
Eduardo Gastal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6633174/publications.pdf Version: 2024-02-01

Ευπνρος ζάσται

#	Article	IF	CITATIONS
1	Comparative Study of the Dynamics of Follicular Waves in Mares and Women1. Biology of Reproduction, 2004, 71, 1195-1201.	1.2	145
2	Role of Diameter Differences among Follicles in Selection of a Future Dominant Follicle in Mares1. Biology of Reproduction, 1997, 57, 1320-1327.	1.2	129
3	Systemic concentrations of hormones during the development of follicular waves in mares and women: a comparative study. Reproduction, 2005, 130, 379-388.	1.1	115
4	Regulation of Circulating Gonadotropins by the Negative Effects of Ovarian Hormones in Mares1. Biology of Reproduction, 2005, 73, 315-323.	1.2	93
5	Luteal blood flow and progesterone production in mares. Animal Reproduction Science, 2007, 99, 213-220.	0.5	89
6	In vitro culture of bovine preantral follicles: a review. Reproductive Biology and Endocrinology, 2014, 12, 78.	1.4	86
7	Changes in Vascular Perfusion of the Endometrium in Association with Changes in Location of the Embryonic Vesicle in Mares1. Biology of Reproduction, 2005, 72, 755-761.	1.2	81
8	Relationships of changes in B-mode echotexture and colour-Doppler signals in the wall of the preovulatory follicle to changes in systemic oestradiol concentrations and the effects of human chorionic gonadotrophin in mares. Reproduction, 2006, 131, 699-709.	1.1	80
9	Role of Luteinizing Hormone in Follicle Deviation Based on Manipulating Progesterone Concentrations in Mares1. Biology of Reproduction, 1999, 61, 1492-1498.	1.2	73
10	Follicle Deviation and Intrafollicular and Systemic Estradiol Concentrations in Mares1. Biology of Reproduction, 1999, 61, 31-39.	1.2	73
11	Relationship of vascular perfusion of the wall of the preovulatory follicle to in vitro fertilisation and embryo development in heifers. Reproduction, 2009, 137, 689-697.	1.1	58
12	Temporal Relationships and Repeatability of Follicle Diameters and Hormone Concentrations within Individuals in Mares. Reproduction in Domestic Animals, 2009, 44, 92-99.	0.6	58
13	Incidence, Endocrinology, Vascularity, and Morphology of Hemorrhagic Anovulatory Follicles in Mares. Journal of Equine Veterinary Science, 2007, 27, 130-139.	0.4	50
14	The suitability of echotexture characteristics of the follicular wall for identifying the optimal breeding day in mares. Theriogenology, 1998, 50, 1025-1038.	0.9	49
15	Differential Blood Flow Changes Between the Future Dominant and Subordinate Follicles Precede Diameter Changes During Follicle Selection in Mares1. Biology of Reproduction, 2004, 71, 502-507.	1.2	47
16	Experimental Assumption of Dominance by a Smaller Follicle and Associated Hormonal Changes in Mares1. Biology of Reproduction, 1999, 61, 724-730.	1.2	45
17	Effect of prostaglandin F21 \pm on ovarian, adrenal, and pituitary hormones and on luteal blood flow in mares. Domestic Animal Endocrinology, 2007, 32, 315-328.	0.8	42
18	InÂvitro development of bovine secondary follicles in two- and three-dimensional culture systems using vascular endothelial growth factor, insulin-like growth factor-1, and growth hormone. Theriogenology, 2014, 82, 1246-1253.	0.9	42

#	Article	IF	CITATIONS
19	The Mare Model to Study the Effects of Ovarian Dynamics on Preantral Follicle Features. PLoS ONE, 2016, 11, e0149693.	1.1	42
20	Temporal interrelationships among luteolysis, FSH and LH concentrations and follicle deviation in mares. Theriogenology, 2000, 53, 925-940.	0.9	41
21	Negative Effect of Estradiol on Luteinizing Hormone Throughout the Ovulatory Luteinizing Hormone Surge in Mares1. Biology of Reproduction, 2007, 77, 543-550.	1.2	40
22	Effect of embryo age and recipient asynchrony on pregnancy rates in a commercial equine embryo transfer program. Theriogenology, 2012, 77, 1159-1166.	0.9	40
