Jan Fiedler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6632966/publications.pdf

Version: 2024-02-01

		212478	214428
51	6,858	28	50
papers	citations	h-index	g-index
52	52	52	11015
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Alternative strategies in cardiac preclinical research and new clinical trial formats. Cardiovascular Research, 2022, 118, 746-762.	1.8	13
2	Circulating microRNAs predispose to takotsubo syndrome following high-dose adrenaline exposure. Cardiovascular Research, 2022, 118, 1758-1770.	1.8	30
3	Development and characterization of anti-fibrotic natural compound similars with improved effectivity. Basic Research in Cardiology, 2022, 117, 9.	2.5	8
4	MicroRNA-449a Inhibits Triple Negative Breast Cancer by Disturbing DNA Repair and Chromatid Separation. International Journal of Molecular Sciences, 2022, 23, 5131.	1.8	1
5	Combined high-throughput library screening and next generation RNA sequencing uncover microRNAs controlling human cardiac fibroblast biology. Journal of Molecular and Cellular Cardiology, 2021, 150, 91-100.	0.9	10
6	Blood-based protein profiling identifies serum protein c-KIT as a novel biomarker for hypertrophic cardiomyopathy. Scientific Reports, 2021, 11, 1755.	1.6	8
7	Reconstruction of the miR-506-Quaking axis in Idiopathic Pulmonary Fibrosis using integrative multi-source bioinformatics. Scientific Reports, 2021, 11, 12456.	1.6	3
8	Artificial Intelligence Identifies an Urgent Need for Peripheral Vascular Intervention by Multiplexing Standard Clinical Parameters. Biomedicines, 2021, 9, 1456.	1.4	8
9	Nonâ€coding RNAs: key players in cardiac disease. Journal of Physiology, 2020, 598, 2995-3003.	1.3	26
10	Senescence-induced inflammation: an important player and key therapeutic target in atherosclerosis. European Heart Journal, 2020, 41, 2983-2996.	1.0	108
11	Cardiac endurance training alters plasma profiles of circular RNA MBOAT2. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H13-H21.	1.5	15
12	Comprehensive Bioinformatics Identifies Key microRNA Players in ATG7-Deficient Lung Fibroblasts. International Journal of Molecular Sciences, 2020, 21, 4126.	1.8	11
13	Inflammatory Drivers of Cardiovascular Disease: Molecular Characterization of Senescent Coronary Vascular Smooth Muscle Cells. Frontiers in Physiology, 2020, 11, 520.	1.3	23
14	Integrative Bioinformatic Analyses of Global Transcriptome Data Decipher Novel Molecular Insights into Cardiac Anti-Fibrotic Therapies. International Journal of Molecular Sciences, 2020, 21, 4727.	1.8	17
15	Pleiotropic cardiac functions controlled by ischemia-induced lncRNA H19. Journal of Molecular and Cellular Cardiology, 2020, 146, 43-59.	0.9	12
16	Preclinical development of a miR-132 inhibitor for heart failure treatment. Nature Communications, 2020, 11, 633.	5.8	123
17	Natural Compound Library Screening Identifies New Molecules for the Treatment of Cardiac Fibrosis and Diastolic Dysfunction. Circulation, 2020, 141, 751-767.	1.6	48
18	miR-21-KO Alleviates Alveolar Structural Remodeling and Inflammatory Signaling in Acute Lung Injury. International Journal of Molecular Sciences, 2020, 21, 822.	1.8	9

