Catherine R Mccrohan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6632891/publications.pdf

Version: 2024-02-01

49 papers

1,164 citations

361296 20 h-index 33 g-index

49 all docs

49 docs citations

49 times ranked 1026 citing authors

#	Article	IF	CITATIONS
1	Nociception in fish: stimulus–response properties of receptors on the head of trout Oncorhynchus mykiss. Brain Research, 2007, 1166, 47-54.	1.1	95
2	Avoidance responses to aluminium in the freshwater bivalve Anodonta cygnea. Aquatic Toxicology, 2001, 55, 137-148.	1.9	83
3	The efficacy of three types of analgesic drugs in reducing pain in the rainbow trout, Oncorhynchus mykiss. Applied Animal Behaviour Science, 2011, 133, 265-274.	0.8	74
4	Coexpression of Corticotropin-Releasing Hormone and Urotensin I Precursor Genes in the Caudal Neurosecretory System of the Euryhaline Flounder (Platichthys flesus): A Possible Shared Role in Peripheral Regulation. Endocrinology, 2004, 145, 5786-5797.	1.4	71
5	Influence of aqueous aluminium on the immune system of the freshwater crayfish Pacifasticus leniusculus. Aquatic Toxicology, 2006, 77, 222-228.	1.9	67
6	Effect of noxious stimulation upon antipredator responses and dominance status in rainbow trout. Animal Behaviour, 2009, 77, 403-410.	0.8	61
7	Molecular Characterization and Expression of Urotensin II and its Receptor in the Flounder (Platichthys flesus): A Hormone System Supporting Body Fluid Homeostasis in Euryhaline Fish. Endocrinology, 2006, 147, 3692-3708.	1.4	57
8	Mucus Secretion by the Freshwater SnailLymnaea stagnalisLimits Aluminum Concentrations of the Aqueous Environment. Environmental Science & Environment	4.6	43
9	Properties of corneal receptors in a teleost fish. Neuroscience Letters, 2006, 410, 165-168.	1.0	39
10	Fish caudal neurosecretory system: A model for the study of neuroendocrine secretion. General and Comparative Endocrinology, 2007, 153, 243-250.	0.8	34
11	Characterisation of chemosensory trigeminal receptors in the rainbow trout, Oncorhynchus mykiss: responses to chemical irritants and carbon dioxide. Journal of Experimental Biology, 2012, 215, 685-693.	0.8	32
12	Cyclic AMP-stimulated sodium current in identified feeding neurons of Lymnaea stagnalis. Brain Research, 1988, 438, 115-123.	1.1	31
13	Cerebral Interneurones Controlling Feeding Motor Output In The Snail Lymnaea Stagnalis. Journal of Experimental Biology, 1989, 147, 361-374.	0.8	31
14	Aluminum-dependent regulation of intracellular silicon in the aquatic invertebrateLymnaea stagnalis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3394-3399.	3.3	28
15	Accumulation and toxicity of aluminium-contaminated food in the freshwater crayfish, Pacifastacus leniusculus. Aquatic Toxicology, 2011, 105, 535-542.	1.9	26
16	Seasonal changes in peptide, receptor and ion channel mRNA expression in the caudal neurosecretory system of the European flounder (Platichthys flesus). General and Comparative Endocrinology, 2007, 153, 262-272.	0.8	25
17	Avoidance of Aluminum Toxicity in Freshwater Snails Involves Intracellular Siliconâ°'Aluminum Biointeraction. Environmental Science & Environmental Sc	4.6	25
18	Precise and Fuzzy Coding by Olfactory Sensory Neurons. Journal of Neuroscience, 2008, 28, 9710-9722.	1.7	24

