David Y Thomas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6632716/publications.pdf

Version: 2024-02-01

191 papers

16,690 citations

73
h-index

123 g-index

197 all docs

197
docs citations

197 times ranked 14488 citing authors

#	Article	IF	CITATIONS
1	Rescue of Mutant CFTR Trafficking Defect by the Investigational Compound MCG1516A. Cells, 2022, 11, 136.	1.8	11
2	The NSAID glafenine rescues class 2 CFTR mutants via cyclooxygenase 2 inhibition of the arachidonic acid pathway. Scientific Reports, 2022, 12, 4595.	1.6	6
3	Macrocycle-stabilization of its interaction with $14\text{-}3\text{-}3$ increases plasma membrane localization and activity of CFTR. Nature Communications, 2022, 13 , .	5.8	13
4	Cyclic nucleotide phosphodiesterase inhibitors as therapeutic interventions for cystic fibrosis., 2021, 224, 107826.		14
5	Alternative Splicing of a Receptor Intracellular Domain Yields Different Ectodomain Conformations, Enabling Isoform-Selective Functional Ligands. IScience, 2020, 23, 101447.	1.9	2
6	The dual phosphodiesterase 3/4 inhibitor RPL554 stimulates rare class III and IV CFTR mutants. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L908-L920.	1.3	11
7	Characterization of the mechanism of action of RDR01752, a novel corrector of F508del-CFTR. Biochemical Pharmacology, 2020, 180, 114133.	2.0	14
8	Combination of Selective PARP3 and PARP16 Inhibitory Analogues of Latonduine A Corrects F508del-CFTR Trafficking. ACS Omega, 2020, 5, 25593-25604.	1.6	11
9	The anion transporter SLC26A9 localizes to tight junctions and is degraded by the proteasome when co-expressed with F508del–CFTR. Journal of Biological Chemistry, 2019, 294, 18269-18284.	1.6	17
10	Cystic Fibrosis: Proteostatic correctors of CFTR trafficking and alternative therapeutic targets Expert Opinion on Therapeutic Targets, 2019, 23, 711-724.	1.5	7
11	Control of anterior <scp>GR</scp> adient 2 (<scp>AGR</scp> 2) dimerization links endoplasmic reticulum proteostasis to inflammation. EMBO Molecular Medicine, 2019, 11, .	3.3	48
12	Cigarette smoke activates CFTR through ROS-stimulated cAMP signaling in human bronchial epithelial cells. American Journal of Physiology - Cell Physiology, 2018, 314, C118-C134.	2.1	18
13	Variable Responses to CFTR Correctors in vitro: Estimating the Design Effect in Precision Medicine. Frontiers in Pharmacology, 2018, 9, 1490.	1.6	17
14	A novel triple combination of pharmacological chaperones improves F508del-CFTR correction. Scientific Reports, 2018, 8, 11404.	1.6	27
15	Proteomics Identifies Golgi phosphoprotein 3 (GOLPH3) with A Link Between Golgi Structure, Cancer, DNA Damage and Protection from Cell Death. Molecular and Cellular Proteomics, 2017, 16, 2048-2054.	2.5	16
16	Editorial. Journal of Taibah University Medical Sciences, 2017, 12, 187-188.	0.5	0
17	An Official American Thoracic Society Workshop Report: Translational Research in Rare Respiratory Diseases. Annals of the American Thoracic Society, 2017, 14, 1239-1247.	1.5	4
18	Corrector combination therapies for F508del-CFTR. Current Opinion in Pharmacology, 2017, 34, 105-111.	1.7	27

