Eric Meggers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6631254/publications.pdf

Version: 2024-02-01

9756 18606 17,188 232 73 119 citations h-index g-index papers 281 281 281 10564 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Stereocontrolled 1,3-nitrogen migration to access chiral \hat{l}_{\pm} -amino acids. Nature Chemistry, 2022, 14, 566-573.	6.6	43
2	Electrochemical Enantioselective Nucleophilic α-C(sp ³)â€"H Alkenylation of 2-Acyl Imidazoles. Journal of the American Chemical Society, 2022, 144, 6964-6971.	6.6	48
3	Deracemization of Chiral-at-Ruthenium Catalyst by Diastereoselective Dynamic Resolution. Organometallics, 2022, 41, 52-59.	1.1	1
4	Ruthenium Pybox-Catalyzed Enantioselective Intramolecular C–H Amination of Sulfamoyl Azides en Route to Chiral Vicinal Diamines. Journal of Organic Chemistry, 2021, 86, 750-761.	1.7	12
5	Efficient Amination of Activated and Nonâ€Activated C(sp ³)â°'H Bonds with a Simple Iron–Phenanthroline Catalyst. Angewandte Chemie - International Edition, 2021, 60, 6314-6319.	7.2	30
6	Efficient Amination of Activated and Nonâ€Activated C(sp ³)â^'H Bonds with a Simple Ironâ€"Phenanthroline Catalyst. Angewandte Chemie, 2021, 133, 6384-6389.	1.6	1
7	Bis-Cyclometalated Indazole and Benzimidazole Chiral-at-Iridium Complexes: Synthesis and Asymmetric Catalysis. Molecules, 2021, 26, 1822.	1.7	8
8	Chiral-at-Ruthenium Catalysts with Mixed Normal and Abnormal N-Heterocyclic Carbene Ligands. Organometallics, 2021, 40, 1148-1155.	1.1	6
9	Chiralâ€atâ€Iron Catalyst for Highly Enantioselective and Diastereoselective Heteroâ€Dielsâ€Alder Reaction. Chemistry - A European Journal, 2021, 27, 8557-8563.	1.7	19
10	Stereogenic-at-Iron Catalysts with a Chiral Tripodal Pentadentate Ligand. ACS Catalysis, 2021, 11, 7467-7476.	5.5	9
11	Catalytic \hat{l} ±-Deracemization of Ketones Enabled by Photoredox Deprotonation and Enantioselective Protonation. Journal of the American Chemical Society, 2021, 143, 13393-13400.	6.6	65
12	Enantioselective α-Fluorination and α-Chlorination of <i>N</i> -Acyl Pyrazoles Catalyzed by a Non- <i>C</i> ₂ -Symmetric Chiral-at-Rhodium Catalyst. ACS Catalysis, 2021, 11, 11396-11406.	5.5	13
13	Catalytic Enantioselective Oxidative Homocoupling of 2â€Acyl Imidazoles. Advanced Synthesis and Catalysis, 2021, 363, 4695-4700.	2.1	6
14	Understanding the mechanism of direct visible-light-activated $[2 + 2]$ cycloadditions mediated by Rh and Ir photocatalysts: combined computational and spectroscopic studies. Chemical Science, 2021, 12, 9673-9681.	3.7	16
15	Catalytic enantioselective synthesis of \hat{l}^2 -amino alcohols by nitrene insertion. Science China Chemistry, 2021, 64, 452-458.	4.2	20
16	Directed Evolution of an Fe ^{II} -Dependent Halogenase for Asymmetric C(sp ³)–H Chlorination. ACS Catalysis, 2020, 10, 1272-1277.	5.5	38
17	Atroposelective Synthesis of Axially Chiral Nâ€Arylpyrroles by Chiralâ€atâ€Rhodium Catalysis. Angewandte Chemie, 2020, 132, 13654-13658.	1.6	22
18	Intramolecular C(sp ³)–H Bond Oxygenation by Transitionâ€Metal Acylnitrenoids. Angewandte Chemie, 2020, 132, 21890-21894.	1.6	5

#	Article	IF	CITATIONS
19	Intramolecular C(sp ³)â€"H Bond Oxygenation by Transitionâ€Metal Acylnitrenoids. Angewandte Chemie - International Edition, 2020, 59, 21706-21710.	7.2	26
