Kangzhe Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/663360/publications.pdf

Version: 2024-02-01

218677 265206 3,064 41 26 42 h-index citations g-index papers 43 43 43 4719 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Update on anode materials for Na-ion batteries. Journal of Materials Chemistry A, 2015, 3, 17899-17913.	10.3	408
2	3D Hierarchical Porous αâ€Fe ₂ O ₃ Nanosheets for Highâ€Performance Lithiumâ€lon Batteries. Advanced Energy Materials, 2015, 5, 1401421.	19.5	321
3	Recent progress in conversion reaction metal oxide anodes for Li-ion batteries. Materials Chemistry Frontiers, 2017, 1, 2213-2242.	5.9	262
4	Ultraâ€High Capacity Lithiumâ€Ion Batteries with Hierarchical CoO Nanowire Clusters as Binder Free Electrodes. Advanced Functional Materials, 2015, 25, 1082-1089.	14.9	237
5	Electrospun NaVPO ₄ F/C Nanofibers as Selfâ€Standing Cathode Material for Ultralong Cycle Life Naâ€Ion Batteries. Advanced Energy Materials, 2017, 7, 1700087.	19.5	209
6	Ultrasmall TiO ₂ Nanoparticles in Situ Growth on Graphene Hybrid as Superior Anode Material for Sodium/Lithium Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2015, 7, 11239-11245.	8.0	144
7	Identification of cathode stability in Li–CO ₂ batteries with Cu nanoparticles highly dispersed on N-doped graphene. Journal of Materials Chemistry A, 2018, 6, 3218-3223.	10.3	126
8	CuO Nanoplates for Highâ€Performance Potassiumâ€lon Batteries. Small, 2019, 15, e1901775.	10.0	111
9	Exploiting Synergistic Effect by Integrating Ruthenium–Copper Nanoparticles Highly Coâ€Dispersed on Graphene as Efficient Air Cathodes for Li–CO ₂ Batteries. Advanced Energy Materials, 2019, 9, 1802805.	19.5	100
10	Encapsulating sulfur in \hat{l} -MnO2 at room temperature for Li-S battery cathode. Energy Storage Materials, 2017, 9, 78-84.	18.0	97
11	3D hierarchical porous ZnO/ZnCo ₂ O ₄ nanosheets as high-rate anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 6042-6047.	10.3	91
12	Reconstruction of Miniâ€Hollow Polyhedron Mn ₂ O ₃ Derived from MOFs as a Highâ€Performance Lithium Anode Material. Advanced Science, 2016, 3, 1500185.	11.2	83
13	Na ₂ Ti ₆ O ₁₃ Nanorods with Dominant Large Interlayer Spacing Exposed Facet for Highâ€Performance Naâ€Ion Batteries. Small, 2016, 12, 2991-2997.	10.0	78
14	Boosting Coulombic Efficiency of Conversionâ€Reaction Anodes for Potassiumâ€lon Batteries via Confinement Effect. Advanced Functional Materials, 2020, 30, 2007712.	14.9	68
15	Controllable Nâ€Doped CuCo ₂ O ₄ @C Film as a Selfâ€Supported Anode for Ultrastable Sodiumâ€ion Batteries. Small, 2017, 13, 1700873.	10.0	65
16	Stimulating the Reversibility of Sb ₂ S ₃ Anode for Highâ€Performance Potassiumâ€lon Batteries. Small, 2021, 17, e2008133.	10.0	56
17	Flexible Antimony@Carbon Integrated Anode for Highâ€Performance Potassiumâ€lon Battery. Advanced Materials Technologies, 2020, 5, 2000199.	5.8	53
18	Promoting K ion storage property of SnS2 anode by structure engineering. Chemical Engineering Journal, 2021, 406, 126902.	12.7	52