#	Article	IF	Citations
19	Low free drug concentration prevents inhibition of F508del CFTR functional expression by the potentiator VXâ€770 (ivacaftor). British Journal of Pharmacology, 2016, 173, 459-470.	2.7	60
20	A Covalent Cysteine†argeting Kinase Inhibitor of Ire1 Permits Allosteric Control of Endoribonuclease Activity. ChemBioChem, 2016, 17, 843-851.	1.3	13
21	Latonduine Analogs Restore F508del–Cystic Fibrosis Transmembrane Conductance Regulator Trafficking through the Modulation of Poly-ADP Ribose Polymerase 3 and Poly-ADP Ribose Polymerase 16 Activity. Molecular Pharmacology, 2016, 90, 65-79.	1.0	24
22	Characterization and small-molecule stabilization of the multisite tandem binding between 14-3-3 and the R domain of CFTR. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1152-61.	3.3	121
23	The dual phosphodiesterase 3 and 4 inhibitor RPL554 stimulates CFTR and ciliary beating in primary cultures of bronchial epithelia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L59-L70.	1.3	32
24	Ibuprofen rescues mutant cystic fibrosis transmembrane conductance regulator trafficking. Journal of Cystic Fibrosis, 2015, 14, 16-25.	0.3	44
25	Unravelling druggable signalling networks that control F508del-CFTR proteostasis. ELife, 2015, 4, .	2.8	22
26	Chaperones in the Endoplasmic Reticulum (ER): Function and Interaction Network., 2014, , 235-271.		0
27	Compounds that correct F508del-CFTR trafficking can also correct other protein trafficking diseases: an in vitro study using cell lines. Orphanet Journal of Rare Diseases, 2013, 8, 11.	1.2	36
28	Novel pharmacological strategies to treat cystic fibrosis. Trends in Pharmacological Sciences, 2013, 34, 119-125.	4.0	86
29	Correctors of the basic trafficking defect of the mutant F508del-CFTR that causes cystic fibrosis. Current Opinion in Chemical Biology, 2013, 17, 353-360.	2.8	30
30	Carbamazepine as a Novel Small Molecule Corrector of Trafficking-impaired ATP-sensitive Potassium Channels Identified in Congenital Hyperinsulinism. Journal of Biological Chemistry, 2013, 288, 20942-20954.	1.6	57
31	Correction of F508del-CFTR Trafficking by the Sponge Alkaloid Latonduine Is Modulated by Interaction with PARP. Chemistry and Biology, 2012, 19, 1288-1299.	6.2	42
32	An Interaction Map of Endoplasmic Reticulum Chaperones and Foldases. Molecular and Cellular Proteomics, 2012, 11, 710-723.	2.5	86
33	Decreasing Poly(ADP-Ribose) Polymerase Activity Restores ΔF508 CFTR Trafficking. Frontiers in Pharmacology, 2012, 3, 165.	1.6	14
34	Ouabain Mimics Low Temperature Rescue of F508del-CFTR in Cystic Fibrosis Epithelial Cells. Frontiers in Pharmacology, 2012, 3, 176.	1.6	34
35	Intracellular Eukaryotic Parasites Have a Distinct Unfolded Protein Response. PLoS ONE, 2011, 6, e19118.	1.1	45
36	Identification of a NBD1-Binding Pharmacological Chaperone that Corrects the Trafficking Defect of F508del-CFTR. Chemistry and Biology, 2011, 18, 231-242.	6.2	91

#	Article	IF	Citations
37	Enhanced Ca ²⁺ entry due to Orai1 plasma membrane insertion increases ILâ€8 secretion by cystic fibrosis airways. FASEB Journal, 2011, 25, 4274-4291.	0.2	51
38	A structural overview of the PDI family of proteins. FEBS Journal, 2010, 277, 3924-3936.	2.2	212
39	Reverse Genetics in Candida albicans Predicts ARF Cycling Is Essential for Drug Resistance and Virulence. PLoS Pathogens, 2010, 6, e1000753.	2.1	51
40	Correction of the î"Phe508 Cystic Fibrosis Transmembrane Conductance Regulator Trafficking Defect by the Bioavailable Compound Glafenine. Molecular Pharmacology, 2010, 77, 922-930.	1.0	86
41	Experimental Design and Statistical Methods for Improved Hit Detection in High-Throughput Screening. Journal of Biomolecular Screening, 2010, 15, 990-1000.	2.6	34
42	Structural Basis of Cyclophilin B Binding by the Calnexin/Calreticulin P-domain. Journal of Biological Chemistry, 2010, 285, 35551-35557.	1.6	87
43	Structure of the Catalytic a0a Fragment of the Protein Disulfide Isomerase ERp72. Journal of Molecular Biology, 2010, 401, 618-625.	2.0	18
44	Calnexin phosphorylation: Linking cytoplasmic signalling to endoplasmic reticulum lumenal functions. Seminars in Cell and Developmental Biology, 2010, 21, 486-490.	2.3	47
45	Protein quality control in the ER: The recognition of misfolded proteins. Seminars in Cell and Developmental Biology, 2010, 21, 500-511.	2.3	227
46	Organization of the Sec61 Translocon, Studied by High Resolution Native Electrophoresis. Journal of Proteome Research, 2010, 9, 1763-1771.	1.8	56
47	A Biochemical Genomics Screen for Substrates of Ste20p Kinase Enables the In Silico Prediction of Novel Substrates. PLoS ONE, 2009, 4, e8279.	1.1	2
48	Chemogenomic profiling predicts antifungal synergies. Molecular Systems Biology, 2009, 5, 338.	3.2	71
49	Calnexin Phosphorylation Attenuates the Release of Partially Misfolded α1-Antitrypsin to the Secretory Pathway. Journal of Biological Chemistry, 2009, 284, 34570-34579.	1.6	41
50	Structure of the Noncatalytic Domains and Global Fold of the Protein Disulfide Isomerase ERp72. Structure, 2009, 17, 651-659.	1.6	44
51	Solution structure of the bb′ domains of human protein disulfide isomerase. FEBS Journal, 2009, 276, 1440-1449.	2.2	80
52	Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans. Molecular Microbiology, 2008, 42, 673-687.	1.2	252
53	BAP31 Interacts with Sec61 Translocons and Promotes Retrotranslocation of CFTRî"F508 via the Derlin-1 Complex. Cell, 2008, 133, 1080-1092.	13.5	142
54	Comment: Canadian Chemical Biology Network: biochemistry back to the future / Commentaire : Réseau canadien de biologie chimique: la biochimie de retour vers le futur. Biochemistry and Cell Biology, 2008, 86, ix-xii.	0.9	2