20	Asymmetric Ring-Closing Aminooxygenation of Alkenes en Route to 2-Amino-1,3-Diols with Vicinal Stereocenters. Organic Letters, 2020, 22, 6653-6656.	2.4	30
21	Ruthenacarborane–Phenanthroline Derivatives as Potential Metallodrugs. Molecules, 2020, 25, 2322.	1.7	5
22	ErgÃ ¤ zung von Pyridinâ€2,6â€bisoxazolin mit einem cyclometallierten Nâ€heterocyclischen Carben fýr die asymmetrische Ruâ€Katalyse. Angewandte Chemie, 2020, 132, 12491-12495.	1.6	2
23	Complementing Pyridineâ€2,6â€bis(oxazoline) with Cyclometalated Nâ€Heterocyclic Carbene for Asymmetric Ruthenium Catalysis. Angewandte Chemie - International Edition, 2020, 59, 12392-12395.	7.2	26
24	Atroposelective Synthesis of Axially Chiral Nâ€Arylpyrroles by Chiralâ€atâ€Rhodium Catalysis. Angewandte Chemie - International Edition, 2020, 59, 13552-13556.	7.2	66
25	Asymmetric catalysis with a chiral-at-osmium complex. Chemical Communications, 2020, 56, 7714-7717.	2.2	26
26	Enantioselective Ring-Closing C–H Amination of Urea Derivatives. CheM, 2020, 6, 2024-2034.	5.8	48
27	Asymmetric Synthesis of 1,4â€Dicarbonyl Compounds from Aldehydes by Hydrogen Atom Transfer Photocatalysis and Chiral Lewis Acid Catalysis. Angewandte Chemie - International Edition, 2019, 58, 16859-16863.	7.2	96
28	Asymmetric Photocatalysis by Intramolecular Hydrogenâ€Atom Transfer in Photoexcited Catalyst–Substrate Complex. Angewandte Chemie, 2019, 131, 14604-14608.	1.6	9
29	Asymmetric Synthesis of 1,4â€Dicarbonyl Compounds from Aldehydes by Hydrogen Atom Transfer Photocatalysis and Chiral Lewis Acid Catalysis. Angewandte Chemie, 2019, 131, 17015-17019.	1.6	17
30	Bisâ€Cyclometalated Indazole Chiralâ€atâ€Rhodium Catalyst for Asymmetric Photoredox Cyanoalkylations. Chemistry - A European Journal, 2019, 25, 15333-15340.	1.7	31
31	Asymmetric Photocatalysis by Intramolecular Hydrogenâ€Atom Transfer in Photoexcited Catalyst–Substrate Complex. Angewandte Chemie - International Edition, 2019, 58, 14462-14466.	7.2	33
32	Chiral Bis(oxazoline) Ligands as C2-Symmetric Chiral Auxiliaries for the Synthesis of Enantiomerically Pure Bis-Cyclometalated Rhodium(III) Complexes. Organometallics, 2019, 38, 3852-3859.	1.1	10
33	Enantioconvergent photoredox radical-radical coupling catalyzed by a chiral-at-rhodium complex. Science China Chemistry, 2019, 62, 1512-1518.	4.2	20
34	Enantioselective intramolecular Câ \in H amination of aliphatic azides by dual ruthenium and phosphine catalysis. Chemical Science, 2019, 10, 3202-3207.	3.7	61
35	Chiral-at-Rhodium Catalyst Containing Two Different Cyclometalating Ligands. Organometallics, 2019, 38, 3948-3954.	1.1	10
36	Asymmetric Photocatalysis with Bis-cyclometalated Rhodium Complexes. Accounts of Chemical Research, 2019, 52, 833-847.	7.6	198

#	Article	IF	Citations
37	Chiral-at-Iron Catalyst: Expanding the Chemical Space for Asymmetric Earth-Abundant Metal Catalysis. Journal of the American Chemical Society, 2019, 141, 4569-4572.	6.6	53
38	Non- <i>C</i> ₂ -Symmetric Chiral-at-Ruthenium Catalyst for Highly Efficient Enantioselective Intramolecular C(sp ³)â€"H Amidation. Journal of the American Chemical Society, 2019, 141, 19048-19057.	6.6	102
39	Catalytic Enantioselective Intramolecular C(sp ³)â^'H Amination of 2â€Azidoacetamides. Angewandte Chemie, 2019, 131, 1100-1105.	1.6	20
40	Chiralâ€atâ€Ruthenium Catalyst with Sterically Demanding Furo[3,2â€ <i>b</i>]pyridine Ligands. European Journal of Inorganic Chemistry, 2019, 2019, 195-198.	1.0	6
