Pamela L Mellon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6633321/publications.pdf

Version: 2024-02-01

100	5,999	41 h-index	75
papers	citations		g-index
133	133	133	4752
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Deletion of the homeodomain gene Six3 from kisspeptin neurons causes subfertility in female mice. Molecular and Cellular Endocrinology, 2022, 546, 111577.	1.6	O
2	Deletion of Six3 in post-proliferative neurons produces weakened SCN circadian output, improved metabolic function, and dwarfism in male mice. Molecular Metabolism, 2022, 57, 101431.	3.0	3
3	Circadian Rhythms in the Neuronal Network Timing the Luteinizing Hormone Surge. Endocrinology, 2022, 163, .	1.4	10
4	<i>FSHB</i> Transcription is Regulated by a Novel 5′ Distal Enhancer With a Fertility-Associated Single Nucleotide Polymorphism. Endocrinology, 2021, 162, .	1.4	19
5	Growth Hormone Pulses and Liver Gene Expression Are Differentially Regulated by the Circadian Clock Gene $\langle i \rangle$ Bmal1 $\langle i \rangle$. Endocrinology, 2021, 162, .	1.4	7
6	Distal Enhancer Potentiates Activin- and GnRH-Induced Transcription of FSHB. Endocrinology, 2021, 162 , .	1.4	4
7	The Transcription Factor Ventral Anterior Homeobox 1 Modulates Circadian Time-Keeping and Fertility Through Direct Regulation of Vasoactive Intestinal Polypeptide Expression in the Suprachiasmatic Nucleus. Journal of the Endocrine Society, 2021, 5, A556-A556.	0.1	1
8	Androgen receptor positively regulates gonadotropin-releasing hormone receptor in pituitary gonadotropes. Molecular and Cellular Endocrinology, 2021, 530, 111286.	1.6	3
9	The transcription factors SIX3 and VAX1 are required for suprachiasmatic nucleus circadian output and fertility in female mice. Journal of Neuroscience Research, 2021, 99, 2625-2645.	1.3	12
10	Kiss1 is differentially regulated in male and female mice by the homeodomain transcription factor VAX1. Molecular and Cellular Endocrinology, 2021, 534, 111358.	1.6	6
11	Reproductive Deficits Induced by Prenatal Antim $\tilde{A}^{1}\!\!/\!\!4$ llerian Hormone Exposure Require Androgen Receptor in Kisspeptin Cells. Endocrinology, 2021, 162, .	1.4	12
12	The Homeodomain Transcription Factors Vax1 and Six6 Are Required for SCN Development and Function. Molecular Neurobiology, 2020, 57, 1217-1232.	1.9	13
13	GLUT1-mediated glycolysis supports GnRH-induced secretion of luteinizing hormone from female gonadotropes. Scientific Reports, 2020, 10, 13063.	1.6	7
14	Stem cell regionalization during olfactory bulb neurogenesis depends on regulatory interactions between Vax1 and Pax6. ELife, 2020, 9 , .	2.8	10
15	Deletion of the Homeodomain Protein Six6 From GnRH Neurons Decreases GnRH Gene Expression, Resulting in Infertility. Endocrinology, 2019, 160, 2151-2164.	1.4	11
16	Cytogenetic, Genomic, and Functional Characterization of Pituitary Gonadotrope Cell Lines. Journal of the Endocrine Society, 2019, 3, 902-920.	0.1	13
17	The Contribution of the Circadian Gene Bmal1 to Female Fertility and the Generation of the Preovulatory Luteinizing Hormone Surge. Journal of the Endocrine Society, 2019, 3, 716-733.	0.1	24
18	Differential CRE Expression in Lhrh-cre and GnRH-cre Alleles and the Impact on Fertility in Otx2-Flox Mice. Neuroendocrinology, 2019, 108, 328-342.	1.2	13

#	Article	IF	Citations
19	Haploinsufficiency of Homeodomain Proteins Six3, Vax1, and Otx2 Causes Subfertility in Mice via Distinct Mechanisms. Neuroendocrinology, 2019, 109, 200-207.	1.2	12
20	Haploinsufficiency of SIX3 Abolishes Male Reproductive Behavior Through Disrupted Olfactory Development, and Impairs Female Fertility Through Disrupted GnRH Neuron Migration. Molecular Neurobiology, 2018, 55, 8709-8727.	1.9	16