#	Article	IF	Citations
55	Rho5p Is Involved in Mediating the Osmotic Stress Response in <i>Saccharomyces cerevisiae</i> , and Its Activity Is Regulated via Msi1p and Npr1p by Phosphorylation and Ubiquitination. Eukaryotic Cell, 2008, 7, 1441-1449.	3.4	25
56	Structural Analog of Sildenafil Identified as a Novel Corrector of the F508del-CFTR Trafficking Defect. Molecular Pharmacology, 2008, 73, 478-489.	1.0	113
57	ERdj5 Is Required as a Disulfide Reductase for Degradation of Misfolded Proteins in the ER. Science, 2008, 321, 569-572.	6.0	353
58	Multiple 40-kDa Heat-Shock Protein Chaperones Function in Tom70-dependent Mitochondrial Import. Molecular Biology of the Cell, 2007, 18, 3414-3428.	0.9	82
59	Correctors of Protein Trafficking Defects Identified by a Novel High-Throughput Screening Assay. ChemBioChem, 2007, 8, 1012-1020.	1.3	104
60	Nup53p is a Target of Two Mitotic Kinases, Cdk1p and Hrr25p. Traffic, 2007, 8, 647-660.	1.3	37
61	The Canadian Society of Biochemistry, Molecular & Cellular Biology (CSBMCB) celebrates its 50th birthday in 2007. IUBMB Life, 2007, 59, 226-226.	1.5	0
62	1H, 13C and 15N resonance assignments of the bb′ domains of human protein disulfide isomerase. Biomolecular NMR Assignments, 2007, 1, 129-130.	0.4	5
63	Crystal Structure of the bb′ Domains of the Protein Disulfide Isomerase ERp57. Structure, 2006, 14, 1331-1339.	1.6	127
64	Adaptor protein Ste50p links the Ste11p MEKK to the HOG pathway through plasma membrane association. Genes and Development, 2006, 20, 734-746.	2.7	85
65	Refining Protein Subcellular Localization. PLoS Computational Biology, 2005, 1, e66.	1.5	90
66	Identifying Regulatory Subnetworks for a Set of Genes. Molecular and Cellular Proteomics, 2005, 4, 683-692.	2.5	61
67	PCR-based unidirectional deletion method for creation of comprehensive cDNA libraries. Biochimica Et Biophysica Acta - General Subjects, 2005, 1723, 265-269.	1.1	1
68	Drag&Drop cloning in yeast. Gene, 2005, 344, 43-51.	1.0	165
69	Predicting Subcellular Localization via Protein Motif Co-Occurrence. Genome Research, 2004, 14, 1957-1966.	2.4	92
70	Functional Characterization of Myosin I Tail Regions in Candida albicans. Eukaryotic Cell, 2004, 3, 1272-1286.	3.4	24
71	GeneExpression in HL60 Granulocytoids and Human PolymorphonuclearLeukocytes Exposed to Candidaalbicans â€. Infection and Immunity, 2004, 72, 414-429.	1.0	42
72	Specific interaction of ERp57 and calnexin determined by NMR spectroscopy and an ER two-hybrid system. EMBO Journal, 2004, 23, 1020-1029.	3.5	114

