, 22, 101471.	3.0	24
21	Highly reversible lithiation/delithiation in indium antimonide with hybrid buffering matrix. International Journal of Energy Research, 2021, 45, 16145-16154.	2.2	3
22	Microwave-Assisted Expanded Graphite as a Long Cyclic Cathode for the Lithium Dual-Ion Battery. Journal of Nanoscience and Nanotechnology, 2021, 21, 3989-3995.	0.9	1
23	Tailored synthesis of molybdenum-selenide/selenium/sodium-molybdate hybrid composites as a promising anode for lithium-ion and sodium-ion batteries. Chemical Engineering Journal, 2021, 415, 128813.	6.6	9
24	Enabling high-performance aqueous rechargeable Li-ion batteries through systematic optimization of TiS2/LiFePO4 full cell. Applied Surface Science, 2021, 553, 149496.	3.1	6
25	Characteristics of Perovskite Solar Cells with Methylammonium Iodide-Added Anti-Solvent. Journal of Nanoscience and Nanotechnology, 2021, 21, 4367-4371.	0.9	1
26	Development of Antimicrobial CuO/(3-aminopropyl)Triethoxysilane Activated Carbon Fiber. Journal of Nanoscience and Nanotechnology, 2021, 21, 4519-4523.	0.9	1
27	Metal salt-modified biochars derived from agro-waste for effective congo red dye removal. Environmental Research, 2021, 200, 111492.	3.7	57
28	Carbon-free Cu/SbxOy/Sb nanocomposites with yolk-shell and hollow structures as high-performance anodes for lithium-ion storage. Journal of Alloys and Compounds, 2021, 878, 160447.	2.8	13
29	Enhancing electrochemical performance of sodium Prussian blue cathodes for sodium-ion batteries via optimizing alkyl carbonate electrolytes. Ceramics International, 2021, 47, 30164-30171.	2.3	8
30	A diffusion encouraged core–shell heterostructured Co ₃ Sn ₂ @SnO ₂ anode towards emerging dual ion batteries with high energy density. Journal of Materials Chemistry A, 2021, 9, 14991-15002.	5.2	11
31	Nanocrystalline Cellulose Supported MnO2 Composite Materials for High-Performance Lithium-Ion Batteries. Materials, 2021, 14, 6619.	1.3	6
32	Simply Fabricated Inexpensive Dual-Polymer-Coated Fabry-Perot Interferometer-Based Temperature Sensors with High Sensitivity. Sensors, 2021, 21, 7632.	2.1	4
33	The Effects of the Binder and Buffering Matrix on InSb-Based Anodes for High-Performance Rechargeable Li-Ion Batteries. Nanomaterials, 2021, 11, 3420.	1.9	8
34	Few-layer NbSe2@graphene heterostructures as anodes in lithium-ion half- and full-cell batteries. Chemical Engineering Journal, 2020, 382, 122981.	6.6	27
35	Facile synthesis of W2C@WS2 alloy nanoflowers and their hydrogen generation performance. Applied Surface Science, 2020, 504, 144389.	3.1	47
36	Recent advances in twoâ€dimensional transition metal dichalcogenides as photoelectrocatalyst for hydrogen evolution reaction. Journal of Chemical Technology and Biotechnology, 2020, 95, 2597-2607.	1.6	52

Il Tae Kim

#	Article	IF	CITATIONS
37	GeTe-TiC-C Composite Anodes for Li-Ion Storage. Materials, 2020, 13, 4222.	1.3	14
38	In situ growth of hybrid nanoflowers on activated carbon fibers as electrodes for mediatorless enzymatic biofuel cells. Materials Letters, 2020, 281, 128662.	1.3	11
39	W2C/WS2 Alloy Nanoflowers as Anode Materials for Lithium-Ion Storage. Nanomaterials, 2020, 10, 1336.	1.9	22
40	Progress of 3D network binders in silicon anodes for lithium ion batteries. Journal of Materials Chemistry A, 2020, 8, 25548-25570.	5.2	88
41	A Composite Anion Conducting Membrane Based on Quaternized Cellulose and Poly(Phenylene Oxide) for Alkaline Fuel Cell Applications. Polymers, 2020, 12, 2676.	2.0	11
