Claudio Evangelisti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6632952/publications.pdf Version: 2024-02-01

		236612	301761
107	2,190	25	39
papers	citations	h-index	g-index
111	111	111	3321
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Palladium nanoparticles supported on polyvinylpyridine: Catalytic activity in Heck-type reactions and XPS structural studies. Journal of Catalysis, 2009, 262, 287-293.	3.1	120
2	New monodispersed palladium nanoparticles stabilized by poly-(N-vinyl-2-pyrrolidone): Preparation, structural study and catalytic properties. Journal of Catalysis, 2010, 272, 246-252.	3.1	87
3	Unraveling the Role of Low Coordination Sites in a Cu Metal Nanoparticle: A Step toward the Selective Synthesis of Second Generation Biofuels. ACS Catalysis, 2014, 4, 2818-2826.	5.5	85
4	In-depth study of the mechanism of heavy metal trapping on the surface of hydroxyapatite. Applied Surface Science, 2019, 475, 397-409.	3.1	74
5	Aminopropyl-silica-supported Cu nanoparticles: An efficient catalyst for continuous-flow Huisgen azide-alkyne cycloaddition (CuAAC). Journal of Catalysis, 2015, 324, 25-31.	3.1	70
6	First examples of gold nanoparticles catalyzed silane alcoholysis and silylative pinacol coupling of carbonyl compounds. Tetrahedron Letters, 2008, 49, 3221-3224.	0.7	62
7	Carbon dioxide reforming of methane over Ni–In/SiO2 catalyst without coke formation. Journal of Industrial and Engineering Chemistry, 2018, 58, 189-201.	2.9	59
8	Palladium–Ceria Catalysts with Enhanced Alkaline Hydrogen Oxidation Activity for Anion Exchange Membrane Fuel Cells. ACS Applied Energy Materials, 2019, 2, 4999-5008.	2.5	56
9	Step-by-Step Growth of HKUST-1 on Functionalized TiO2 Surface: An Efficient Material for CO2 Capture and Solar Photoreduction. Catalysts, 2018, 8, 353.	1.6	52
10	Platinum on carbonaceous supports for glycerol hydrogenolysis: Support effect. Journal of Catalysis, 2015, 325, 111-117.	3.1	41
11	Solvated gold atoms in the preparation of efficient supported catalysts: Correlation between morphological features and catalytic activity in the hydrosilylation of 1-hexyne. Journal of Catalysis, 2009, 266, 250-257.	3.1	40
12	Investigation of the promoting effect of Mn on a Pt/C catalyst for the steam and aqueous phase reforming of glycerol. Journal of Catalysis, 2017, 349, 75-83.	3.1	40
13	Chemoselective hydrogenation of halonitroaromatics over Î ³ -Fe2O3-supported platinum nanoparticles: The role of the support on their catalytic activity and selectivity. Journal of Molecular Catalysis A, 2013, 366, 288-293.	4.8	39
14	Electron-poor copper nanoparticles over amorphous zirconia-silica as all-in-one catalytic sites for the methanol steam reforming. Applied Catalysis B: Environmental, 2019, 258, 118016.	10.8	39
15	Bimetallic Gold–Palladium vapour derived catalysts: The role of structural features on their catalytic activity. Journal of Catalysis, 2012, 286, 224-236.	3.1	38
16	Lactic Acid from Glycerol by Ethylene-Stabilized Platinum-Nanoparticles. ACS Catalysis, 2016, 6, 1671-1674.	5.5	38
17	Well-formed, size-controlled ruthenium nanoparticles active and stable for acetic acid steam reforming. Applied Catalysis B: Environmental, 2016, 181, 599-611.	10.8	37
18	Nanostructured ruthenium on γ-Al2O3 catalysts for the efficient hydrogenation of aromatic compounds. Journal of Organometallic Chemistry, 2004, 689, 639-646.	0.8	34

#	Article	IF	CITATIONS
19	Epoxidation of alkenes through oxygen activation over a bifunctional CuO/Al2O3 catalyst. Chemical Communications, 2013, 49, 1957.	2.2	33