#	Article	IF	Citations
73	The ER protein folding sensor UDP-glucose glycoprotein–glucosyltransferase modifies substrates distant to local changes in glycoprotein conformation. Nature Structural and Molecular Biology, 2004, 11, 128-134.	3.6	125
74	Cold Adaptation in Budding Yeast. Molecular Biology of the Cell, 2004, 15, 5492-5502.	0.9	157
75	Lectin control of protein folding and sorting in the secretory pathway. Trends in Biochemical Sciences, 2003, 28, 49-57.	3.7	170
76	Glycopeptide specificity of the secretory protein folding sensor UDP–glucose glycoprotein:glucosyltransferase. EMBO Reports, 2003, 4, 405-411.	2.0	88
77	Bright stable luminescent yeast using bacterial luciferase as a sensor. Biochemical and Biophysical Research Communications, 2003, 309, 66-70.	1.0	14
78	Phosphorylation of the MAPKKK Regulator Ste50p in Saccharomyces cerevisiae: a Casein Kinase I Phosphorylation Site Is Required for Proper Mating Function. Eukaryotic Cell, 2003, 2, 949-961.	3.4	53
79	DePIE: Designing Primers for Protein Interaction Experiments. Nucleic Acids Research, 2003, 31, 3755-3757.	6.5	6
80	Depletion of a Polo-like Kinase inCandida albicansActivates Cyclase-dependent Hyphal-like Growth. Molecular Biology of the Cell, 2003, 14, 2163-2180.	0.9	76
81	Genetic Analysis of the Interface Between Cdc42p and the CRIB Domain of Ste20p in <i>Saccharomyces cerevisiae</i> . Genetics, 2003, 163, 9-20.	1.2	38
82	Calnexin, an ER Integral Membrane Chaperone in Health and Disease. Molecular Biology Intelligence Unit, 2003, , 30-37.	0.2	0
83	Population genomics of drug resistance in Candida albicans. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9284-9289.	3.3	133
84	CDC42 Is Required for Polarized Growth in Human Pathogen Candida albicans. Eukaryotic Cell, 2002, 1 , 95-104.	3.4	101
85	Transcription Profiling of Candida albicans Cells Undergoing the Yeast-to-Hyphal Transition. Molecular Biology of the Cell, 2002, 13, 3452-3465.	0.9	346
86	Localization of the Lectin, ERp57 Binding, and Polypeptide Binding Sites of Calnexin and Calreticulin. Journal of Biological Chemistry, 2002, 277, 29686-29697.	1.6	183
87	Use of Dominant Negative Mutations in Analysis of G Protein Function in Saccharomyces cerevisiae. Methods in Enzymology, 2002, 344, 82-91.	0.4	3
88	Proteomic Analysis of Rough and Smooth Endoplasmic Reticulum. Scientific World Journal, The, 2002, 2, 23-24.	0.8	0
89	Generation of conditional lethal Candida albicans mutants by inducible deletion of essential genes. Molecular Microbiology, 2002, 46, 269-280.	1.2	47
90	Correlation between virulence of Candida albicansmutants in mice and Galleria mellonellalarvae. FEMS Immunology and Medical Microbiology, 2002, 34, 153-157.	2.7	296