42	SnO2 Nanoflower–Nanocrystalline Cellulose Composites as Anode Materials for Lithium-Ion Batteries. Materials, 2020, 13, 3165.	1.3	8
43	A Novel Photocatalyst Composite of Magnesium Aminoclay and TiO ₂ Immobilized into Activated Carbon Fiber (ACF) Matrix for Pollutant Removal. Journal of Nanoscience and Nanotechnology, 2020, 20, 6844-6849.	0.9	9
44	Self-Assembled Few-Layered MoS2 on SnO2 Anode for Enhancing Lithium-Ion Storage. Nanomaterials, 2020, 10, 2558.	1.9	16
45	Composite of nanocrystalline cellulose with tin dioxide as Lightweight Substrates for high-performance Lithium-ion battery. Korean Journal of Chemical Engineering, 2020, 37, 898-904.	1.2	16
46	Fast charging sodium-ion batteries based on Te-P-C composites and insights to low-frequency limits of four common equivalent impedance circuits. Chemical Engineering Journal, 2020, 398, 125703.	6.6	21
47	Mechanochemical synthesis of InP nanoparticles embedded in hybrid conductive matrix for high-performance lithium-ion batteries. Chemical Engineering Journal, 2020, 399, 125826.	6.6	11
48	Acrylic random copolymer and network binders for silicon anodes in lithium-ion batteries. Journal of Power Sources, 2020, 458, 228054.	4.0	37
49	High sensitivity temperature sensor based on Fresnel reflection with thermosensitive polymer: control of morphology and coating thickness. Japanese Journal of Applied Physics, 2020, 59, SGGC06.	0.8	7
50	Strategy for controlling the morphology and work function of W2C/WS2 nanoflowers. Journal of Alloys and Compounds, 2020, 829, 154582.	2.8	18
51	A study of perovskite solar cell with a Fe ³⁺ /Ga ³⁺ doped TiO ₂ layer. Japanese Journal of Applied Physics, 2020, 59, SGGF05.	0.8	2
52	Enabling High Performance Calcium-Ion Batteries from Prussian Blue and Metal–Organic Compound Materials. ACS Sustainable Chemistry and Engineering, 2020, 8, 2596-2601.	3.2	38
53	Synergistic effect of antimony-triselenide on addition of conductive hybrid matrix for high-performance lithium-ion batteries. Journal of Alloys and Compounds, 2020, 828, 154410.	2.8	12
54	Enhancing Temperature Sensitivity of the Fabry–Perot Interferometer Sensor with Optimization of the Coating Thickness of Polystyrene. Sensors, 2020, 20, 794.	2.1	24

#	Article	IF	CITATIONS
55	Novel hybrid binder mixture tailored to enhance the electrochemical performance of SbTe bi-metallic anode for sodium ion batteries. Journal of Electroanalytical Chemistry, 2020, 865, 114160.	1.9	7
56	Tin oxide evolution by heat-treatment with tin-aminoclay (SnAC) under argon condition for lithium-ion battery (LIB) anode applications. Journal of Power Sources, 2019, 437, 226946.	4.0	22
57	Enhancing the Electrochemical Performance of SbTe Bimetallic Anodes for High-Performance Sodium-Ion Batteries: Roles of the Binder and Carbon Support Matrix. Nanomaterials, 2019, 9, 1134.	1.9	13
58	Enhanced performance of carbon-free intermetallic zinc titanium alloy (Zn-ZnxTiy) anode for lithium-ion batteries. Electrochimica Acta, 2019, 301, 229-239.	2.6	12
59	AgNi@ZnO nanorods grown on graphene as an anodic catalyst for direct glucose fuel cells. Korean Journal of Chemical Engineering, 2019, 36, 1193-1200.	1.2	8
60	Electrochemical Performance of Sn/SnO/Ni3Sn Composite Anodes for Lithium-Ion Batteries. Journal of Nanoscience and Nanotechnology, 2019, 19, 1001-1005.	0.9	9
61	Fe <i>_x</i> Sn <i>_y</i> O <i>_z</i> Composites as Anode Materials for Lithium-Ion Storage. Journal of Nanoscience and Nanotechnology, 2019, 19, 6636-6640.	0.9	9
62	Tailoring of Aqueous-Based Carbon Nanotube–Nanocellulose Films as Self-Standing Flexible Anodes for Lithium-Ion Storage. Nanomaterials, 2019, 9, 655.	1.9	17