41	Electricity-driven asymmetric Lewis acid catalysis. Nature Catalysis, 2019, 2, 34-40.	16.1	122
42	Catalytic Enantioselective Intramolecular C(sp ³)â^'H Amination of 2â€Azidoacetamides. Angewandte Chemie - International Edition, 2019, 58, 1088-1093.	7.2	76
43	Kinetic Resolution of Epoxides with CO 2 Catalyzed by a Chiralâ€atâ€iridium Complex. ChemSusChem, 2019, 12, 320-325.	3.6	33
44	Preparation of chiral-at-metal catalysts and their use in asymmetric photoredox chemistry. Nature Protocols, 2018, 13, 605-632.	5.5	74
45	Catalytic Asymmetric Dearomatization by Visibleâ€Lightâ€Activated [2+2] Photocycloaddition. Angewandte Chemie, 2018, 130, 6350-6354.	1.6	40
46	Catalytic Asymmetric Dearomatization by Visibleâ€Lightâ€Activated [2+2] Photocycloaddition. Angewandte Chemie - International Edition, 2018, 57, 6242-6246.	7.2	153
47	Asymmetric Nazarov Cyclizations Catalyzed by Chiralâ€atâ€Metal Complexes. Advanced Synthesis and Catalysis, 2018, 360, 2093-2100.	2.1	37
48	Oneâ€Pot Sequential Photoredox Chemistry and Asymmetric Transfer Hydrogenation with a Single Catalyst. European Journal of Organic Chemistry, 2018, 2018, 571-577.	1.2	18
49	Catalytic Enantioselective Synthesis of Key Propargylic Alcohol Intermediates of the Anti-HIV Drug Efavirenz. Organic Process Research and Development, 2018, 22, 103-107.	1.3	20
50	Synthesis of βâ€Substituted γâ€Aminobutyric Acid Derivatives through Enantioselective Photoredox Catalysis. Angewandte Chemie - International Edition, 2018, 57, 11193-11197.	7.2	87
51	Asymmetric [3+2] Photocycloadditions of Cyclopropanes with Alkenes or Alkynes through Visibleâ€Light Excitation of Catalystâ€Bound Substrates. Angewandte Chemie, 2018, 130, 5552-5556.	1.6	24
52	Asymmetric [3+2] Photocycloadditions of Cyclopropanes with Alkenes or Alkynes through Visibleâ€Light Excitation of Catalystâ€Bound Substrates. Angewandte Chemie - International Edition, 2018, 57, 5454-5458.	7.2	110
53	Arylketone π-Conjugation Controls Enantioselectivity in Asymmetric Alkynylations Catalyzed by Centrochiral Ruthenium Complexes. Journal of the American Chemical Society, 2018, 140, 5146-5152.	6.6	26
54	Sequential asymmetric hydrogenation and photoredox chemistry with a single catalyst. Organic Chemistry Frontiers, 2018, 5, 166-170.	2.3	24

#	Article	IF	Citations
55	Catalytic Asymmetric Synthesis of Fluoroalkylâ€Containing Compounds by Threeâ€Component Photoredox Chemistry. Chemistry - A European Journal, 2018, 24, 259-265.	1.7	48
56	A Chiralâ€atâ€Metal Iridium Catalyst with Two Simple but Sterically Demanding Cyclometalated Nâ€Heterocyclic Carbene Ligands. European Journal of Inorganic Chemistry, 2018, 2018, 2500-2504.	1.0	8
57	Synthesis of βâ€Substituted γâ€Aminobutyric Acid Derivatives through Enantioselective Photoredox Catalysis. Angewandte Chemie, 2018, 130, 11363-11367.	1.6	60
58	Visible-Light-Activated Catalytic Enantioselective \hat{l}^2 -Alkylation of \hat{l}_{\pm} , \hat{l}^2 -Unsaturated 2-Acyl Imidazoles Using Hantzsch Esters as Radical Reservoirs. Journal of Organic Chemistry, 2018, 83, 10922-10932.	1.7	60
59	Steering Asymmetric Lewis Acid Catalysis Exclusively with Octahedral Metal-Centered Chirality. Accounts of Chemical Research, 2017, 50, 320-330.	7.6	256
60	Polymer-Supported Chiral-at-Metal Lewis Acid Catalysts. Organometallics, 2017, 36, 1457-1460.	1.1	36