#	Article	IF	CITATIONS
19	Cyclic AMP analogues increase excitability and enhance epileptiform activity in rat neocortex in vitro. European Journal of Pharmacology, 1993, 236, 131-136.	1.7	22
20	Modeling Peripheral Olfactory Coding in Drosophila Larvae. PLoS ONE, 2011, 6, e22996.	1.1	22
21	Aluminium exposure disrupts elemental homeostasis in Caenorhabditis elegans. Metallomics, 2012, 4, 512.	1.0	22
22	Effect of aluminum and silicic acid on the behaviour of the freshwater snail <i>Lymnaea stagnalis</i> Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57, 1151-1159.	0.7	21
23	Trophic transfer of aluminium through an aquatic grazer–omnivore food chain. Aquatic Toxicology, 2010, 99, 93-99.	1.9	21
24	Characterization of an identified cerebrobuccal neuron containing the neuropeptide APGWamide (Ala-Pro-Gly-Trp-NH2) in the snailLymnaea stagnalis. Invertebrate Neuroscience, 1997, 2, 273-282.	1.8	17
25	Effect of sub-lethal concentrations of aluminium on the filtration activity of the freshwater musselAnodonta cygneaL. at neutral pH. Acta Biologica Hungarica, 2002, 53, 485-494.	0.7	17
26	Enhancement of cyclic AMP-dependent sodium current by the convulsant drug pentylenetetrazol. Brain Research, 1988, 452, 21-27.	1.1	16
27	Effects of metaldehyde and acetaldehyde on feeding responses and neuronal activity in the snail,lymnaea stagnalis. Pest Management Science, 1990, 28, 89-99.	0.6	16
28	Partial characterisation of high-molecular weight glycoconjugates in the trail mucus of the freshwater pond snail Lymnaea stagnalis. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2004, 137, 475-486.	0.7	16
29	Evidence for nitric oxide role in the caudal neurosecretory system of the European flounder, Platichthys flesus. General and Comparative Endocrinology, 2007, 153, 251-261.	0.8	15
30	Interaction of mucus with freshly neutralised aluminium in freshwater. Journal of Inorganic Biochemistry, 2002, 92, 11-18.	1.5	13
31	Tissue accumulation of aluminium is not a predictor of toxicity in the freshwater snail, Lymnaea stagnalis. Environmental Pollution, 2009, 157, 2142-2146.	3.7	13
32	Effect of orthosilicic acid on the accumulation of trace metals by the pond snail Lymnaea stagnalis. Aquatic Toxicology, 2003, 64, 63-71.	1.9	10
33	The suitability of gallium as a substitute for aluminum in tracing experiments. BioMetals, 2010, 23, 221-230.	1.8	10
34	Electrophysiological responses to metaldehyde in neurones of the feeding circuitry of the snail Lymnaea stagnalis. Pesticide Biochemistry and Physiology, 1992, 42, 35-42.	1.6	9
35	The peripheral olfactory code in <i>Drosophila</i> larvae contains temporal information and is robust over multiple timescales. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160665.	1.2	9
36	Cortisol and prolactin modulation of caudal neurosecretory system activity in the euryhaline flounder Platichthys flesus. Comparative Biochemistry and Physiology Part A, Molecular & Emp; Integrative Physiology, 2008, 151, 71-77.	0.8	8

#	Article	IF	CITATIONS
37	Rapid non-equilibrium aluminium–ligand interactions: studies on the precipitation of aluminium by laser light scattering, ultrafiltration and centrifugation. Journal of Inorganic Biochemistry, 2001, 87, 29-35.	1.5	7
38	Nitric Oxide Potentiates cAMP-Gated Cation Current by Intracellular Acidification in Feeding Neurons of Pleurobranchaea. Journal of Neurophysiology, 2010, 104, 742-745.	0.9	7
39	Differential responses of two identified neurons of the pond snail Lymnaea stagnalis to the convulsant drug pentylenetetrazol. Brain Research, 1991, 565, 247-253.	1.1	6
40	Effects of metaldehyde and acetaldehyde on specific membrane currents in neurones of the pond snailLymnaea stagnalis. Pest Management Science, 1992, 34, 243-247.	0.6	6
41	Gene expression and hormone secretion profile of urotensin I associated with osmotic challenge in caudal neurosecretory system of the euryhaline flounder, Platichthys flesus. General and Comparative Endocrinology, 2019, 277, 49-55.	0.8	4
42	New insights into urotensin endocrinology: From fish to man. General and Comparative Endocrinology, 2007, 153, 241-242.	0.8	3
43	Properties of cyclic AMP-dependent inward current in two identified neurons of the snail Lymnaea stagnalis. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1992, 101, 131-136.	0.2	2
44	Response to Comment on "Avoidance of Aluminum Toxicity in Freshwater Snails Involves Intracellular Silicon—Aluminum Biointeraction― Environmental Science & Environment	4.6	2
45	cAMP, Ca ²⁺ , pH _i , and NO Regulate H-like Cation Channels That Underlie Feeding and Locomotion in the Predatory Sea Slug <i>Pleurobranchaea californica</i> . ACS Chemical Neuroscience, 2018, 9, 1986-1993.	1.7	2
46	Bioaccumulation and toxicity of aluminium in the pond snail at neutral pH. Acta Biologica Hungarica, 2000, 51, 309-316.	0.7	2
47	Inhibition of slow TTX-insensitive inward current by the anticonvulsant carbamazepine in an identified neuron of Lymnaea stagnalis. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1992, 103, 549-551.	0.2	0
48	Application of the critical precipitation assay to complex samples: aluminium binding capacity of human gastrointestinal fluids. Chemical Speciation and Bioavailability, 2004, 16, 97-104.	2.0	0
49	A rapid non-equilibrium critical precipitation assay to assess aluminium-ligand interactions. Chemical Speciation and Bioavailability, 2004, 16, 87-96.	2.0	0