21	Antiandrogen Treatment Ameliorates Reproductive and Metabolic Phenotypes in the Letrozole-Induced Mouse Model of PCOS. Endocrinology, 2018, 159, 1734-1747.	1.4	56
22	Transcriptional interaction between cFOS and the homeodomain-binding transcription factor VAX1 on the GnRH promoter controls Gnrh1 expression levels in a GnRH neuron maturation specific manner. Molecular and Cellular Endocrinology, 2018, 461, 143-154.	1.6	11
23	Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature, 2018, 558, 301-306.	13.7	359
24	Chromatin status and transcription factor binding to gonadotropin promoters in gonadotrope cell lines. Reproductive Biology and Endocrinology, 2017, 15, 86.	1.4	8
25	Bmal1 Is Required for Normal Reproductive Behaviors in Male Mice. Endocrinology, 2016, 157, 4914-4929.	1.4	37
26	Deletion of <i>Vax1 </i> from Gonadotropin-Releasing Hormone (GnRH) Neurons Abolishes GnRH Expression and Leads to Hypogonadism and Infertility. Journal of Neuroscience, 2016, 36, 3506-3518.	1.7	34
27	A Novel Gonadotropin-Releasing Hormone 1 (Gnrh1) Enhancer-Derived Noncoding RNA Regulates Gnrh1 Gene Expression in GnRH Neuronal Cell Models. PLoS ONE, 2016, 11, e0158597.	1.1	10
28	A small population of hypothalamic neurons govern fertility: the critical role of VAX1 in GnRH neuron development and fertility maintenance. Neuroscience Communications, $2016, 2, \ldots$	0.0	6
29	Homeodomain Proteins SIX3 and SIX6 Regulate Gonadotrope-specific Genes During Pituitary Development. Molecular Endocrinology, 2015, 29, 842-855.	3.7	47
30	P16INK4a Upregulation Mediated by SIX6 Defines Retinal Ganglion Cell Pathogenesis in Glaucoma. Molecular Cell, 2015, 59, 931-940.	4.5	66
31	A Novel Letrozole Model Recapitulates Both the Reproductive and Metabolic Phenotypes of Polycystic Ovary Syndrome in Female Mice1. Biology of Reproduction, 2015, 93, 69.	1.2	145
32	Absent Progesterone Signaling in Kisspeptin Neurons Disrupts the LH Surge and Impairs Fertility in Female Mice. Endocrinology, 2015, 156, 3091-3097.	1.4	92
33	Heterozygous Deletion of Ventral Anterior Homeobox (Vax1) Causes Subfertility in Mice. Endocrinology, 2014, 155, 4043-4053.	1.4	36
34	Neurokinin B Induces c-fos Transcription via Protein Kinase C and Activation of Serum Response Factor and Elk-1 in Immortalized GnRH Neurons. Endocrinology, 2014, 155, 3909-3919.	1.4	13
35	Roles of Binding Elements, FOXL2 Domains, and Interactions With cJUN and SMADs in Regulation of FSH \hat{I}^2 . Molecular Endocrinology, 2014, 28, 1640-1655.	3.7	15
36	Influence of stress-induced intermediates on gonadotropin gene expression in gonadotrope cells. Molecular and Cellular Endocrinology, 2014, 385, 71-77.	1.6	36

3

#	Article	IF	Citations
37	Msx1 Homeodomain Protein Represses the αGSU and GnRH Receptor Genes During Gonadotrope Development. Molecular Endocrinology, 2013, 27, 422-436.	3.7	33
38	Gene dosage of Otx2 is important for fertility in male mice. Molecular and Cellular Endocrinology, 2013, 377, 16-22.	1.6	28
39	Neurokinin B Causes Acute GnRH Secretion and Repression of GnRH Transcription in GT1–7 GnRH Neurons. Molecular Endocrinology, 2013, 27, 437-454.	3.7	19
40	Aberrant Development of the Suprachiasmatic Nucleus and Circadian Rhythms in Mice Lacking the Homeodomain Protein Six6. Journal of Biological Rhythms, 2013, 28, 15-25.	1.4	38
41	Prenatal Exposure to Low Levels of Androgen Accelerates Female Puberty Onset and Reproductive Senescence in Mice. Endocrinology, 2012, 153, 4522-4532.	1.4	47
42	Androgen receptor repression of gonadotropin-releasing hormone gene transcription via enhancer 1. Molecular and Cellular Endocrinology, 2012, 363, 92-99.	1.6	5
