
Cornelis A M Van Bergen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/663297/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comprehensive diagnostics of acute myeloid leukemia by whole transcriptome RNA sequencing. Leukemia, 2021, 35, 47-61.	3.3	47
2	CACTUS: integrating clonal architecture with genomic clustering and transcriptome profiling of single tumor cells. Genome Medicine, 2021, 13, 45.	3.6	3
3	"Snapshotting" Somatic Hypermutation in Single Follicular Lymphoma Cells. Blood, 2021, 138, 1151-1151.	0.6	Ο
4	Integration of Mutational Signature Analysis with 3D Chromatin Data Unveils Differential AID-Related Mutagenesis in Indolent Lymphomas. International Journal of Molecular Sciences, 2021, 22, 13015.	1.8	1
5	Templated insertions at VD and DJ junctions create unique Bâ€cell receptors in the healthy Bâ€cell repertoire. European Journal of Immunology, 2020, 50, 2099-2101.	1.6	3
6	Optimized Whole Genome Association Scanning for Discovery of HLA Class I-Restricted Minor Histocompatibility Antigens. Frontiers in Immunology, 2020, 11, 659.	2.2	8
7	Discovery and Differential Processing of HLA Class II-Restricted Minor Histocompatibility Antigen LB-PIP4K2A-1S and Its Allelic Variant by Asparagine Endopeptidase. Frontiers in Immunology, 2020, 11, 381.	2.2	7
8	<i> IGLV3-21 <i>*</i> 01 </i> is an inherited risk factor for CLL through the acquisition of a single-point mutation enabling autonomous BCR signaling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4320-4327.	3.3	55
9	Acquired N-Linked Glycosylation Motifs in B-Cell Receptors of Primary Cutaneous B-Cell Lymphoma and the Normal B-Cell Repertoire. Journal of Investigative Dermatology, 2019, 139, 2195-2203.	0.3	12
10	Peripheral IgE Repertoires of Healthy Donors Carry Moderate Mutation Loads and Do Not Overlap With Other Isotypes. Frontiers in Immunology, 2019, 10, 1543.	2.2	10
11	T Cells Specific for an Unconventional Natural Antigen Fail to Recognize Leukemic Cells. Cancer Immunology Research, 2019, 7, 797-804.	1.6	15
12	Double Umbilical Cord Blood Transplantation in Highâ€Risk Hematological Patients: A Phase II Study Focusing on the Mechanism of Graft Predominance. HemaSphere, 2019, 3, e285.	1.2	5
13	High-Throughput BCR Sequencing and Single-Cell Transcriptomics Reveal Distinct Transcriptional Profiles Associated with Subclonal Evolution of Follicular Lymphoma. Blood, 2019, 134, 298-298.	0.6	1
14	CD4 Donor Lymphocyte Infusion Can Cause Conversion of Chimerism Without GVHD by Inducing Immune Responses Targeting Minor Histocompatibility Antigens in HLA Class II. Frontiers in Immunology, 2018, 9, 3016.	2.2	33
15	Whole Transcriptome RNA Sequencing As a Comprehensive Diagnostic Tool for Acute Myeloid Leukemia. Blood, 2018, 132, 2762-2762.	0.6	0
16	Primary Cutaneous Follicle Center Lymphomas (PCFCL) Express Heavily Mutated B-Cell Receptors with Acquired N-Glycosylation Motifs and Lack Ongoing Somatic Hypermutation. Blood, 2018, 132, 1573-1573.	0.6	3
17	Differential Genome-Wide Mutational Patterns in Indolent B-Cell Lymphomas. Blood, 2018, 132, 4102-4102.	0.6	0
18	Mismatched HLA-DRB3 Can Induce a Potent Immune Response After HLA 10/10 Matched Stem Cell Transplantation. Transplantation, 2017, 101, 2850-2854.	0.5	8

CORNELIS A M VAN BERGEN

#	Article	IF	CITATIONS
19	<scp>ARTISAN PCR</scp> : rapid identification of fullâ€length immunoglobulin rearrangements without primer binding bias. British Journal of Haematology, 2017, 178, 983-986.	1.2	28
20	Selective graft-versus-leukemia depends on magnitude and diversity of the alloreactive T cell response. Journal of Clinical Investigation, 2017, 127, 517-529.	3.9	107
21	Autosomal Minor Histocompatibility Antigens: How Genetic Variants Create Diversity in Immune Targets. Frontiers in Immunology, 2016, 7, 100.	2.2	109
22	CD4+ T-cell alloreactivity toward mismatched HLA class II alleles early after double umbilical cord blood transplantation. Blood, 2016, 128, 2165-2174.	0.6	31