#	Article	IF	Citations
91	Specific inhibition by hGRB10ζ of insulin-induced glycogen synthase activation: evidence for a novel signaling pathway. Molecular and Cellular Endocrinology, 2001, 173, 15-27.	1.6	37
92	The Structure of Calnexin, an ER Chaperone Involved in Quality Control of Protein Folding. Molecular Cell, 2001, 8, 633-644.	4.5	363
93	Htm1p, a mannosidaseâ€like protein, is involved in glycoprotein degradation in yeast. EMBO Reports, 2001, 2, 423-430.	2.0	234
94	Cysteine protease isoforms from Trypanosoma cruzi, cruzipain 2 and cruzain, present different substrate preference and susceptibility to inhibitors. Molecular and Biochemical Parasitology, 2001, 114, 41-52.	0.5	74
95	The endoplasmic reticulum: integration of protein folding, quality control, signaling and degradation. Current Opinion in Structural Biology, 2001, 11, 120-124.	2.6	126
96	Molecular Interactions of the $\hat{Gl^2}$ Binding Domain of the Ste20p/PAK Family of Protein Kinases. Journal of Biological Chemistry, 2001, 276, 41205-41212.	1.6	14
97	Proteomics Characterization of Abundant Golgi Membrane Proteins. Journal of Biological Chemistry, 2001, 276, 5152-5165.	1.6	217
98	Signaling through Adenylyl Cyclase Is Essential for Hyphal Growth and Virulence in the Pathogenic Fungus <i>Candida albicans</i> i>Nolecular Biology of the Cell, 2001, 12, 3631-3643.	0.9	327
99	Molecular cloning of the CRM1 gene from Candida albicans. Yeast, 2000, 16, 531-538.	0.8	3
100	The HIV-1 Env Protein Signal Sequence Retards Its Cleavage and Down-regulates the Glycoprotein Folding. Virology, 2000, 272, 417-428.	1.1	79
101	A Role for Myosin-I in Actin Assembly through Interactions with Vrp1p, Bee1p, and the Arp2/3 Complex. Journal of Cell Biology, 2000, 148, 353-362.	2.3	227
102	Repression of Hyphal Proteinase Expression by the Mitogen-Activated Protein (MAP) Kinase Phosphatase Cpp1p of Candida albicans Is Independent of the MAP Kinase Cek1p. Infection and Immunity, 2000, 68, 7159-7161.	1.0	42
103	The Kex2p Proregion Is Essential for the Biosynthesis of an Active Enzyme and Requires a C-terminal Basic Residue for Its Function. Molecular Biology of the Cell, 2000, 11, 1947-1957.	0.9	26
104	The heterodimeric structure of glucosidase II is required for its activity, solubility, and localization in vivo. Glycobiology, 2000, 10, 815-827.	1.3	109
105	Functional Characterization of the Interaction of Ste50p with Ste11p MAPKKK in <i>Saccharomyces cerevisiae</i> . Molecular Biology of the Cell, 1999, 10, 2425-2440.	0.9	82
106	Localization of Endogenous Grb10 to the Mitochondria and Its Interaction with the Mitochondrial-associated Raf-1 Pool. Journal of Biological Chemistry, 1999, 274, 35719-35724.	1.6	73
107	Erp1p and Erp2p, Partners for Emp24p and Erv25p in a Yeast p24 Complex. Molecular Biology of the Cell, 1999, 10, 1923-1938.	0.9	178
108	Ca2+ Regulation of Interactions between Endoplasmic Reticulum Chaperones. Journal of Biological Chemistry, 1999, 274, 6203-6211.	1.6	186

7

#	Article	lF	Citations
109	Protein folding in a specialized compartment: the endoplasmic reticulum. Structure, 1999, 7, R173-R182.	1.6	72
110	Interaction of a G-protein \hat{l}^2 -subunit with a conserved sequence in Ste20/PAK family protein kinases. Nature, 1998, 391, 191-195.	13.7	209
111	Reduced pathogenicity of a <i>Candida albicans</i> MAP kinase phosphatase (CPP1) mutant in the murine mastitis model. Apmis, 1998, 106, 1049-1055.	0.9	24
112	Mitogen-activated protein kinase-defective Candida albicans is avirulent in a novel model of localized murine candidiasis. FEMS Microbiology Letters, 1998, 166, 135-139.	0.7	36
113	A Ste6p/P-glycoprotein homologue from the asexual yeast Candida albicans transports the a-factor mating pheromone in Saccharomyces cerevisiae. Molecular Microbiology, 1998, 27, 587-598.	1.2	55
114	Identification and Crystallization of a Protease-Resistant Core of Calnexin That Retains Biological Activity. Journal of Structural Biology, 1998, 123, 260-264.	1.3	11
115	Interaction of the Grb10 Adapter Protein with the Raf1 and MEK1 Kinases. Journal of Biological Chemistry, 1998, 273, 10475-10484.	1.6	101
116	Conserved in VivoPhosphorylation of Calnexin at Casein Kinase II Sites as Well as a Protein Kinase C/Proline-directed Kinase Site. Journal of Biological Chemistry, 1998, 273, 17227-17235.	1.6	53
117	Cell Cycle- and Cln2p-Cdc28p-dependent Phosphorylation of the Yeast Ste20p Protein Kinase. Journal of Biological Chemistry, 1998, 273, 28107-28115.	1.6	48
118	gp25L/emp24/p24 Protein Family Members of the cis-Golgi Network Bind Both COP I and II Coatomer. Journal of Cell Biology, 1998, 140, 751-765.	2.3	329
119	Enhanced Catalysis of Ribonuclease B Folding by the Interaction of Calnexin or Calreticulin with ERp57. Journal of Biological Chemistry, 1998, 273, 6009-6012.	1.6	314
120	Involvement of Protein N-Glycosyl Chain Glucosylation and Processing in the Biosynthesis of Cell Wall \hat{l}^2 -1,6-Glucan of Saccharomyces cerevisiae. Genetics, 1998, 149, 843-856.	1.2	56
121	Roles of the <i>Candida albicans</i> Mitogen-Activated Protein Kinase Homolog, Cek1p, in Hyphal Development and Systemic Candidiasis. Infection and Immunity, 1998, 66, 2713-2721.	1.0	313
122	Derepressed Hyphal Growth and Reduced Virulence in a VH1 Family-related Protein Phosphatase Mutant of the Human PathogenCandida albicans. Molecular Biology of the Cell, 1997, 8, 2539-2551.	0.9	105
123	The Phosphorylation Site for Ste20p-like Protein Kinases Is Essential for the Function of Myosin-I in Yeast. Journal of Biological Chemistry, 1997, 272, 30623-30626.	1.6	82
124	Crystal Structure of Kex1Δp, a Prohormone-Processing Carboxypeptidase fromSaccharomycescerevisiaeâ€,‡. Biochemistry, 1997, 36, 9002-9012.	1.2	19
125	Pheromone signalling and polarized morphogenesis in yeast. Current Opinion in Genetics and Development, 1997, 7, 59-66.	1.5	228
126	Conformation-Independent Binding of Monoglucosylated Ribonuclease B to Calnexin. Cell, 1997, 88, 29-38.	13.5	200