23	Uterine blood flow and perfusion in mares with uterine cysts: effect of the size of the cystic area and age. Reproduction, 2008, 135, 541-550.	1.1	38
24	Response of Estradiol and Inhibin to Experimentally Reduced Luteinizing Hormone During Follicle Deviation in Mares1. Biology of Reproduction, 2001, 65, 426-432.	1.2	37
25	Dose-Response Study of Intrafollicular Injection of Insulin-Like Growth Factor-I on Follicular Fluid Factors and Follicle Dominance in Mares1. Biology of Reproduction, 2004, 70, 1063-1069.	1.2	37
26	Effects of age on follicle and hormone dynamics during the oestrous cycle in mares. Reproduction, Fertility and Development, 2008, 20, 955.	0.1	37
27	Critical Role of Insulin-Like Growth Factor System in Follicle Selection and Dominance in Mares1. Biology of Reproduction, 2004, 70, 1374-1379.	1.2	33
28	Relationships of Follicle Versus Oocyte Maturity to Ultrasound Morphology, Blood Flow, and Hormone Concentrations of the Preovulatory Follicle in Mares1. Biology of Reproduction, 2007, 77, 202-208.	1.2	33
29	Number and density of equine preantral follicles in different ovarian histological section thicknesses. Theriogenology, 2015, 83, 1048-1055.	0.9	33
30	InÂvitro culture of equine preantral follicles obtained via the Biopsy Pick-Up method. Theriogenology, 2013, 79, 911-917.	0.9	32
31	Dynamics of the Equine Preovulatory Follicle and Periovulatory Hormones: What's New?. Journal of Equine Veterinary Science, 2008, 28, 454-460.	0.4	31
32	Quantification, morphology, and viability of equine preantral follicles obtained via the Biopsy Pick-Up method. Theriogenology, 2013, 79, 599-609.	0.9	31
33	Serrated granulosa and other discrete ultrasound indicators of impending ovulation in mares. Journal of Equine Veterinary Science, 2006, 26, 67-73.	0.4	30
34	Temporal relationships of the LH surge and ovulation to echotexture and power Doppler signals of blood flow in the wall of the preovulatory follicle in heifers. Reproduction, Fertility and Development, 2010, 22, 1110.	0.1	30
35	Interrelationships among follicles during the common-growth phase of a follicular wave and capacity of individual follicles for dominance in mares. Reproduction, 2004, 128, 417-422.	1.1	29
36	Changes in steady-state concentrations of messenger ribonucleic acids in luteal tissue during prostaglandin F21± induced luteolysis in mares. Animal Reproduction Science, 2005, 90, 273-285.	0.5	29

#	Article	IF	CITATIONS
37	Follicle vascularity coordinates corpus luteum blood flow and progesterone production. Reproduction, Fertility and Development, 2017, 29, 448.	0.1	29
38	Anethole reduces oxidative stress and improves in vitro survival and activation of primordial follicles. Brazilian Journal of Medical and Biological Research, 2018, 51, e7129.	0.7	29
39	Steady-state level of insulin-like growth factor-I (IGF-I) receptor mRNA and the effect of IGF-I on the in vitro culture of caprine preantral follicles. Theriogenology, 2012, 77, 206-213.	0.9	28
40	In vitro culture of isolated preantral and antral follicles of goats using human recombinant FSH: Concentration-dependent and stage-specific effect. Animal Reproduction Science, 2018, 196, 120-129.	0.5	28
41	Factors related to the time of fixation of the conceptus in mares. Theriogenology, 1996, 46, 1171-1180.	0.9	27
42	Sexual behavior of donkey jacks: Influence of ejaculatory frequency and season. Theriogenology, 1996, 46, 593-603.	0.9	27
43	Gene Expression During Early Folliculogenesis in Goats Using Microarray Analysis1. Biology of Reproduction, 2013, 89, 19.	1.2	27
44	The mare as a model for luteinized unruptured follicle syndrome: intrafollicular endocrine milieu. Reproduction, 2016, 151, 271-283.	1.1	27