23	Integrated Whole Genome and Transcriptome Analysis Identified a Therapeutic Minor Histocompatibility Antigen in a Splice Variant of <i>ITGB2</i> . Clinical Cancer Research, 2016, 22, 4185-4196.	3.2	21
24	Whole Transcriptome Sequencing (RNAseq) As a Comprehensive, Cost-Efficient Diagnostic Tool for Acute Myeloid Leukemia. Blood, 2016, 128, 1701-1701.	0.6	4
25	Endogenous Immunoglobulin-Derived Neoepitopes Are Processed and Form a Sizeable Fraction of the HLA Class I Ligandome of Human Lymphoma Cells. Blood, 2016, 128, 914-914.	0.6	1
26	LB-ARHGDIB-1R as a novel minor histocompatibility antigen for therapeutic application. Haematologica, 2015, 100, e419-e422.	1.7	14
27	Identification of Biological Relevant Minor Histocompatibility Antigens within the B-lymphocyte–Derived HLA-Ligandome Using a Reverse Immunology Approach. Clinical Cancer Research, 2015, 21, 2177-2186.	3.2	36
28	Lectins from opportunistic bacteria interact with acquired variable-region glycans of surface immunoglobulin in follicular lymphoma. Blood, 2015, 125, 3287-3296.	0.6	66
29	Evidence for idiotype-directed immunosurveillance is restricted to follicular lymphoma and attributable to somatic hypermutation. Haematologica, 2015, 100, e143-e146.	1.7	2
30	Early CD4+ T-Cell Effector Alloreactivity Towards Multiple Mismatched HLA Class II Alleles Is Associated with Graft Predominance after Double Umbilical Cord Blood Transplantation (dUCBT). Blood, 2015, 126, 387-387.	0.6	1
31	Durable Remission of Renal Cell Carcinoma in Conjuncture with Graft versus Host Disease following Allogeneic Stem Cell Transplantation and Donor Lymphocyte Infusion: Rule or Exception?. PLoS ONE, 2014, 9, e85198.	1.1	4
32	Massive Parallel Sequencing of Full-Length B-Cell Receptor Sequences Reveals HLA-Dependent Shaping of the B-Cell Immune Repertoire. Blood, 2014, 124, 4143-4143.	0.6	0
33	Patient HLA-DP–Specific CD4+ T Cells from HLA-DPB1–Mismatched Donor Lymphocyte Infusion Can Induce Graft-versus-Leukemia Reactivity in the Presence or Absence of Graft-versus-Host Disease. Biology of Blood and Marrow Transplantation, 2013, 19, 40-48.	2.0	46
34	Discovery of T Cell Epitopes Implementing HLA-Peptidomics into a Reverse Immunology Approach. Journal of Immunology, 2013, 190, 3869-3877.	0.4	40
35	HLA class II upregulation during viral infection leads to HLA-DP–directed graft-versus-host disease after CD4+ donor lymphocyte infusion. Blood, 2013, 122, 1963-1973.	0.6	78
36	Graft Versus Leukemia Separates From Graft Versus Host Disease By Magnitude and Avidity Of The Allo-Reactive T Cell Response After Allogeneic Stem Cell Transplantation and Donor Lymphocyte Infusion. Blood, 2013, 122, 2014-2014.	0.6	0

#	Article	IF	CITATIONS
37	LB-ARHGDIB-1R As Novel Minor Histocompatibility Antigen For Therapeutic Application. Blood, 2013, 122, 4465-4465.	0.6	0
38	Identification of 4 novel HLA-B*40:01 restricted minor histocompatibility antigens and their potential as targets for graft-versus-leukemia reactivity. Haematologica, 2012, 97, 1196-1204.	1.7	40
39	Purified CD4 T Lymphocyte Infusion Can Result in Graft-Versus-Leukemia Reactivity without Gvhd by Recognition of Broadly Expressed Minor Histocompatibility Antigens in HLA Class-II. Blood, 2012, 120, 4116-4116.	0.6	Ο
40	Durable Remission of Renal Cell Carcinoma After Donor Lymphocyte Infusion Is Unavoidably Linked with Graft Versus Host Disease As Illustrated by the Detection of Allo Reactive T Cells Recognizing a Novel Minor Histocompatibility Antigen Encoded by the FUCA2 Gene. Blood, 2012, 120, 4467-4467.	0.6	0
41	Allo-HLA–reactive T cells inducing graft-versus-host disease are single peptide specific. Blood, 2011, 118, 6733-6742.	0.6	64
42	HLA Class II Upregulation During An Ongoing Viral Infection Can Lead to HLA-DP Directed Graft-Versus-Host Disease After HLA-DPB1 Mismatched CD4+ Donor Lymphocyte Infusion. Blood, 2011, 118, 3062-3062.	0.6	3