#	Article	IF	CITATIONS
127	Virulence and hyphal formation of Candida albicans require the Ste20p-like protein kinase CaCla4p. Current Biology, 1997, 7, 539-546.	1.8	200
128	Contribution to Activity of Histidineâ^'Aromatic, Amideâ^'Aromatic, and Aromaticâ^'Aromatic Interactions in the Extended Catalytic Site of Cysteine Proteinasesâ€. Biochemistry, 1996, 35, 3970-3979.	1.2	38
129	Crystallization of a soluble form of the Kexlp serine carboxypeptidase from <i>Saccharomyces cerevisiae</i> . Protein Science, 1996, 5, 395-397.	3.1	10
130	Ste50p sustains mating pheromone-induced signal transduction in the yeast Saccharomyces cerevisiae. Molecular Microbiology, 1996, 20, 773-783.	1,2	55
131	Activation of Myosin-I by Members of the Ste20p Protein Kinase Family. Journal of Biological Chemistry, 1996, 271, 31787-31790.	1.6	91
132	The Roles of Calnexin and Calreticulin as Endoplasmic Reticulum Molecular Chaperones. Molecular Biology Intelligence Unit, 1996, , 43-57.	0.2	2
133	Molecular Characterization of Ste20p, a Potential Mitogen-activated Protein or Extracellular Signal-regulated Kinase Kinase (MEK) Kinase Kinase from Saccharomyces cerevisiae. Journal of Biological Chemistry, 1995, 270, 15984-15992.	1.6	171
134	Expression and Characterization of Geotrichum candidum Lipase I Gene. Comparison of Specificity Profile with Lipase II. FEBS Journal, 1995, 228, 863-869.	0.2	42
135	Constitutive activation of the Saccharomyces cerevislae mating response pathway by a MAP kinase kinase from Candida albicans. Molecular Genetics and Genomics, 1995, 249, 609-621.	2.4	40
136	Structural and Functional Roles of Asparagine 175 in the Cysteine Protease Papain. Journal of Biological Chemistry, 1995, 270, 16645-16652.	1.6	127
137	Conformational Changes Induced in the Endoplasmic Reticulum Luminal Domain of Calnexin by Mg-ATP and Ca2+. Journal of Biological Chemistry, 1995, 270, 18051-18059.	1.6	123
138	Redesigning the active site of Geotrichum candidum lipase. Protein Engineering, Design and Selection, 1995, 8, 835-842.	1.0	11
139	Processing of the Papain Precursor. Journal of Biological Chemistry, 1995, 270, 10838-10846.	1.6	130
140	Saccharomyces cerevisiae CNE1 Encodes an Endoplasmic Reticulum (ER) Membrane Protein with Sequence Similarity to Calnexin and Calreticulin and Functions as a Constituent of the ER Quality Control Apparatus. Journal of Biological Chemistry, 1995, 270, 244-253.	1.6	160
141	Role of the Endoplasmic Reticulum Chaperone Calnexin in Subunit Folding and Assembly of Nicotinic Acetylcholine Receptors. Journal of Biological Chemistry, 1995, 270, 15085-15092.	1.6	75
142	The Yeast Proprotein Convertase Encoded by YAP3 Is a Glycophosphatidylinositol-anchored Protein That Localizes to the Plasma Membrane. Journal of Biological Chemistry, 1995, 270, 20847-20854.	1.6	69
143	Modification of the Electrostatic Environment is Tolerated in the Oxyanion Hole of the Cysteine Protease Papain. Biochemistry, 1995, 34, 464-471.	1.2	61
144	Role of Amino Acid Sequences Flanking Dibasic Cleavage Sites in Precursor Proteolytic Processing. FEBS Journal, 1995, 227, 707-714.	0.2	6