20	Hybrid Au/CuO Nanoparticles: Effect of Structural Features for Selective Benzyl Alcohol Oxidation. Journal of Physical Chemistry C, 2019, 123, 2864-2871.	1.5	31
21	Ultrafine palladium nanoparticles immobilized into poly(4-vinylpyridine)-based porous monolith for continuous-flow Mizoroki–Heck reaction. Journal of Molecular Catalysis A, 2016, 414, 55-61.	4.8	30
22	Finely Iron-Dispersed Particles on β Zeolite from Solvated Iron Atoms: Promising Catalysts for NH ₃ -SCO. Journal of Physical Chemistry C, 2019, 123, 11723-11733.	1.5	30
23	New palladium catalysts on polyketone prepared through different smart methodologies and their use in the hydrogenation of cinnamaldehyde. Applied Catalysis A: General, 2012, 447-448, 49-59.	2.2	28
24	Glucose-Coated Superparamagnetic Iron Oxide Nanoparticles Prepared by Metal Vapour Synthesis Are Electively Internalized in a Pancreatic Adenocarcinoma Cell Line Expressing GLUT1 Transporter. PLoS ONE, 2015, 10, e0123159.	1.1	28
25	Palladium-nanoparticles on end-functionalized poly(lactic acid)-based stereocomplexes for the chemoselective cinnamaldehyde hydrogenation: Effect of the end-group. Journal of Catalysis, 2015, 330, 187-196.	3.1	27
26	Copper mediated epoxidation of high oleic natural oils with a cumene–O2 system. Catalysis Communications, 2015, 64, 80-85.	1.6	26
27	Fluidic Manufacture of Starâ€Shaped Gold Nanoparticles. Chemistry - A European Journal, 2017, 23, 9732-9735.	1.7	26
28	Discovering indium as hydrogen production booster for a Cu/SiO2 catalyst in steam reforming of methanol. Applied Catalysis B: Environmental, 2021, 297, 120398.	10.8	26
29	Dehydrogenative coupling promoted by copper catalysts: a way to optimise and upgrade bio-alcohols. Catalysis Science and Technology, 2017, 7, 1386-1393.	2.1	25
30	Polyvinylpyridine-Supported Palladium Nanoparticles: A Valuable Catalyst for the Synthesis of Alkynyl Ketones via Acyl Sonogashira Reactions. Catalysis Letters, 2020, 150, 652-659.	1.4	25
31	Influence of carbon support properties in the hydrodeoxygenation of vanillin as lignin model compound. Catalysis Today, 2021, 367, 220-227.	2.2	25
32	Nanoscale Cu supported catalysts in the partial oxidation of cyclohexane with molecular oxygen. Catalysis Letters, 2007, 116, 57-62.	1.4	24
33	Gold nanoparticles morphology does not affect the multivalent presentation and antibody recognition of Group A Streptococcus synthetic oligorhamnans. Bioorganic Chemistry, 2020, 99, 103815.	2.0	24
34	Remarkable Efficiency Improvement in the Preparation of Insoluble Polymerâ€Bound (IPB) Enantioselective Catalytic Systems by the Use of Silicone Chemistry. Advanced Synthesis and Catalysis, 2008, 350, 375-379.	2.1	23
35	Capping Agent Effect on Pd-Supported Nanoparticles in the Hydrogenation of Furfural. Catalysts, 2020, 10, 11.	1.6	23
36	CrO /SiO2 catalysts prepared by metal vapour synthesis: Physical–chemical characterisation and functional testing in oxidative dehydrogenation of propane. Chemical Engineering Journal, 2011, 166, 1132-1138.	6.6	22

#	Article	IF	CITATIONS
37	A supported Pd-Cu/Al2O3 membrane from solvated metal atoms for hydrogen separation/purification. Fuel Processing Technology, 2019, 195, 106141.	3.7	22
38	Palladium nanoparticles supported on Smopex® metal scavengers as catalyst for carbonylative Sonogashira reactions: Synthesis of α,β-alkynyl ketones. Applied Catalysis A: General, 2014, 480, 1-9.	2.2	21
39	Characterization of a Polyâ€4â€Vinylpyridineâ€Supported CuPd Bimetallic Catalyst for Sonogashira Coupling Reactions. ChemPhysChem, 2017, 18, 1921-1928.	1.0	21
40	TiO ₂ Nanotubes Arrays Loaded with Ligand-Free Au Nanoparticles: Enhancement in Photocatalytic Activity. ACS Applied Materials & Interfaces, 2016, 8, 31051-31058.	4.0	20
