Robert Schmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6633463/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photoluminescence emission and Raman response of monolayer MoS_2, MoSe_2, and WSe_2. Optics Express, 2013, 21, 4908.	1.7	1,241
2	Single-photon emission from localized excitons in an atomically thin semiconductor. Optica, 2015, 2, 347.	4.8	378
3	Trion fine structure and coupled spin–valley dynamics in monolayer tungsten disulfide. Nature Communications, 2016, 7, 12715.	5.8	239
4	Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides. Npj 2D Materials and Applications, 2017, 1, .	3.9	191
5	Strain Control of Exciton–Phonon Coupling in Atomically Thin Semiconductors. Nano Letters, 2018, 18, 1751-1757.	4.5	177
6	Nanoscale Positioning of Singleâ€Photon Emitters in Atomically Thin WSe ₂ . Advanced Materials, 2016, 28, 7101-7105.	11.1	162
7	Thickness-Dependent Differential Reflectance Spectra of Monolayer and Few-Layer MoS2, MoSe2, WS2 and WSe2. Nanomaterials, 2018, 8, 725.	1.9	156
8	Thicknessâ€Dependent Refractive Index of 1L, 2L, and 3L MoS ₂ , MoSe ₂ , WS ₂ , and WSe ₂ . Advanced Optical Materials, 2019, 7, 1900239.	3.6	155
9	Ultrafast Coulomb-Induced Intervalley Coupling in Atomically Thin WS ₂ . Nano Letters, 2016, 16, 2945-2950.	4.5	139
10	Phonon Sidebands in Monolayer Transition Metal Dichalcogenides. Physical Review Letters, 2017, 119, 187402.	2.9	136
11	Highly Anisotropic in-Plane Excitons in Atomically Thin and Bulklike 1 <i>T</i> ′-ReSe ₂ . Nano Letters, 2017, 17, 3202-3207.	4.5	130
12	Reversible uniaxial strain tuning in atomically thin WSe ₂ . 2D Materials, 2016, 3, 021011.	2.0	125
13	Micro-reflectance and transmittance spectroscopy: a versatile and powerful tool to characterize 2D materials. Journal Physics D: Applied Physics, 2017, 50, 074002.	1.3	125
14	Nanoantenna-Enhanced Light–Matter Interaction in Atomically Thin WS ₂ . ACS Photonics, 2015, 2, 1260-1265.	3.2	114
15	Valley Zeeman Splitting and Valley Polarization of Neutral and Charged Excitons in Monolayer MoTe ₂ at High Magnetic Fields. Nano Letters, 2016, 16, 3624-3629.	4.5	102
16	Two-octave spanning supercontinuum generation in stoichiometric silicon nitride waveguides pumped at telecom wavelengths. Optics Express, 2017, 25, 1542.	1.7	96
17	Magnetic-Field-Induced Rotation of Polarized Light Emission from Monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>WS</mml:mi><mml:mn>2</mml:mn></mml:msub>. Physical Paview Letters, 2016, 117, 077402</mml:math 	2.9	76
18	Interlayer excitons in a bulk van der Waals semiconductor. Nature Communications, 2017, 8, 639.	5.8	76