#	Article	IF	Citations
145	Role of Amino Acid Sequences Flanking Dibasic Cleavage Sites in Precursor Proteolytic Processing. The Importance of the First Residue C-Terminal of the Cleavage Site. FEBS Journal, 1995, 227, 707-714.	0.2	74
146	Control of Expression, Glycosylation, and Secretion of HIV-1 gp120 by Homologous and Heterologous Signal Sequences. Virology, 1994, 204, 266-278.	1.1	91
147	Identification of new cysteine protease gene isoforms in Trypanosoma cruzi. Molecular and Biochemical Parasitology, 1994, 67, 333-338.	0.5	74
148	Polymorphism in the lipase genes of Geotrichum candidum strains. FEBS Journal, 1994, 219, 119-125.	0.2	51
149	Secretion, purification and characterization of a soluble form of the yeast KEX1-encoded protein from insect-cell cultures. FEBS Journal, 1994, 219, 647-652.	0.2	7
150	Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. Trends in Biochemical Sciences, 1994, 19, 124-128.	3.7	535
151	Cloning of Saccharomyces cerevisiae STE5 as a suppressor of a Ste20 protein kinase mutant: structural and functional similarity of Ste5 to Farl. Molecular Genetics and Genomics, 1993, 241-241, 241-254.	2.4	64
152	Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature, 1993, 364, 771-776.	13.7	589
153	Dominant Negative Selection of Heterologous Genes in Yeast. Methods, 1993, 5, 110-115.	1.9	2
154	Processing of Kex2 pro-region at two interchangeable cleavage sites. FEBS Letters, 1993, 323, 129-131.	1.3	8
155	Expression of functional papain precursor in Saccharomyces cerevisiae: rapid screening of mutants. Protein Engineering, Design and Selection, 1993, 6, 213-219.	1.0	29
156	Mutagenesis of Ste18, a putative \hat{G}^3 subunit in the <i>Saccharomyces cerevisiae</i> pheromone response pathway. Biochemistry and Cell Biology, 1992, 70, 1230-1237.	0.9	8
157	The pro-region of the Kex2 endoprotease of Saccharomyces cerevisiae is removed by self-processing. FEBS Letters, 1992, 299, 283-286.	1.3	56
158	Expression of the Saccharomyces cerevisiae Kex2p endoprotease in insect cells. Evidence for a carboxy-terminal autoprocessing event. FEBS Journal, 1992, 204, 121-126.	0.2	23
159	Importance of hydrogen-bonding interactions involving the side chain of Asp158 in the catalytic mechanism of papain. Biochemistry, 1991, 30, 5531-5538.	1.2	64
160	Engineering of papain: selective alteration of substrate specificity by site-directed mutagenesis. Biochemistry, 1991, 30, 8929-8936.	1.2	97
161	Contribution of the glutamine 19 side chain to transition-state stabilization in the oxyanion hole of papain. Biochemistry, 1991, 30, 8924-8928.	1.2	146
162	Enhanced secretion from insect cells of a foreign protein fused to the honeybee melittin signal peptide. Gene, 1991, 98, 177-183.	1.0	296