63	Effect of binders and additives to tailor the electrochemical performance of Sb2Te3-TiC alloy anodes for high-performance sodium-ion batteries. Journal of Industrial and Engineering Chemistry, 2019, 76, 419-428.	2.9	16
64	Scalable synthesis of high-performance molybdenum diselenide-graphite nanocomposite anodes for lithium-ion batteries. Applied Surface Science, 2019, 481, 1196-1205.	3.1	16
65	High-performance ZnS@graphite composites prepared through scalable high-energy ball milling as novel anodes in lithium-ion batteries. Journal of Industrial and Engineering Chemistry, 2019, 76, 258-267.	2.9	26
66	Preparation of Sn-aminoclay (SnAC)-templated Fe ₃ O ₄ nanoparticles as an anode material for lithium-ion batteries. RSC Advances, 2019, 9, 10536-10545.	1.7	14
67	Tailored synthesis of antimony-based alloy/oxides nanosheets for high-performance sodium-ion battery anodes. Journal of Power Sources, 2019, 414, 470-478.	4.0	17
68	Hybrid Electrode Innovations in Triple and Quadruple Dimensions for Lithiumâ€lon Batteries. ChemElectroChem, 2019, 6, 5911-5927.	1.7	6
69	Combination-based nanomaterial designs in single and double dimensions for improved electrodes in lithium ion-batteries and faradaic supercapacitors. Journal of Energy Chemistry, 2019, 38, 119-146.	7.1	20
70	Facile Synthesis of quantum dots SnO2/Fe3O4 hybrid composites for superior reversible lithium-ion storage. Journal of Industrial and Engineering Chemistry, 2019, 72, 504-511.	2.9	26
71	Core-shell Si@c-PAN particles deposited on graphite as promising anode for lithium-ion batteries. Electrochimica Acta, 2019, 297, 355-364.	2.6	42
72	3D hierarchical structure of MoS2@G-CNT combined with post-film annealing for enhanced lithium-ion storage. Journal of Industrial and Engineering Chemistry, 2019, 69, 116-126.	2.9	13

Il Tae Kim

#	Article	IF	CITATIONS
73	Sb2Te3-TiC-C nanocomposites for the high-performance anode in lithium-ion batteries. Electrochimica Acta, 2019, 293, 8-18.	2.6	27
74	Iron-antimony-based hybrid oxides as high-performance anodes for lithium-ion storage. Journal of Power Sources, 2018, 389, 28-36.	4.0	19
75	Investigation of electrochemical performance on carbon supported tin-selenium bimetallic anodes in lithium-ion batteries. Electrochimica Acta, 2018, 266, 193-201.	2.6	26
76	Cu–SnO2 nanostructures obtained via galvanic replacement control as high performance anodes for lithium-ion storage. Applied Surface Science, 2018, 429, 218-224.	3.1	10
77	Facile preparation of a zinc-based alloy composite as a novel anode material for rechargeable lithium-ion batteries. Applied Surface Science, 2018, 429, 210-217.	3.1	10
78	Ultrarapid sonochemical synthesis of enzyme-incorporated copper nanoflowers and their application to mediatorless glucose biofuel cell. Applied Surface Science, 2018, 429, 203-209.	3.1	63
79	Controlled synthesis of dual-phase carbon-coated Nb2O5/TiNb2O7 porous spheres and their Li-ion storage properties. Journal of Alloys and Compounds, 2018, 731, 437-443.	2.8	33
80	High-performance MoS2-based nanocomposite anode prepared by high-energy mechanical milling: The effect of carbonaceous matrix on MoS2. Electrochimica Acta, 2018, 260, 129-138.	2.6	31
81	Surfactant-assisted ammonium vanadium oxide as a superior cathode for calcium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 22645-22654.	5.2	73
82	Ni-Sn-based hybrid composite anodes for high-performance lithium-ion batteries. Electrochimica Acta, 2018, 278, 25-32.	2.6	45