ROBERT SCHMIDT

#	Article	IF	CITATIONS
19	On-Chip Waveguide Coupling of a Layered Semiconductor Single-Photon Source. Nano Letters, 2017, 17, 5446-5451.	4.5	72
20	The Fluorescence Intermittency for Quantum Dots Is Not Power-Law Distributed: A Luminescence Intensity Resolved Approach. ACS Nano, 2014, 8, 3506-3521.	7.3	68
21	Inverted valley polarization in optically excited transition metal dichalcogenides. Nature Communications, 2018, 9, 971.	5.8	59
22	Ultrafast dynamics in monolayer transition metal dichalcogenides: Interplay of dark excitons, phonons, and intervalley exchange. Physical Review Research, 2019, 1, .	1.3	57
23	Phonon-assisted emission and absorption of individual color centers in hexagonal boron nitride. 2D Materials, 2019, 6, 035006.	2.0	56
24	Thickness determination of MoS2, MoSe2, WS2 and WSe2 on transparent stamps used for deterministic transfer of 2D materials. Nano Research, 2019, 12, 1691-1695.	5.8	46
25	Dark exciton anti-funneling in atomically thin semiconductors. Nature Communications, 2021, 12, 7221.	5.8	35
26	Assembly of large hBN nanocrystal arrays for quantum light emission. 2D Materials, 2021, 8, 035005.	2.0	25
27	Strain transfer across grain boundaries in MoS ₂ monolayers grown by chemical vapor deposition. 2D Materials, 2018, 5, 031003.	2.0	23
28	Zeeman spectroscopy of excitons and hybridization of electronic states in few-layer WSe ₂ , MoSe ₂ and MoTe ₂ . 2D Materials, 2019, 6, 015010.	2.0	22
29	Change point analysis of matrix dependent photoluminescence intermittency of single CdSe/ZnS quantum dots with intermediate intensity levels. Chemical Physics, 2012, 406, 9-14.	0.9	21
30	Strain-dependent exciton diffusion in transition metal dichalcogenides. 2D Materials, 2021, 8, 015030.	2.0	21
31	Valley dynamics of excitons in monolayer dichalcogenides. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1700131.	1.2	19
32	Strain tuning of the Stokes shift in atomically thin semiconductors. Nanoscale, 2020, 12, 20786-20796.	2.8	17
33	Exciton broadening and band renormalization due to Dexter-like intervalley coupling. 2D Materials, 2018, 5, 025011.	2.0	15
34	Incorporation of oxygen atoms as a mechanism for photoluminescence enhancement of chemically treated MoS ₂ . Physical Chemistry Chemical Physics, 2018, 20, 16918-16923.	1.3	15
35	Theory of the Coherent Response of Magneto-Excitons and Magneto-Biexcitons in Monolayer Transition Metal Dichalcogenides. Physical Review B, 2020, 102, .	1.1	8
36	Photoluminescence Emission and Raman Response of MoS2, MoSe2, and WSe2 Nanolayers. , 2013, , .		5

ROBERT SCHMIDT

#	Article	IF	CITATIONS
37	Biaxial strain in atomically thin transition metal dichalcogenides. , 2017, , .		4
38	Anisotropic exciton diffusion in atomically-thin semiconductors. 2D Materials, 2022, 9, 025008.	2.0	4
39	Single-Photon Emitters: Nanoscale Positioning of Single-Photon Emitters in Atomically Thin WSe2 (Adv. Mater. 33/2016). Advanced Materials, 2016, 28, 7032-7032.	11.1	3
40	Correction to Highly Anisotropic in-Plane Excitons in Atomically Thin and Bulklike 1T′-ReSe2. Nano Letters, 2017, 17, 7169-7169.	4.5	1
41	Correlation of Intermittency of Quantum Dot Photoluminescence Intensity, Decay Time, and Energy. Physica Status Solidi (B): Basic Research, 2019, 256, 1800334.	0.7	1
42	Nanoantenna-enhanced light-matter interaction in atomically thin WS2. , 2015, , .		0
43	Polarization contrast scattering spectroscopy of individual metal nanoantennas. Applied Physics B: Lasers and Optics, 2017, 123, 1.	1.1	0
44	Rotation of polarized light emission from monolayer WS2 induced by high magnetic fields. , 2017, , .		0
45	Deterministic positioning of single-photon emitters in monolayer WSe <inf>2</inf> on the nanoscale. , 2017, , .		0
46	Ultrafast Coulomb Intervalley Interaction in Monolayer WS2. , 2015, , .		0
47	Single Photon Emission from Localized Excitons in Monolayer WSe ₂ ., 2015, , .		0
48	Capillary assembly of large arrays of hBN single-photon emitters. , 2021, , .		0