#	Article	IF	CITATIONS
19	Attenuated palmitoylation of serotonin receptor 5-HT1A affects receptor function and contributes to depression-like behaviors. Nature Communications, 2019, 10, 3924.	5.8	100
20	Long Noncoding RNA-Enriched Vesicles Secreted by Hypoxic Cardiomyocytes Drive Cardiac Fibrosis. Molecular Therapy - Nucleic Acids, 2019, 18, 363-374.	2.3	83
21	Identification of miR-143 as a Major Contributor for Human Stenotic Aortic Valve Disease. Journal of Cardiovascular Translational Research, 2019, 12, 447-458.	1.1	8
22	Therapeutic modulation of RNA-binding protein Rbm38 facilitates re-endothelialization after arterial injury. Cardiovascular Research, 2019, 115, 1804-1810.	1.8	12
23	Serum circular RNAs act as blood-based biomarkers for hypertrophic obstructive cardiomyopathy. Scientific Reports, 2019, 9, 20350.	1.6	50
24	Hypoxia-Induced MicroRNA-212/132 Alter Blood-Brain Barrier Integrity Through Inhibition of Tight Junction-Associated Proteins in Human and Mouse Brain Microvascular Endothelial Cells. Translational Stroke Research, 2019, 10, 672-683.	2.3	86
25	Circulating non-coding RNAs in biomarker-guided cardiovascular therapy: a novel tool for personalized medicine?. European Heart Journal, 2019, 40, 1643-1650.	1.0	72
26	Overexpression of preeclampsia induced microRNA-26a-5p leads to proteinuria in zebrafish. Scientific Reports, 2018, 8, 3621.	1.6	19
27	Quaking Inhibits Doxorubicin-Mediated Cardiotoxicity Through Regulation of Cardiac Circular RNA Expression. Circulation Research, 2018, 122, 246-254.	2.0	174
28	Endogenous Tumor Suppressor microRNA-193b: Therapeutic and Prognostic Value in Acute Myeloid Leukemia. Journal of Clinical Oncology, 2018, 36, 1007-1016.	0.8	67
29	Vascular Smooth Muscle Cell Remodeling. Circulation Research, 2018, 123, 1261-1263.	2.0	0
30	Non-coding RNAs in vascular disease – from basic science to clinical applications: scientific update from the Working Group of Myocardial Function of the European Society of Cardiology. Cardiovascular Research, 2018, 114, 1281-1286.	1.8	37
31	Inhibition of miRNA-212/132 improves the reprogramming of fibroblasts into induced pluripotent stem cells by de-repressing important epigenetic remodelling factors. Stem Cell Research, 2017, 20, 70-75.	0.3	20
32	Podocytes regulate the glomerular basement membrane protein nephronectin by means ofÂmiR-378a-3p in glomerular diseases. Kidney International, 2017, 92, 836-849.	2.6	55
33	miRNome Profiling of Purified Endoderm and Mesoderm Differentiated from hESCs Reveals Functions of miR-483-3p and miR-1263 for Cell-Fate Decisions. Stem Cell Reports, 2017, 9, 1588-1603.	2.3	26
34	MicroRNAs regulating superoxide dismutase 2 are new circulating biomarkers of heart failure. Scientific Reports, 2017, 7, 14747.	1.6	32
35	Identification of miRâ€126 as a new regulator of skin ageing. Experimental Dermatology, 2017, 26, 284-286.	1.4	13
36	Stiff matrix induces switch to pure \hat{l}^2 -cardiac myosin heavy chain expression in human ESC-derived cardiomyocytes. Basic Research in Cardiology, 2016, 111, 68.	2.5	59

#	Article	IF	Citations
37	MicroRNA-Based Therapy of GATA2-Deficient Vascular Disease. Circulation, 2016, 134, 1973-1990.	1.6	46
38	New Insights Into miR-17–92 Cluster Regulation and Angiogenesis. Circulation Research, 2016, 118, 9-11.	2.0	27
39	miR-21 promotes fibrosis in an acute cardiac allograft transplantation model. Cardiovascular Research, 2016, 110, 215-226.	1.8	61
40	Development of Long Noncoding RNA-Based Strategies to Modulate TissueÂVascularization. Journal of the American College of Cardiology, 2015, 66, 2005-2015.	1.2	103
41	Osteopontin is indispensible for AP1-mediated angiotensin II-related miR-21 transcription during cardiac fibrosis. European Heart Journal, 2015, 36, 2184-2196.	1.0	117
42	Deciphering the microRNA signature of pathological cardiac hypertrophy by engineered heart tissue-and sequencing-technology. Journal of Molecular and Cellular Cardiology, 2015, 81, 1-9.	0.9	41
43	Impairment of Wound Healing in Patients With Type 2 Diabetes Mellitus Influences Circulating MicroRNA Patterns via Inflammatory Cytokines. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1480-1488.	1.1	123
44	Cardiac fibroblast–derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. Journal of Clinical Investigation, 2014, 124, 2136-2146.	3.9	803
45	Functional MicroRNA Library Screening Identifies the HypoxaMiR MiR-24 as a Potent Regulator of Smooth Muscle Cell Proliferation and Vascularization. Antioxidants and Redox Signaling, 2014, 21, 1167-1176.	2.5	44
46	MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart. Age, 2013, 35, 747-762.	3.0	150
47	MicroRNAs in Myocardial Infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 201-205.	1.1	118
48	The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nature Communications, 2012, 3, 1078.	5.8	518
49	MicroRNA-24 Regulates Vascularity After Myocardial Infarction. Circulation, 2011, 124, 720-730.	1.6	358
50	MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 2008, 456, 980-984.	13.7	2,111
51	MicroRNAs in the Human Heart. Circulation, 2007, 116, 258-267.	1.6	852