#	Article	IF	Citations
19	Mn3O4 nanoparticles anchored on carbon nanotubes as anode material with enhanced lithium storage. Journal of Alloys and Compounds, 2021, 854, 157179.	5.5	45
20	Flexible Surfaceâ€Enhanced Raman Scattering Substrates: A Review on Constructions, Applications, and Challenges. Advanced Materials Interfaces, 2021, 8, 2100982.	3.7	43
21	Lowering the voltage-hysteresis of CuS anode for Li-ion batteries via constructing heterostructure. Chemical Engineering Journal, 2021, 425, 130548.	12.7	41
22	Improved dehydrogenation performance of LiBH ₄ by confinement into porous TiO ₂ micro-tubes. Journal of Materials Chemistry A, 2014, 2, 9244-9250.	10.3	40
23	Liâ€N ₂ Batteries: A Reversible Energy Storage System?. Angewandte Chemie - International Edition, 2019, 58, 17782-17787.	13.8	39
24	FeMnO ₃ : a high-performance Li-ion battery anode material. Chemical Communications, 2016, 52, 11414-11417.	4.1	38
25	K2Ti6O13 nanorods for potassium-ion battery anodes. Journal of Electroanalytical Chemistry, 2019, 841, 51-55.	3.8	37
26	Constructing hierarchical MnO2/Co3O4 heterostructure hollow spheres for high-performance Li-Ion batteries. Journal of Power Sources, 2019, 437, 226904.	7.8	33
27	Heterostructure engineering of ultrathin SnS2/Ti3C2T nanosheets for high-performance potassium-ion batteries. Journal of Colloid and Interface Science, 2022, 606, 167-176.	9.4	28
28	Intercalation engineering of layered vanadyl phosphates for high performance zinc-ion batteries. Journal of Energy Chemistry, 2021, 63, 239-245.	12.9	27
29	Self-induced matrix with Li-ion storage activity in ultrathin CuMnO2 nanosheets electrode. Journal of Colloid and Interface Science, 2022, 606, 1101-1110.	9.4	24
30	A Foolproof Method to Fabricate Integrated Electrodes with 3D Conductive Networks: A Case Study of MnO <i>_×</i> @C u as Li″on Battery Anode. Advanced Materials Technologies, 2017, 2, 1600221.	5.8	21
31	F- regulate the preparation of polyhedral BiVO4 enclosed by High-Index facet and enhance its photocatalytic activity. Journal of Colloid and Interface Science, 2022, 606, 393-405.	9.4	18
32	Bi-continuous ion/electron transfer avenues enhancing the rate capability of SnS2 anode for potassium-ion batteries. Journal of Power Sources, 2021, 506, 230160.	7.8	17
33	Boosting glucose oxidation by constructing Cu–Cu ₂ O heterostructures. New Journal of Chemistry, 2020, 44, 18449-18456.	2.8	13
34	Activating commercial Al pellets by replacing the passivation layer for high-performance half/full Li-ion batteries. Chemical Engineering Journal, 2022, 433, 133572.	12.7	7
35	PdZn alloys decorated 3D hierarchical porous carbon networks for highly efficient and stable hydrogen production from aldehyde solution. International Journal of Hydrogen Energy, 2021, 46, 33429-33437.	7.1	6
36	Lithium-ion Batteries: 3D Hierarchical Porous α-Fe2O3Nanosheets for High-Performance Lithium-lon Batteries (Adv. Energy Mater. 4/2015). Advanced Energy Materials, 2015, 5, .	19.5	5

#	Article	IF	CITATIONS
37	Structure engineering of silicon nanoparticles with dual signals for hydrogen peroxide detection. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 266, 120421.	3.9	5
38	Liâ€N 2 Batteries: A Reversible Energy Storage System?. Angewandte Chemie, 2019, 131, 17946-17951.	2.0	2
39	Potassium″on Batteries: Stimulating the Reversibility of Sb ₂ S ₃ Anode for Highâ€Performance Potassium″on Batteries (Small 10/2021). Small, 2021, 17, 2170044.	10.0	2
40	Electrodes: Reconstruction of Miniâ∈Hollow Polyhedron Mn ₂ O ₃ Derived from MOFs as a Highâ∈Performance Lithium Anode Material (Adv. Sci. 3/2016). Advanced Science, 2016, 3, .	11.2	1
41	Titelbild: Liâ€N ₂ Batteries: A Reversible Energy Storage System? (Angew. Chem. 49/2019). Angewandte Chemie, 2019, 131, 17645-17645.	2.0	1