83	Crab-Shell Biotemplated SnO ₂ Composite Anodes for Lithium-Ion Batteries. Journal of Nanoscience and Nanotechnology, 2018, 18, 6463-6468.	0.9	13
84	Electrochemical Performance of FeSb ₂ -P@C Composites as Anode Materials for Lithium-Ion Storage. Journal of Nanoscience and Nanotechnology, 2018, 18, 1343-1346.	0.9	6
85	A recyclable, recoverable, and reformable hydrogel-based smart photocatalyst. Environmental Science: Nano, 2017, 4, 955-966.	2.2	38
86	Mechanism of sodium adsorption on N-doped graphene nanoribbons for sodium ion battery applications: A density functional theory approach. Carbon, 2017, 119, 492-501.	5.4	68
87	Sb-AlC 0.75 -C composite anodes for high-performance sodium-ion batteries. Journal of Power Sources, 2017, 340, 393-400.	4.0	19
88	SnTe–TiC–C composites as high-performance anodes for Li-ion batteries. Journal of Power Sources, 2017, 365, 372-379.	4.0	27
89	Copper-Antimony-Based Alloy Nanocomposites as Anodes for Lithium-Ion Batteries: Effects of Heat Treatment and Mass Loading. Journal of Nanoscience and Nanotechnology, 2017, 17, 8205-8208.	0.9	1
90	Facile Synthesis of Aluminum-Antimony Alloys and Their Application for Lithium-Ion and Sodium-Ion Storage. Journal of Nanoscience and Nanotechnology, 2017, 17, 7575-7578.	0.9	11

#	Article	IF	CITATIONS
91	Morphology Control of Hydrothermally Grown ZnO Nanostructures by Additives and Seed Layers. Journal of Nanoscience and Nanotechnology, 2017, 17, 7641-7646.	0.9	0
92	Copper–antimony–red phosphorus composites as promising anode materials for sodium-ion batteries. Journal of Power Sources, 2017, 362, 115-122.	4.0	21
93	Hybrid Hydrogel and Aerogel Membranes Based on Chitosan/Prussian Blue for Photo-Fenton-Based Wastewater Treatment Using Sunlight. Science of Advanced Materials, 2017, 9, 1484-1487.	0.1	13
94	Facile and Precise Detection of Boric Acid via Coulometric Titration. Science of Advanced Materials, 2017, 9, 1546-1550.	0.1	0
95	Nanostructured Fe <i>_x</i> Sb <i>_y</i> O <i>_z</i> Composites as Anode Materials for Sodium-Ion Batteries. Science of Advanced Materials, 2017, 9, 1488-1492.	0.1	0
96	Chitosanâ€Tethered Iron Oxide Composites as an Antisintering Porous Structure for Highâ€Performance Liâ€Ion Battery Anodes. Journal of the American Ceramic Society, 2016, 99, 2720-2728.	1.9	24
97	An eco-friendly physicocultural-based rapid synthesis of selenium nanoparticles. RSC Advances, 2016, 6, 48420-48426.	1.7	14
98	Sb-Al C -C Nanocomposite Alloy Anodes for Lithium-Ion Batteries. Electrochimica Acta, 2016, 210, 567-574.	2.6	14
99	Feasibility test of waste oyster shell powder for water treatment. Chemical Engineering Research and Design, 2016, 102, 129-139.	2.7	35
100	Adsorption mechanisms of lithium oxides (LixO2) on N-doped graphene: a density functional theory study with implications for lithium–air batteries. Theoretical Chemistry Accounts, 2016, 135, 1.	0.5	22
101	Sb/Cu2Sb–TiC–C Composite Anode for High-Performance Sodium-Ion Batteries. Journal of Nanoscience and Nanotechnology, 2016, 16, 1890-1893.	0.9	4
102	In-Plane Crystallinity Effect on the Unipolar Resistance Switching Behavior of NiO Thin Film. Journal of Nanoscience and Nanotechnology, 2016, 16, 1924-1927.	0.9	0
103	Fabrication of Self-Healable and Patternable Polypyrrole/Agarose Hybrid Hydrogels for Smart Bioelectrodes. Journal of Nanoscience and Nanotechnology, 2016, 16, 1400-1404.	0.9	12
104	Immobilization of silver nanoparticle-decorated silica particles on polyamide thin film composite membranes for antibacterial properties. Journal of Membrane Science, 2016, 499, 80-91.	4.1	144