61	Chemical Activation in Blood Serum and Human Cell Culture: Improved Ruthenium Complex for Catalytic Uncaging of Allocâ€Protected Amines. ChemBioChem, 2017, 18, 1083-1086.	1.3	76
62	Enantioselective catalytic β-amination through proton-coupled electron transfer followed by stereocontrolled radical–radical coupling. Chemical Science, 2017, 8, 5757-5763.	3.7	77
63	Asymmetric Nucleophilic Catalysis with an Octahedral Chiral-at-Metal Iridium(III) Complex. ACS Catalysis, 2017, 7, 5151-5162.	5.5	43
64	Direct Visible-Light-Excited Asymmetric Lewis Acid Catalysis of Intermolecular [2+2] Photocycloadditions. Journal of the American Chemical Society, 2017, 139, 9120-9123.	6.6	203
65	Asymmetric Construction of 3,3-Disubstituted Oxindoles Bearing Vicinal Quaternary–Tertiary Carbon Stereocenters Catalyzed by a Chiral-at-Rhodium Complex. Journal of Organic Chemistry, 2017, 82, 6457-6467.	1.7	24
66	Suzuki Crossâ€Coupling for Postâ€Complexation Derivatization of Nonâ€Racemic Bisâ€Cyclometalated Iridium(III) Complexes. Chemistry - A European Journal, 2017, 23, 12363-12371.	1.7	6
67	Understanding Rate Acceleration and Stereoinduction of an Asymmetric Giese Reaction Mediated by a Chiral Rhodium Catalyst. Journal of the American Chemical Society, 2017, 139, 8062-8065.	6.6	41
68	Octahedral Ruthenium Complex with Exclusive Metal-Centered Chirality for Highly Effective Asymmetric Catalysis. Journal of the American Chemical Society, 2017, 139, 4322-4325.	6.6	103
69	Threeâ€Component Asymmetric Mannich Reaction Catalyzed by a Lewis Acid with Rhodiumâ€Centered Chirality. Chemistry - an Asian Journal, 2017, 12, 963-967.	1.7	29
70	Exploiting Octahedral Stereocenters: From Enzyme Inhibition to Asymmetric Photoredox Catalysis. Angewandte Chemie - International Edition, 2017, 56, 5668-5675.	7.2	58
71	Enantioselective 2-Alkylation of 3-Substituted Indoles with Dual Chiral Lewis Acid/Hydrogen-Bond-Mediated Catalyst. Organic Letters, 2017, 19, 222-225.	2.4	27
72	Combining the catalytic enantioselective reaction of visible-light-generated radicals with a by-product utilization system. Chemical Science, 2017, 8, 7126-7131.	3.7	67

#	Article	lF	CITATIONS
73	Asymmetric alkylation of remote C(sp ³)â€"H bonds by combining proton-coupled electron transfer with chiral Lewis acid catalysis. Chemical Communications, 2017, 53, 8964-8967.	2.2	106
74	Enantioselective Alkynylation of Aromatic Aldehydes Catalyzed by a Sterically Highly Demanding Chiral-at-Rhodium Lewis Acid. Journal of Organic Chemistry, 2017, 82, 8995-9005.	1.7	19
75	Ausnutzung oktaedrischer Stereozentren: von Enzymhemmung bis hin zu asymmetrischer Photoredoxkatalyse. Angewandte Chemie, 2017, 129, 5760-5768.	1.6	10
76	Stereogenicâ€Onlyâ€atâ€Metal Asymmetric Catalysts. Chemistry - an Asian Journal, 2017, 12, 2335-2342.	1.7	101
77	Origins of Enantioselectivity in Asymmetric Radical Additions to Octahedral Chiral-at-Rhodium Enolates: A Computational Study. Journal of the American Chemical Society, 2017, 139, 17902-17907.	6.6	58
78	Visible-Light-Activated Asymmetric β-Câ€"H Functionalization of Acceptor-Substituted Ketones with 1,2-Dicarbonyl Compounds. Journal of the American Chemical Society, 2017, 139, 17245-17248.	6.6	85
79	An N-heterocyclic carbene iridium catalyst with metal-centered chirality for enantioselective transfer hydrogenation of imines. Chemical Communications, 2017, 53, 8089-8092.	2.2	35