45	First pregnancy after in vitro culture of early antral follicles in goats: Positive effects of anethole on follicle development and steroidogenesis. Molecular Reproduction and Development, 2020, 87, 966-977.	1.0	27
46	Effect of ejaculation frequency and season on donkey jack semen. Theriogenology, 1997, 47, 627-638.	0.9	26
47	Pre-ovulatory follicle affects corpus luteum diameter, blood flow, and progesterone production in mares. Animal Reproduction Science, 2017, 187, 1-12.	0.5	26
48	Echotextural changes in the follicular wall during follicle deviation in mares. Theriogenology, 1999, 52, 803-814.	0.9	25
49	Follicle and systemic hormone interrelationships during spontaneous and ablation-induced ovulatory waves in mares. Animal Reproduction Science, 2008, 106, 181-187.	0.5	25
50	Follicle diameters and hormone concentrations in the development of single versus double ovulations in mares. Theriogenology, 2008, 69, 583-590.	0.9	25
51	Ultrasound-guided intrafollicular treatment in mares. Theriogenology, 1995, 44, 1027-1037.	0.9	24
52	Induction of haemorrhagic anovulatory follicles in mares. Reproduction, Fertility and Development, 2008, 20, 947.	0.1	24
53	Age-related dynamics of follicles and hormones during an induced ovulatory follicular wave in mares. Theriogenology, 2009, 71, 780-788.	0.9	24
54	Miniature ponies: 1. Follicular, luteal and endometrial dynamics during the oestrous cycle. Reproduction, Fertility and Development, 2008, 20, 376.	0.1	23

#	Article	IF	CITATIONS
55	Treatment with human chorionic gonadotropin (hCG) for ovulation induction is associated with an immediate 17β-estradiol decrease and a more rapid LH increase in mares. Animal Reproduction Science, 2009, 114, 311-317.	0.5	23
56	Equine preantral follicles obtained via the Biopsy Pick-Up method: Histological evaluation and validation of a mechanical isolation technique. Theriogenology, 2013, 79, 735-743.	0.9	23
57	Effect of PGE2 on uterine contractility and tone in mares. Theriogenology, 1998, 50, 989-999.	0.9	22
58	Effect of hCG in the Presence of hCG Antibodies on the Follicle, Hormone Concentrations, and Oocyte in Mares. Reproduction in Domestic Animals, 2009, 44, 474-479.	0.6	22
59	Long-term in vitro culture of ovarian cortical tissue in goats: effects of FSH and IGF-I on preantral follicular development and FSH and IGF-I receptor mRNA expression. Cell and Tissue Research, 2012, 350, 503-511.	1.5	22
60	FSH supplementation to culture medium is beneficial forÂactivation and survival of preantral follicles enclosed inÂequine ovarian tissue. Theriogenology, 2016, 85, 1106-1112.	0.9	22
61	Preantral follicle density in ovarian biopsy fragments and effects of mare age. Reproduction, Fertility and Development, 2017, 29, 867.	0.1	22
62	Follicle growth and endocrine dynamics in women with spontaneous luteinized unruptured follicles versus ovulation. Human Reproduction, 2018, 33, 1130-1140.	0.4	22
63	Spatial Relationships between Serrated Granulosa and Vascularity of the Preovulatory Follicle and Developing Corpus Luteum. Journal of Equine Veterinary Science, 2007, 27, 20-27.	0.4	21
64	Follicle Deviation in Ovulatory Follicular Waves with One or Two Dominant Follicles in Mares. Reproduction in Domestic Animals, 2009, 44, 248-254.	0.6	20
65	Fat harvesting site is an important determinant of proliferation and pluripotency of adipose-derived stem cells. Biologicals, 2016, 44, 12-18.	0.5	20
66	Ovarian fragment sizes affect viability and morphology of preantral follicles during storage at 4°C. Reproduction, 2017, 153, 577-587.	1.1	20
67	Role of EGF on in situ culture of equine preantral follicles and metabolomics profile. Research in Veterinary Science, 2017, 115, 155-164.	0.9	20
68	Glucocorticoid metabolism in equine follicles and oocytes. Domestic Animal Endocrinology, 2017, 59, 11-22.	0.8	20