43	Androgen Receptor Repression of GnRH Gene Transcription. Molecular Endocrinology, 2012, 26, 2-13.	3.7	16
44	GnRH Induces the c-Fos Gene via Phosphorylation of SRF by the Calcium/Calmodulin Kinase II Pathway. Molecular Endocrinology, 2011, 25, 669-680.	3.7	45
45	Dynamic Chromatin Modifications Control GnRH Gene Expression during Neuronal Differentiation and Protein Kinase C Signal Transduction. Molecular Endocrinology, 2011, 25, 460-473.	3.7	30
46	Hypothalamic Dysregulation and Infertility in Mice Lacking the Homeodomain Protein Six6. Journal of Neuroscience, 2011, 31, 426-438.	1.7	66
47	Runt-Related Transcription Factors Impair Activin Induction of the Follicle-Stimulating Hormone \hat{l}^2 -Subunit Gene. Endocrinology, 2010, 151, 2669-2680.	1.4	13
48	FoxL2 Is Required for Activin Induction of the Mouse and Human Follicle-Stimulating Hormone \hat{I}^2 -Subunit Genes. Molecular Endocrinology, 2010, 24, 1037-1051.	3.7	64
49	Hormones in synergy: Regulation of the pituitary gonadotropin genes. Molecular and Cellular Endocrinology, 2010, 314, 192-203.	1.6	143
50	A FoxL in the Smad house: activin regulation of FSH. Trends in Endocrinology and Metabolism, 2010, 21, 562-568.	3.1	38
51	Enhancers of GnRH Transcription Embedded in an Upstream Gene Use Homeodomain Proteins to Specify Hypothalamic Expression. Molecular Endocrinology, 2010, 24, 1949-1964.	3.7	29
52	Otx2 Induction of the Gonadotropin-releasing Hormone Promoter Is Modulated by Direct Interactions with Grg Co-repressors. Journal of Biological Chemistry, 2009, 284, 16966-16978.	1.6	29
53	Progesterone Inhibits Basal and Gonadotropin-Releasing Hormone Induction of Luteinizing Hormone \hat{l}^2 -Subunit Gene Expression. Endocrinology, 2009, 150, 2395-2403.	1.4	28
54	NeuroD1 and Mash1 temporally regulate GnRH receptor gene expression in immortalized mouse gonadotrope cells. Molecular and Cellular Endocrinology, 2008, 295, 106-114.	1.6	17

#	Article	IF	CITATIONS
55	Synergistic Induction of Follicle-Stimulating Hormone \hat{l}^2 -Subunit Gene Expression by Gonadal Steroid Hormone Receptors and Smad Proteins. Endocrinology, 2008, 149, 1091-1102.	1.4	32
56	Activin and Glucocorticoids Synergistically Activate Follicle-Stimulating Hormone \hat{l}^2 -Subunit Gene Expression in the Immortalized L \hat{l}^2 T2 Gonadotrope Cell Line. Endocrinology, 2007, 148, 762-773.	1.4	49
57	p38 Mitogen-Activated Protein Kinase Is Critical for Synergistic Induction of the FSHÎ ² Gene by Gonadotropin-Releasing Hormone and Activin through Augmentation of c-Fos Induction and Smad Phosphorylation. Molecular Endocrinology, 2007, 21, 3071-3086.	3.7	64
58	Loss-of-function mutation in the <i>prokineticin 2</i> gene causes Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17447-17452.	3.3	245
59	Activin Modulates the Transcriptional Response of LÎ ² T2 Cells to Gonadotropin-Releasing Hormone and Alters Cellular Proliferation. Molecular Endocrinology, 2006, 20, 2909-2930.	3.7	40
60	Androgens, Progestins, and Glucocorticoids Induce Follicle-Stimulating Hormone \hat{l}^2 -Subunit Gene Expression at the Level of the Gonadotrope. Molecular Endocrinology, 2006, 20, 2062-2079.	3.7	69
61	Mouse GnRH Receptor Gene Expression Is Mediated by the LHX3 Homeodomain Protein. Endocrinology, 2005, 146, 2180-2185.	1.4	52
62	The Protein Kinase C Pathway Acts through Multiple Transcription Factors to Repress Gonadotropin-Releasing Hormone Gene Expression in Hypothalamic GT1–7 Neuronal Cells. Molecular Endocrinology, 2005, 19, 2769-2779.	3.7	17
63	Activin Regulates Luteinizing Hormone \hat{l}^2 -Subunit Gene Expression through Smad-Binding and Homeobox Elements. Molecular Endocrinology, 2005, 19, 2610-2623.	3.7	55