41	On demand production of ethers or alcohols from furfural and HMF by selecting the composition of a Zr/Si catalyst. Catalysis Science and Technology, 2020, 10, 7502-7511.	2.1	20
42	Combination of interfacial reduction of hexavalent chromium and trivalent chromium immobilization on tin-functionalized hydroxyapatite materials. Applied Surface Science, 2021, 539, 148227.	3.1	20
43	Supported rhodium nanoparticles in catalysis: the role of stabilizers on catalytic activity and structural features. Journal of Organometallic Chemistry, 2003, 681, 37-50.	0.8	19
44	Gold nanoparticles obtained by aqueous digestive ripening: Their application as X-ray contrast agents. Journal of Colloid and Interface Science, 2015, 439, 28-33.	5.0	19
45	Polyvinylpyridine-Supported Palladium Nanoparticles: An Efficient Catalyst for Suzuki–Miyaura Coupling Reactions. Catalysts, 2020, 10, 330.	1.6	19
46	Hydrogenolysis of Benzyl Protected Phenols and Aniline Promoted by Supported Palladium Nanoparticles. ChemistrySelect, 2017, 2, 384-388.	0.7	18
47	Platinum nanoparticles onto pegylated poly(lactic acid) stereocomplex for highly selective hydrogenation of aromatic nitrocompounds to anilines. Applied Catalysis A: General, 2017, 537, 50-58.	2.2	18
48	Supported Tris-Triazole Ligands for Batch and Continuous-Flow Copper-Catalyzed Huisgen 1,3-Dipolar Cycloaddition Reactions. Catalysts, 2020, 10, 434.	1.6	18
49	Gold-silver catalysts: Effect of catalyst structure on the selectivity of glycerol oxidation. Journal of Catalysis, 2018, 368, 324-335.	3.1	17
50	Iron-montmorillonite clays as active sorbents for the decontamination of hazardous chemical warfare agents. Dalton Transactions, 2018, 47, 2939-2948.	1.6	16
51	Glycerol to lactic acid conversion by NHC-stabilized iridium nanoparticles. Journal of Catalysis, 2018, 368, 298-305.	3.1	15
52	Ruthenium on Carbonaceous Materials for the Selective Hydrogenation of HMF. Molecules, 2018, 23, 2007.	1.7	15
53	Ethyl lactate from dihydroxyacetone by a montmorillonite-supported Pt(II) diphosphane complex. Journal of Catalysis, 2017, 350, 133-140.	3.1	14
54	Bio Adipic Acid Production from Sodium Muconate and Muconic Acid: A Comparison of two Systems. ChemCatChem, 2019, 11, 3075-3084.	1.8	14

#	Article	IF	CITATIONS
55	Epoxidation of Karanja (Millettia pinnata) Oil Methyl Esters in the Presence of Hydrogen Peroxide over a Simple Niobium-Containing Catalyst. Catalysts, 2019, 9, 344.	1.6	14
56	A Gold–Palladium Nanoparticle Alloy Catalyst for CO Production from CO 2 Electroreduction. Energy Technology, 2019, 7, 1800859.	1.8	14
57	Synergy between Nickel Nanoparticles and N-Enriched Carbon Nanotubes Enhances Alkaline Hydrogen Oxidation and Evolution Activity. ACS Applied Nano Materials, 2021, 4, 3586-3596.	2.4	14
58	Gold as a modifier of metal nanoparticles: effect on structure and catalysis. Faraday Discussions, 2018, 208, 395-407.	1.6	11
59	Titanium-silica catalyst derived from defined metallic titanium cluster precursor: Synthesis and catalytic properties in selective oxidations. Inorganica Chimica Acta, 2018, 470, 393-401.	1.2	11
60	Furfural Hydrogenation on Modified Niobia. Applied Sciences (Switzerland), 2019, 9, 2287.	1.3	11
61	Second Youth of a Metal-Free Dehydrogenation Catalyst: When γ-Al ₂ O ₃ Meets Coke Under Oxygen- and Steam-Free Conditions. ACS Catalysis, 2019, 9, 9474-9484.	5.5	11
62	Effect of Carbon Support, Capping Agent Amount, and Pd NPs Size for Bio-Adipic Acid Production from Muconic Acid and Sodium Muconate. Nanomaterials, 2020, 10, 505.	1.9	11
63	Palladium Nanoparticles Supported on Smopex-234® as Valuable Catalysts for the Synthesis of Heterocycles. Catalysts, 2021, 11, 706.	1.6	11