69	Temporal relationships among LH, estradiol, and follicle vascularization preceding the first compared with later ovulations during the year in mares. Animal Reproduction Science, 2007, 102, 314-321.	0.5	19
70	Long-term in vitro culture of bovine preantral follicles: Effect of base medium and medium replacement methods. Animal Reproduction Science, 2015, 161, 23-31.	0.5	19
71	Linolenic acid improves oocyte developmental competence and decreases apoptosis of <i>in vitro</i> -produced blastocysts in goat. Zygote, 2016, 24, 537-548.	0.5	18
72	Insulin improves inÂvitro survival of equine preantral follicles enclosed in ovarian tissue and reduces reactive oxygen species production after culture. Theriogenology, 2016, 85, 1063-1069.	0.9	18

#	Article	IF	CITATIONS
73	Relationships between follicle and corpus luteum diameter, blood flow, and progesterone production in beef cows and heifers: preliminary results. Animal Reproduction, 2016, 13, 81-92.	0.4	18
74	Effect of oxytocin, prostaglandin F2α, and clenbuterol on uterine dynamics in mares. Theriogenology, 1998, 50, 521-534.	0.9	17
75	Intrafollicular effect of IGF1 on development of follicle dominance in mares. Animal Reproduction Science, 2008, 105, 417-423.	0.5	17
76	Equine ovarian tissue viability after cryopreservation and inÂvitro culture. Theriogenology, 2017, 97, 139-147.	0.9	17
77	Alpha lipoic acid (ALA) effects on developmental competence of equine preantral follicles in short-term culture. Theriogenology, 2018, 105, 169-173.	0.9	17
78	Seasonal variation in equine follicular fluid proteome. Reproductive Biology and Endocrinology, 2019, 17, 29.	1.4	16
79	In vivo effects of pregnancy-associated plasma protein-A, activin-A and vascular endothelial growth factor on other follicular-fluid factors during follicle deviation in mares. Reproduction, 2005, 129, 489-496.	1.1	15
80	Supportive techniques to investigate inÂvitro culture and cryopreservation efficiencies of equine ovarian tissue: A review. Theriogenology, 2020, 156, 296-309.	0.9	15
81	Effect of Suppression of FSH with a GnRH Antagonist (Acyline) Before and During Follicle Deviation in the Mare. Reproduction in Domestic Animals, 2009, 44, 504-511.	0.6	14
82	Association of glucose-6-phosphate dehydrogenase activity with oocyte cytoplasmic lipid content, developmental competence, and expression of candidate genes in a sheep model. Journal of Assisted Reproduction and Genetics, 2014, 31, 1089-1098.	1.2	14
83	Changes in intrafollicular concentrations of free IGF-1, activin A, inhibin A, VEGF, estradiol, and prolactin before ovulation in mares. Theriogenology, 2016, 85, 1491-1498.	0.9	14
84	Effects of Cryoprotectant Agents on Equine Ovarian Biopsy Fragments in Preparation for Cryopreservation. Journal of Equine Veterinary Science, 2017, 53, 86-93.	0.4	14
85	Anethole Supplementation During Oocyte Maturation Improves In Vitro Production of Bovine Embryos. Reproductive Sciences, 2020, 27, 1602-1608.	1.1	14
86	Effect of Cooling System and Rate of Cooling on Sperm Quality of Donkey Semen Preserved at 5°C1. Biology of Reproduction, 1995, 52, 761-767.	1.2	12
87	Development of One vs Multiple Ovulatory Follicles and Associated Systemic Hormone Concentrations in Mares. Reproduction in Domestic Animals, 2009, 44, 441-449.	0.6	12
88	Short-term feed restriction decreases the systemic and intrafollicular concentrations of leptin and increases the vascularity of the preovulatory follicle in mares. Theriogenology, 2010, 73, 1202-1209.	0.9	12
89	Effects of FSH addition to an enriched medium containing insulin and EGF after long-term culture on functionality of equine ovarian biopsy tissue. Theriogenology, 2017, 99, 124-133.	0.9	12