105	Cu ₂ Sb Nano-Alloys Dispersed in TiC-C Hybrid Matrix for Sodium-Ion Batteries. Science of Advanced Materials, 2016, 8, 80-83.	0.1	3
106	Antimonyâ€based Intermetallic Alloy Anodes for Highâ€Performance Sodiumâ€Ion Batteries: Effect of Additives. Bulletin of the Korean Chemical Society, 2015, 36, 1625-1630.	1.0	10
107	Patterned growth of zinc oxide nanorods using poly(vinyl) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 107 Td layer. Current Applied Physics, 2015, 15, 356-362.	(alcohol)- 1.1	N-methyl-4(4 1
108	Cu6Sn5–TiC–C nanocomposite anodes for high-performance sodium-ion batteries. Journal of Power Sources, 2015, 281, 11-17.	4.0	29

#	Article	IF	CITATIONS
109	Adsorption mechanisms of lithium oxides (LixO2) on a graphene-based electrode: A density functional theory approach. Applied Surface Science, 2015, 351, 193-202.	3.1	30
110	Tailoring interlayer structure of molecular layer-by-layer assembled polyamide membranes for high separation performance. Applied Surface Science, 2015, 356, 659-667.	3.1	38
111	Mechanisms of Na adsorption on graphene and graphene oxide: density functional theory approach. Carbon Letters, 2015, 16, 116-120.	3.3	84
112	Enhanced electrochemical performances of Li-rich layered oxides by surface modification with reduced graphene oxide/AlPO4 hybrid coating. Journal of Materials Chemistry A, 2014, 2, 8696.	5.2	95
113	High-performance FeSb–TiC–C nanocomposite anodes for sodium-ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 12884.	1.3	55
114	Effect of TiC addition on SnSb–C composite anodes for sodium-ion batteries. Journal of Power Sources, 2014, 269, 848-854.	4.0	59
115	Synthesis and Electrochemical Performance of Reduced Graphene Oxide/AlPO4-coated LiMn1.5Ni0.5O4for Lithium-ion Batteries. Bulletin of the Korean Chemical Society, 2014, 35, 3553-3558.	1.0	2
116	Synthesis and electrochemical performance of reduced graphene oxide/maghemite composite anode for lithium ion batteries. Carbon, 2013, 52, 56-64.	5.4	143
117	Design of a cellulose-based nanocomposite as a potential polymeric scaffold inÂtissue engineering. Polymer, 2013, 54, 2105-2114.	1.8	35
118	Highâ€Performance M _{<i>x</i>} Sb–Al ₂ O ₃ –C (M=Fe, Ni, and Cu) Nanocompositeâ€Alloy Anodes for Sodiumâ€Ion Batteries. Energy Technology, 2013, 1, 319-326.	1.8	21
119	Synthesis of polymer-decorated hydroxyapatite nanoparticles with a dispersed copolymer template. Journal of Materials Chemistry, 2012, 22, 11556.	6.7	14
120	Crystallization kinetics and anisotropic properties of polyethylene oxide/magnetic carbon nanotubes composite films. Polymer, 2012, 53, 2402-2411.	1.8	36
121	Anisotropic conductivity of magnetic carbon nanotubes embedded in epoxy matrices. Carbon, 2011, 49, 54-61.	5.4	102
122	Facile Alignment of Carbon Nanotubes Mediated by Tethered Maghemite Nanoparticles. Materials Research Society Symposia Proceedings, 2010, 1258, 1.	0.1	1
123	Synthesis, Characterization, and Alignment of Magnetic Carbon Nanotubes Tethered with Maghemite Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 6944-6951.	1.5	99
124	Blend membranes of Nafion/sulfonated poly(aryl ether ketone) for direct methanol fuel cell. Journal of Membrane Science, 2007, 300, 28-35.	4.1	41
125	Nafion-sulfonated poly(arylene ether sulfone) composite membrane for direct methanol fuel cell. Macromolecular Research, 2005, 13, 514-520.	1.0	11
126	Converting biomass of agrowastes and invasive plant into alternative materials for water remediation. Biomass Conversion and Biorefinery, 0, , 1.	2.9	4