#	Article	IF	CITATIONS
163	Prohormone Processing by Yeast Proteases. Enzyme, 1991, 45, 244-256.	0.7	19
164	Expression in yeast of a cDNA copy of the K2 killer toxin gene. Molecular Genetics and Genomics, 1991, 227, 127-136.	2.4	63
165	Ubiquitin gene expression: response to environmental changes. Current Genetics, 1991, 20, 17-23.	0.8	35
166	Removal of an inter-domain hydrogen bond through site-directed mutagenesis: role of serine 176 in the mechanism of papain. Protein Engineering, Design and Selection, 1991, 4, 307-311.	1.0	17
167	The kalilo senescence plasmid of Neurospora intermedia has covalently-linked 5? terminal proteins. Current Genetics, 1990, 17, 195-201.	0.8	27
168	The Yeast KEX-2-Processing Endoprotease Is Active in the Golgi Apparatus of Transfected NIH 3T3 Fibroblasts. Molecular Endocrinology, 1990, 4, 1572-1579.	3.7	32
169	A protein engineering study of the role of aspartate 158 in the catalytic mechanism of papain. Biochemistry, 1990, 29, 6706-6713.	1.2	142
170	Cloning and characterization of the SKI3 gene of Saccharomyces cerevisiae demonstrates allelism to SKI5. Current Genetics, 1989, 16, 139-143.	0.8	5
171	The expression in Escherichia coli of a synthetic gene coding for the precursor of papain is prevented by its own putative signal sequence. Gene, 1989, 77, 229-236.	1.0	48
172	The STE4 and STE18 genes of yeast encode potential \hat{l}^2 and \hat{l}^3 subunits of the mating factor receptor-coupled G protein. Cell, 1989, 56, 467-477.	13.5	548
173	Expression of MF $\hat{l}\pm 1$ in MATa cells supersensitive to $\hat{l}\pm -$ factor leads to self-arrest. Molecular Genetics and Genomics, 1988, 214, 85-88.	2.4	24
174	Yeast KEX1 gene encodes a putative protease with a carboxypeptidase B-like function involved in killer toxin and α-factor precursor processing. Cell, 1987, 50, 573-584.	13.5	199
175	A family of yeast expression vectors containing the phage f1 intergenic region1. Gene, 1987, 52, 225-233.	1.0	536
176	Yeast killer toxin: Site-directed mutations implicate the precursor protein as the immunity component. Cell, 1986, 46, 105-113.	13.5	95
177	Synthesis of human insulin gene VIII. Construction of expression vectors for fused proinsulin production in Escherichia coli. Gene, 1984, 29, 251-254.	1.0	135
178	Synthesis of a human insulin gene VI. expression of the synthetic proinsulin gene in yeast. Gene, 1983, 24, 289-297.	1.0	44
179	A yeast transcription system for the 5S rRNA gene. Nucleic Acids Research, 1982, 10, 5223-5238.	6. 5	12
180	Escherichia coli plasmid vectors containing synthetic translational initiation sequences and ribosome binding sites fused with the lacZ gene. Gene, 1982, 19, 211-219.	1.0	29

#	Article	IF	CITATIONS
181	Molecular cloning and organization of two leghaemoglobin genomic sequences of soybean. Nature, 1981, 289, 516-518.	13.7	64
182	Transformation of Saccharomyces cerevisiae with plasmids containing fragments of yeast 2 ? DNA and a suppressor tRNA gene. Current Genetics, 1980, 2, 9-16.	0.8	9
183	Saccharomyces cerevisiae plasmid, Scp or 2 urn: intraceDular distribution, stability and nucleo-somal-like packaging. Nucleic Acids Research, 1980, 8, 3371-3391.	6.5	41
184	A simple method for the large-scale preparation of mitochondria from microorganisms. Analytical Biochemistry, 1977, 77, 110-121.	1.1	126
185	Synthesis of cytochromec oxidase polypeptides in anEscherichia coli cell-free system directed bySaccharomyces cerevisiae mitochondrial DNA. Molecular Genetics and Genomics, 1977, 150, 81-86.	2.4	3
186	Synthesis of Mitochondrial Proteins in an Escherichia coli Cell-Free System Directed by Yeast Mitochondrial DNA. FEBS Journal, 1975, 56, 183-192.	0.2	20
187	A Yeast Mutant with Temperature-Sensitive Mitochondrial Ribosomes. FEBS Journal, 1973, 37, 585-588.	0.2	7
188	Products of Mitochondrial Protein Synthesis in Yeast. Nature: New Biology, 1971, 233, 196-199.	4.5	28
189	Inhibition of mitochondrial synthesis in yeast by erythromycin: cytoplasmic and nuclear factors controlling resistance. Genetical Research, 1968, 11, 33-41.	0.3	135
190	Yeast Two-hybrid Technologies. , 0, , 261-272.		0
191	Mitogen-activated protein kinase-defective Candida albicans is avirulent in a novel model of localized murine candidiasis. , 0, .		2