90	Effect of sequential medium on in vitro culture of goat ovarian cortical tissue. Animal Reproduction Science, 2012, 132, 159-168.	0.5	11

#	Article	IF	CITATIONS
91	Spatial distribution of preantral follicles in the equine ovary. PLoS ONE, 2018, 13, e0198108.	1.1	11
92	Oocyte maturation with royal jelly increases embryo development and reduces apoptosis in goats. Animal Reproduction, 2018, 15, 124-134.	0.4	11
93	Accumulation of Fluid in the Infundibulum During the Estrous Cycle in Mares. Journal of Equine Veterinary Science, 2007, 27, 251-259.	0.4	10
94	Prenatal Development of the Digestive System in the Horse. Anatomical Record, 2014, 297, 1218-1227.	0.8	10
95	Laparoscopic ovarian biopsy pick-up method for goats. Theriogenology, 2018, 107, 219-225.	0.9	10
96	In vivo antral follicle wall biopsy: a new research technique to study ovarian function at the cellular and molecular levels. Reproductive Biology and Endocrinology, 2018, 16, 71.	1.4	10
97	Heterotopic autotransplantation of ovarian tissue in a large animal model: Effects of cooling and VEGF. PLoS ONE, 2020, 15, e0241442.	1.1	10
98	Nuclear Configuration, Spindle Morphology and Cytoskeletal Organization of <i>In Vivo</i> Maturing Horse Oocytes. Reproduction in Domestic Animals, 2009, 44, 435-440.	0.6	9
99	Cryopreservation and inÂvitro culture of white-tailed deer ovarian tissue. Theriogenology, 2018, 113, 253-260.	0.9	9
100	Mating Pattern and Chromosome Analysis of a Mule and Her Offspring. Biology of Reproduction, 1995, 52, 273-279.	1.2	8
101	Elevated plasma testosterone concentrations during stallion-like sexual behavior in mares (Equus) Tj ETQq1 1 0.	784314 rg 1.0	;BT ₈ /Overlock
102	Miniature Ponies: Similarities and Differences from Larger Breeds in Follicles and Hormones during the Estrous Cycle. Journal of Equine Veterinary Science, 2008, 28, 508-517.	0.4	8
103	Miniature ponies: 2. Endocrinology of the oestrous cycle. Reproduction, Fertility and Development, 2008, 20, 386.	0.1	8
104	Ultrastructural Morphology and Nuclear Maturation Rates of Immature Equine Oocytes Vitrified with Different Solutions and Exposure Times. Journal of Equine Veterinary Science, 2014, 34, 632-640.	0.4	8
105	Central Nervous System and Vertebrae Development in Horses: a Chronological Study with Differential Temporal Expression of Nestin and GFAP. Journal of Molecular Neuroscience, 2017, 61, 61-78.	1.1	8
106	Harvesting, processing, and evaluation of inÂvitro-manipulated equine preantral follicles: A review. Theriogenology, 2020, 156, 283-295.	0.9	8
107	Passage of postovulatory follicular fluid into the peritoneal cavity and the effect on concentrations of circulating hormones in mares. Animal Reproduction Science, 2008, 107, 1-8.	0.5	7
108	Organogenesis of the Musculoskeletal System in Horse Embryos and Early Fetuses. Anatomical Record, 2016, 299, 722-729.	0.8	7

#	Article	IF	CITATIONS
109	Ovarian features in white-tailed deer (Odocoileus virginianus) fawns and does. PLoS ONE, 2017, 12, e0177357.	1.1	7
110	Anethole Supplementation During Oocyte Maturation Improves In Vitro Production of Bovine Embryos. Reproductive Sciences, 2019, , 193371911983178.	1.1	7
111	Heterotopic ovarian allotransplantation in goats: Preantral follicle viability and tissue remodeling. Animal Reproduction Science, 2020, 215, 106310.	0.5	7
112	Pluripotency Crossroads: Junction of Transcription Factors, Epigenetic Mechanisms, MicroRNAs, and Long Non-coding RNAs. Current Stem Cell Research and Therapy, 2017, 12, 300-311.	0.6	7
113	Preovulatory Follicle Dynamics, and Ovulatory and Endometrial Responses to Different Doses of hCG and Prediction of Ovulation in Mares. Journal of Equine Veterinary Science, 2017, 56, 40-51.	0.4	6
114	Effect of cryopreservation techniques on proliferation and apoptosis of cultured equine ovarian tissue. Theriogenology, 2019, 126, 88-94.	0.9	6