64	Developmental Regulation of Gonadotropin-releasing Hormone Gene Expression by the MSX and DLX Homeodomain Protein Families. Journal of Biological Chemistry, 2005, 280, 19156-19165.	1.6	79
65	The Groucho-related Gene Family Regulates the Gonadotropin-releasing Hormone Gene through Interaction with the Homeodomain Proteins MSX1 and OCT1. Journal of Biological Chemistry, 2005, 280, 30975-30983.	1.6	47
66	Activin Regulation of the Follicle-Stimulating Hormone \hat{l}^2 -Subunit Gene Involves Smads and the TALE Homeodomain Proteins Pbx1 and Prep1. Molecular Endocrinology, 2004, 18, 1158-1170.	3.7	103
67	Phylogenetic Footprinting Reveals Evolutionarily Conserved Regions of the Gonadotropin-Releasing Hormone Gene that Enhance Cell-Specific Expression. Molecular Endocrinology, 2004, 18, 2950-2966.	3.7	26
68	TALE Homeodomain Proteins Regulate Gonadotropin-releasing Hormone Gene Expression Independently and via Interactions with Oct-1. Journal of Biological Chemistry, 2004, 279, 30287-30297.	1.6	48
69	A Novel AP-1 Site Is Critical for Maximal Induction of the Follicle-stimulating Hormone \hat{l}^2 Gene by Gonadotropin-releasing Hormone. Journal of Biological Chemistry, 2004, 279, 152-162.	1.6	113
70	Androgen Regulates Follicle-Stimulating Hormone \hat{l}^2 Gene Expression in an Activin-Dependent Manner in Immortalized Gonadotropes. Molecular Endocrinology, 2004, 18, 925-940.	3.7	47
71	Pituitary tumorigenesis targeted by the ovine follicle-stimulating hormone \hat{l}^2 -subunit gene regulatory region in transgenic mice. Molecular and Cellular Endocrinology, 2003, 203, 169-183.	1.6	15
72	Nuclear Factor Y and Steroidogenic Factor 1 Physically and Functionally Interact to Contribute to Cell-Specific Expression of the Mouse Follicle-Stimulating Hormone- \hat{l}^2 Gene. Molecular Endocrinology, 2003, 17, 1470-1483.	3.7	62

#	Article	IF	Citations
73	Circadian Gene Expression Regulates Pulsatile Gonadotropin-Releasing Hormone (GnRH) Secretory Patterns in the Hypothalamic GnRH-Secreting GT1-7 Cell Line. Journal of Neuroscience, 2003, 23, 11202-11213.	1.7	146
74	Neuron-Restricted Expression of the Rat Gonadotropin-Releasing Hormone Gene Is Conferred by a Cell-Specific Protein Complex that Binds Repeated CAATT Elements. Molecular Endocrinology, 2002, 16, 2413-2425.	3.7	21
75	An Otx-Related Homeodomain Protein Binds an $LH\hat{1}^2$ Promoter Element Important for Activation During Gonadotrope Maturation. Molecular Endocrinology, 2002, 16, 1280-1298.	3.7	41
76	Neuron-Specific Expression in Vivo by Defined Transcription Regulatory Elements of the GnRH Gene. Endocrinology, 2002, 143, 1404-1412.	1.4	41
77	Transcriptional Activation of the Ovine Follicle-Stimulating Hormone-Î ² Gene by Gonadotropin-Releasing Hormone Involves Multiple Signal Transduction Pathways. Endocrinology, 2002, 143, 1651-1659.	1.4	65
78	A unique case of combined pituitary hormone deficiency caused by a PROP1 gene mutation (R120C) associated with normal height and absent puberty. Clinical Endocrinology, 2002, 57, 283-291.	1.2	65
79	Cell-Specific Transcriptional Regulation of Follicle-Stimulating Hormone- \hat{l}^2 by Activin and Gonadotropin-Releasing Hormone in the L \hat{l}^2 T2 Pituitary Gonadotrope Cell Model ¹ . Endocrinology, 2001, 142, 2284-2295.	1.4	181
80	Submandibular Gland Adenocarcinoma of Intercalated Duct Origin in Smgb-Tag Mice. Laboratory Investigation, 2000, 80, 1657-1670.	1.7	11
81	Transcription Factors Oct-1 and C/EBPβ (CCAAT/Enhancer-Binding Protein-β) Are Involved in the Glutamate/Nitric Oxide/cyclic-Guanosine 5′-Monophosphate-Mediated Repression of Gonadotropin-Releasing Hormone Gene Expression. Molecular Endocrinology, 2000, 14, 212-228.	3.7	77