64	A new platinum vapor-derived highly efficient hydrosilylation catalyst: NMR structural investigation. Journal of Organometallic Chemistry, 2008, 693, 1276-1282.	0.8	10
65	Carbon-Supported Au Nanoparticles: Catalytic Activity Ruled Out by Carbon Support. Topics in Catalysis, 2018, 61, 1928-1938.	1.3	10
66	Synergistic Effect in Au-Cu Bimetallic Catalysts for the Valorization of Lignin-Derived Compounds. Catalysts, 2020, 10, 332.	1.6	10
67	New insights for the catalytic oxidation of cyclohexane to K-A oil. Journal of Energy Chemistry, 2022, 70, 45-51.	7.1	10
68	The control of the growth of Pt clusters in solution: A way to prepare Pt particles of tailored size. Journal of Organometallic Chemistry, 2009, 694, 1813-1817.	0.8	9
69	Metal vapour derived supported rhodium nanoparticles in the synthesis of β-lactams and β-lactones derivatives. Journal of Organometallic Chemistry, 2012, 700, 20-28.	0.8	9
70	XAFS structural characterization of Cu vapour derived catalysts supported on polyâ€4â€vinylpyridine and carbon. X-Ray Spectrometry, 2017, 46, 82-87.	0.9	9
71	Selective Alkyne Semiâ€Hydrogenation by PdCu Nanoparticles Immobilized on Stereocomplexed Poly(lactic acid). ChemCatChem, 2022, 14, .	1.8	9
72	Supported rhodium nanoparticles obtained by Metal Vapour Synthesis as catalysts in the preparation of valuable organic compounds. Applied Catalysis A: General, 2008, 339, 84-92.	2.2	8

#	Article	IF	CITATIONS
73	Synthesis of a highly reactive form of WO ₂ Cl ₂ , its conversion into nanocrystalline mono-hydrated WO ₃ and coordination compounds with tetramethylurea. Dalton Transactions, 2016, 45, 15342-15349.	1.6	8
74	Synthesis of Nanocrystalline TiOF ₂ Embedded in a Carbonaceous Matrix from TiF ₄ and <scp>d</scp> -Fructose. Inorganic Chemistry, 2016, 55, 1816-1820.	1.9	8
75	Some insight on the structure/activity relationship of metal nanoparticles in Cu/SiO2 catalysts. Chinese Journal of Catalysis, 2019, 40, 1788-1794.	6.9	8
76	More Efficient Prussian Blue Nanoparticles for an Improved Caesium Decontamination from Aqueous Solutions and Biological Fluids. Molecules, 2020, 25, 3447.	1.7	8
77	Water Cas Shift Reaction in Pd-Based Membrane Reactors. Advances in Science and Technology, 2010, 72, 99-104.	0.2	7
78	Gold-iridium catalysts for the hydrogenation of biomass derived products. Chinese Journal of Catalysis, 2016, 37, 1771-1775.	6.9	7
79	A convenient preparation of La2CuO4 from molecular precursors. Polyhedron, 2017, 123, 33-38.	1.0	7
80	Metal vapor synthesis of ultrasmall Pd nanoparticles functionalized with N-heterocyclic carbenes. Dalton Transactions, 2018, 47, 12647-12651.	1.6	7
81	CNF-Functionalization as Versatile Tool for Tuning Activity in Cellulose-Derived Product Hydrogenation. Molecules, 2019, 24, 316.	1.7	7
82	Direct Synthesis of Hydrogen Peroxide under Semi-Batch Conditions over Un-Promoted Palladium Catalysts Supported by Ion-Exchange Sulfonated Resins: Effects of the Support Morphology. Catalysts, 2019, 9, 124.	1.6	7
83	Synthesis of Pterostilbene through supported-catalyst promoted Mizoroki-Heck reaction, and its transposition in continuous flow reactor. Journal of Flow Chemistry, 2019, 9, 133-143.	1.2	7
84	Metal Vapor-Derived Nanostructured Catalysts in Fine Chemistry: The Role Played by Particle Size in the Catalytic Activity and Selectivity. , 2008, , 437-451.		7
85	From metal vapor to supported single atoms, clusters and nanoparticles: Recent advances to heterogeneous catalysts. Inorganica Chimica Acta, 2022, 533, 120782.	1.2	7
86	Photoelectrochemical Behavior of Electrophoretically Deposited Hematite Thin Films Modified with Ti(IV). Molecules, 2016, 21, 942.	1.7	6