43	Common Minor Histocompatibility Antigen Discovery Based upon Patient Clinical Outcomes and Genomic Data. PLoS ONE, 2011, 6, e23217.	1.1	47
44	HLA-Peptidomics and the Identification of Clinical Relevant Minor Histocompatibility Antigens,. Blood, 2011, 118, 4038-4038.	0.6	0
45	High-Throughput Characterization of 10 New Minor Histocompatibility Antigens by Whole Genome Association Scanning. Cancer Research, 2010, 70, 9073-9083.	0.4	104
46	Identification of 4 new HLA-DR–restricted minor histocompatibility antigens as hematopoietic targets in antitumor immunity. Blood, 2009, 114, 3684-3692.	0.6	64
47	Diversity of HLA Class I and Class II Restricted Minor Histocompatibility Antigens in Graft-Versus-Leukemia Reactivity Blood, 2009, 114, 4084-4084.	0.6	Ο
48	High Throughput Minor Histocompatibility Antigen Discovery by Whole Genome Association Scanning Blood, 2009, 114, 685-685.	0.6	0
49	Identification of Four New HLA Class II Restricted Minor Histocompatibility Antigens Contributing to Graft Versus Leukemia Reactivity Blood, 2008, 112, 3247-3247.	0.6	Ο
50	Genomics as a Tool for Antigen Discovery in Allogeneic Stem Cell Transplantation: Identification of the Minor Antigen T4A through Donor/Patient Polymorphism Disparities. Blood, 2008, 112, 3907-3907.	0.6	8
51	Phase I/II feasibility study evaluating the generation of leukemia-reactive cytotoxic T lymphocyte lines for treatment of patients with relapsed leukemia after allogeneic stem cell transplantation. Haematologica, 2007, 92, 72-80.	1.7	48
52	Multiple myeloma–reactive T cells recognize an activation-induced minor histocompatibility antigen encoded by the ATP-dependent interferon-responsive (ADIR) gene. Blood, 2007, 109, 4089-4096.	0.6	90
53	ATP Dependent Interferon Responsive (ADIR) Gene Encodes an Activation Induced Minor Histocompatibility Antigen Recognized on Multiple Myeloma by CD8+ T Cells Blood, 2006, 108, 549-549.	0.6	0
54	Autoreactive CD8 T cells associated with cell destruction in type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18425-18430.	3.3	252

#	Article	IF	CITATIONS
55	The progenitor cell inhibition assay to measure the anti-leukemic reactivity of T cell clones against acute and chronic myeloid leukemia. Methods, 2003, 31, 113-119.	1.9	10
56	Complete Remission of Accelerated Phase Chronic Myeloid Leukemia by Treatment With Leukemia-Reactive Cytotoxic T Lymphocytes. Blood, 1999, 94, 1201-1208.	0.6	260
57	Complete Remission of Accelerated Phase Chronic Myeloid Leukemia by Treatment With Leukemia-Reactive Cytotoxic T Lymphocytes. Blood, 1999, 94, 1201-1208.	0.6	6
58	Generation of leukemia-reactive cytotoxic T lymphocytes from HLA-identical donors of patients with chronic myeloid leukemia using modifications of a limiting dilution assay. Bone Marrow Transplantation, 1998, 21, 553-560.	1.3	35
59	T cells recognizing leukemic CD34+ progenitor cells mediate the antileukemic effect of donor lymphocyte infusions for relapsed chronic myeloid leukemia after allogeneic stem cell transplantation. Proceedings of the National Academy of Sciences of the United States of America, 1998. 95. 10152-10157.	3.3	85
60	Human Cytotoxic CD8+ T-Lymphocyte Clones Engraft in Severe Combined Immunodeficient (SCID) Mice but Show Diminished Function. Journal of Immunotherapy, 1997, 20, 101-110.	1.2	6
61	Generation of dendritic cells expressing bcr-abl from CD34-positive chronic myeloid leukemia precursor cells. Human Immunology, 1997, 53, 216-223.	1.2	88
62	Interleukin-10, interleukin-12, and tumor necrosis factor-α differentially influence the proliferation of human CD8 + and CD4 + T-cell clones. Annals of Hematology, 1996, 72, 245-252.	0.8	14
63	Anti-CD45 and anti-CD52 (Campath) monoclonal antibodies effectively eliminate systematically disseminated human non-Hodgkin's lymphoma B cells in Scid mice. Experimental Hematology, 1996, 24, 919-26.	0.2	7