82	Impaired Adrenocorticotropin-Adrenal Axis in Combined Pituitary Hormone Deficiency Caused by a Two-Base Pair Deletion ($301\hat{a} \in 302$ delAG) in the Prophet of Pit-1 Gene (sup) 1 (sup). Journal of Clinical Endocrinology and Metabolism, 2000, 85, 390-397.	1.8	119
83	Neuron-Specific Expression of the Rat Gonadotropin-Releasing Hormone Gene Is Conferred by Interactions of a Defined Promoter Element with the Enhancer in GT1 \hat{a} e"7 Cells. Molecular Endocrinology, 2000, 14, 1509-1522.	3.7	46
84	The Otx2 Homeoprotein Regulates Expression from the Gonadotropin-Releasing Hormone Proximal Promoter. Molecular Endocrinology, 2000, 14, 1246-1256.	3.7	80
85	Expression of Ptx1 in the adult rat pituitary glands and pituitary cell lines: hormone-secreting cells and folliculo-stellate cells. Cell and Tissue Research, 1999, 298, 55-61.	1.5	32
86	Discrete stages of anterior pituitary differentiation recapitulated in immortalized cell lines. Molecular and Cellular Endocrinology, 1998, 140, 25-30.	1.6	34
87	The GnRH promoter: Target of transcription factors, hormones, and signaling pathways. Molecular and Cellular Endocrinology, 1998, 140, 151-155.	1.6	45
88	Expression of GATA-4 in migrating gonadotropin-releasing neurons of the developing mouse. Molecular and Cellular Endocrinology, 1998, 140, 157-161.	1.6	36
89	Oct-1 Binds Promoter Elements Required for Transcription of the GnRH Gene. Molecular Endocrinology, 1998, 12, 469-481.	3.7	61
90	Multiple Factors Interacting at the GATA Sites of the Gonadotropin-Releasing Hormone Neuron-Specific Enhancer Regulate Gene Expression. Molecular Endocrinology, 1998, 12, 364-377.	3.7	38

#	Article	IF	CITATION
91	The Basic Helix-Loop-Helix, Leucine Zipper Transcription Factor, USF (Upstream Stimulatory Factor), Is a Key Regulator of SF-1 (Steroidogenic Factor-1) Gene Expression in Pituitary Gonadotrope and Steroidogenic Calls, Molecular Endocrinology, 1998, 12, 714-726. The Thyrotropin 12-Subunit Gene is Repressed by Thyroid Hormone in a Novel Thyrotrope Cell Line, Mouse	3.7	53
92	Tî±T1 Ćells**†his work was supported by NIH Résearch Grants R01-HD-20377 and HD-12303 (to P.L.M.) and R01-DK-36843 (to E.C.R.); fellowships from the Spanish Ministry of Education and Science and Fundacion Jaime del Amo, Universidad Complutense de Madrid, Spain (to B.Y.); and a Ford Foundation Fellowship, the President's Fellowship of the University of California, and NIH National Research	1.4	43
93	Scientist Award Fel. Endocrinology, 1998, 139, 4476-4482. Helix-loop-helix proteins are present and differentially expressed in different cell lines from the anterior pituitary. Molecular and Cellular Endocrinology, 1993, 96, 167-176.	1.6	16
94	Neural Tissue within Anterior Pituitary Tumors Generated by Oncogene Expression in Transgenic Mice. Neuroendocrinology, 1992, 56, 300-311.	1.2	19
95	Immortalized Hypothalamic Gonadotropinâ€Releasing Hormone Neurons. Novartis Foundation Symposium, 1992, 168, 104-126.	1.2	13
96	Metabolism of Pro-Luteinizing Hormone-Releasing Hormone in Immortalized Hypothalamic Neurons*. Endocrinology, 1991, 129, 1584-1595.	1.4	82
97	Cell Lines of the Pituitary Gonadotrope Lineage Derived by Targeted Oncogenesis in Transgenic Mice. Molecular Endocrinology, 1990, 4, 597-603.	3.7	479
98	An \hat{l}_{\pm} -Subunit-Secreting Cell Line Derived from a Mouse Thyrotrope Tumor. Molecular Endocrinology, 1990, 4, 589-596.	3.7	59
99	Immortalization of hypothalamic GnRH by genetically targeted tumorigenesis. Neuron, 1990, 5, 1-10.	3.8	989
100	Cell-Specific Transcriptional Regulation of Follicle-Stimulating Hormone- \hat{l}^2 by Activin and Gonadotropin-Releasing Hormone in the L \hat{l}^2 T2 Pituitary Gonadotrope Cell Model. , 0, .		36