115	Deficiency in proliferative, angiogenic, and LH receptors in the follicle wall: implications of season toward the anovulatory condition. Domestic Animal Endocrinology, 2020, 70, 106382.	0.8	6
116	Stallion-like Behavior in Mares: Review of Incidence, Characteristics, Ovarian Activity, and Role of Testosterone. Journal of Equine Veterinary Science, 2007, 27, 390-393.	0.4	5
117	Follicle suppression of circulating follicle-stimulating hormone and luteinizing hormone before versus after emergence of the ovulatory wave in mares. Theriogenology, 2009, 72, 445-452.	0.9	5
118	Reproductive system development in male and female horse embryos and fetuses: Gonadal hyperplasia revisited. Theriogenology, 2018, 108, 118-126.	0.9	5
119	Transition to the ovulatory season in mares: An investigation of antral follicle receptor gene expression in vivo. Molecular Reproduction and Development, 2019, 86, 1832-1845.	1.0	5
120	Pituitary porcine FSH, and recombinant bovine and human FSH differentially affect growth and relative abundances of mRNA transcripts of preantral and early developing antral follicles in goats. Animal Reproduction Science, 2020, 219, 106461.	0.5	5
121	Follicularâ€fluid proteomics during equine follicle development. Molecular Reproduction and Development, 2022, 89, 298-311.	1.0	4
122	A new alternative for embryo transfer and artificial insemination in mares: ultrasound-guided intrauterine injection. Journal of Equine Veterinary Science, 2004, 24, 324-332.	0.4	3
123	The mule (Equus mulus) as a recipient of horse (Equus caballus) embryos: Comparative aspects of early pregnancy with mares. Theriogenology, 2020, 145, 217-225.	0.9	3
124	Impact of ethanol and heat stress–dependent effect of ultra-diluted Arnica montana 6ÂcH on inÂvitro embryo production in cattle. Theriogenology, 2021, 162, 105-110.	0.9	3
125	Reproductive patterns and follicular waves in postpartum lactating versus non-postpartum cycling mares. Journal of Equine Veterinary Science, 2021, 107, 103732.	0.4	3
126	Novel prospects for evaluation of follicle wall blood flow using color-Doppler ultrasonography. Animal Reproduction, 2016, 13, 762-771.	0.4	3

#	Article	IF	CITATIONS
127	Dominant follicle and gonadotropin dynamics before ovulation in postpartum lactating mares. Molecular Reproduction and Development, 2022, 89, 113-124.	1.0	3
128	Emergence and selection of the dominant follicle and gonadotropin dynamics in postpartum lactating versus non-postpartum cycling mares. Reproductive Biology, 2022, 22, 100618.	0.9	3
129	Folliculogenesis-related genes are differently expressed in secondary and tertiary ovarian follicles. Zygote, 2021, 29, 503-506.	0.5	2
130	Equine ovarian tissue xenografting: impacts of cooling, vitrification, and VEGF. Reproduction and Fertility, 2021, 2, 251-266.	0.6	2
131	Preantral follicle population and distribution in the horse ovary. Reproduction and Fertility, 2022, , .	0.6	2
132	Hemodynamic, endocrine, and gene expression mechanisms regulating equine ovarian follicular and cellular development. Molecular Reproduction and Development, 2022, 89, 23-38.	1.0	2
133	124 RELATIONSHIPS BETWEEN PREOVULATORY FOLLICLE AND CORPUS LUTEUM BLOOD FLOW IN MARES. Reproduction, Fertility and Development, 2012, 24, 174.	0.1	1
134	Heterotopic autotransplantation of equine ovarian tissue using intramuscular versus subvulvar grafting sites: Preliminary results. Theriogenology, 2021, 172, 123-132.	0.9	0
135	123 QUANTIFICATION, MORPHOLOGY AND VIABILITY OF EQUINE PREANTRAL FOLLICLES OBTAINED VIA BIOPSY PICKUP METHOD. Reproduction, Fertility and Development, 2012, 24, 174.	0.1	0
136	Back Cover Image, Volume 89, Issue 1, January 2022. Molecular Reproduction and Development, 2022, 89,	1.0	0