87	Structural characterization of bimetallic Pd-Cu vapor derived catalysts. Journal of Physics: Conference Series, 2016, 712, 012057.	0.3	6
88	Bifunctional Europium(III) and Niobium(V) ontaining Saponite Clays for the Simultaneous Optical Detection and Catalytic Oxidative Abatement of Blister Chemical Warfare Agents. Chemistry - A European Journal, 2021, 27, 4723-4730.	1.7	6
89	Size-Controlled Synthesis and NMR Characterization of Mesitylene-Vinylsiloxanes Stabilized Pt Nanoparticles in Solution. Journal of Nanoscience and Nanotechnology, 2008, 8, 2096-2101.	0.9	5
90	EXAFS and XANES structural characterization of bimetallic AuPd vapor derived catalysts. Journal of Physics: Conference Series, 2013, 430, 012052.	0.3	5

#	Article	IF	CITATIONS
91	Selective catalytic amination of halogenated aldehydes with calcined palladium catalysts. RSC Advances, 2018, 8, 15202-15206.	1.7	5
92	Base-free glycerol oxidation over N-TiO2 supported Au–Pt catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2019, 128, 979-990.	0.8	5
93	The Role of Support Hydrophobicity in the Selective Hydrogenation of Enones and Unsaturated Sulfones over Cu/SiO2 Catalysts. Catalysts, 2020, 10, 515.	1.6	5
94	Size-dependent catalytic effect of magnetite nanoparticles in the synthesis of tunable magnetic polyaniline nanocomposites. Chemical Papers, 2021, 75, 5057-5069.	1.0	5
95	Water soluble heptakis(6-deoxy-6-thio)cyclomaltoheptaose capped gold nanoparticles via metal vapour synthesis: NMR structural characterization and complexation properties. Carbohydrate Research, 2011, 346, 753-758.	1.1	4
96	A Proof-of-Concept Portable Water Purification Device Obtained from PET Bottles and a Magnetite-Carbon Nanocomposite. Recycling, 2018, 3, 31.	2.3	4
97	Total Synthesis of Asparenydiol by Two Sonogashira Cross-Coupling Reactions Promoted by Supported Pd and Cu Catalysts. Synthesis, 2020, 52, 1795-1803.	1.2	4
98	Gold nanoparticles onto cerium oxycarbonate as highly efficient catalyst for aerobic allyl alcohol oxidation. Catalysis Communications, 2020, 140, 105989.	1.6	4
99	Microgels as Soluble Scaffolds for the Preparation of Noble Metal Nanoparticles Supported on Nanostructured Metal Oxides. ACS Applied Nano Materials, 2021, 4, 8343-8351.	2.4	4
100	Glucose-coated superparamagnetic iron oxide nanoparticles prepared by metal vapor synthesis can target GLUT1 overexpressing tumors: In vitro tests and in vivo preliminary assessment. PLoS ONE, 2022, 17, e0269603.	1.1	4
101	A Way to Decylamine-Stabilized Gold Nanoparticles of Tailored Sizes Tuning Their Growth in Solution. Journal of Nanoscience and Nanotechnology, 2011, 11, 2226-2231.	0.9	3
102	Nano-structured Solids and Heterogeneous Catalysts for the Selective Decontamination of Chemical Warfare Agents. NATO Science for Peace and Security Series A: Chemistry and Biology, 2014, , 275-284.	0.5	3
103	Goldâ€ S ilver Catalysts: Ruling Factors for Establishing Synergism. ChemCatChem, 2019, 11, 4043-4053.	1.8	3
104	Selectivity Switch in the Aerobic 1,2â€Propandiol Oxidation Catalyzed by Diamineâ€Stabilized Palladium Nanoparticles. ChemCatChem, 2021, 13, 2896-2906.	1.8	3
105	Tailoring and stabilization of ultrafine rhodium nanoparticles on Î ³ -Al2O3 by troctylamine: Dependence of the surface properties on the preparation route. Studies in Surface Science and Catalysis, 2005, 155, 227-237.	1.5	2
106	Solvated Metal Atoms in the Preparation of Catalytic Membranes. , 2011, , 371-380.		2
107	Editorial Catalysts: Supported Metal Catalysts and Their Applications in Fine Chemicals. Catalysts, 2021, 11, 791.	1.6	2