80	Catalytic asymmetric synthesis of a nitrogen heterocycle through stereocontrolled direct photoreaction from electronically excited state. Nature Communications, 2017, 8, 2245.	5.8	82
81	Proline and αâ€Methylproline as Chiral Auxiliaries for the Synthesis of Enantiopure Bisâ€Cyclometalated Iridium(III) Complexes. European Journal of Inorganic Chemistry, 2016, 2016, 2896-2901.	1.0	18
82	Enantioselective Alkynylation of 2â€Trifluoroacetyl Imidazoles Catalyzed by Bisâ€Cyclometalated Rhodium(III) Complexes Containing Pineneâ€Derived Ligands. Chemistry - A European Journal, 2016, 22, 11977-11981.	1.7	34
83	Asymmetric dual catalysis via fragmentation of a single rhodium precursor complex. Chemical Communications, 2016, 52, 7699-7702.	2.2	35
84	Catalytic, Enantioselective Addition of Alkyl Radicals to Alkenes via Visible-Light-Activated Photoredox Catalysis with a Chiral Rhodium Complex. Journal of the American Chemical Society, 2016, 138, 6936-6939.	6.6	205
85	Expanding the family of bis-cyclometalated chiral-at-metal rhodium(iii) catalysts with a benzothiazole derivative. Dalton Transactions, 2016, 45, 8320-8323.	1.6	80
86	Catalytic Asymmetric Câ^'H Functionalization under Photoredox Conditions by Radical Translocation and Stereocontrolled Alkene Addition. Angewandte Chemie, 2016, 128, 13693-13696.	1.6	91
87	Restricted Conformation of a Hydrogen Bond Mediated Catalyst Enables the Highly Efficient Enantioselective Construction of an All-Carbon Quaternary Stereocenter. ACS Catalysis, 2016, 6, 7641-7646.	5.5	44
88	Catalytic Asymmetric Câ^'H Functionalization under Photoredox Conditions by Radical Translocation and Stereocontrolled Alkene Addition. Angewandte Chemie - International Edition, 2016, 55, 13495-13498.	7.2	231
89	Asymmetric Catalysis with Organic Azides and Diazo Compounds Initiated by Photoinduced Electron Transfer. Journal of the American Chemical Society, 2016, 138, 12636-12642.	6.6	160
90	Enantioselective \hat{l}^2 -alkylation of pyrroles with the formation of an all-carbon quaternary stereocenter. Organic Chemistry Frontiers, 2016, 3, 1319-1325.	2.3	21

#	Article	lF	Citations
91	Enantioselective rhodium/ruthenium photoredox catalysis en route to chiral 1,2-aminoalcohols. Chemical Communications, 2016, 52, 10183-10186.	2.2	66
92	Metalâ€Templated Asymmetric Catalysis: (<i>Z</i>)â€1â€Bromoâ€1â€Nitrostyrenes as Versatile Substrates for Friedelâ€"Crafts Alkylation of Indoles. Asian Journal of Organic Chemistry, 2016, 5, 1198-1203.	1.3	19
93	Progress in the Synthesis and Bioactivity of Hexacoordinate Silicon(IV) Complexes. European Journal of Inorganic Chemistry, 2016, 2016, 5161-5170.	1.0	12
94	A Rhodium Catalyst Superior to Iridium Congeners for Enantioselective Radical Amination Activated by Visible Light. Chemistry - A European Journal, 2016, 22, 9102-9105.	1.7	75
95	Asymmetric Radical–Radical Crossâ€Coupling through Visible‣ightâ€Activated Iridium Catalysis. Angewandte Chemie - International Edition, 2016, 55, 685-688.	7.2	218
96	Metal-Templated Design: Enantioselective Hydrogen-Bond-Driven Catalysis Requiring Only Parts-per-Million Catalyst Loading. Journal of the American Chemical Society, 2016, 138, 8774-8780.	6.6	71
97	Tuning the Basicity of a Metalâ€Templated Brønsted Base to Facilitate the Enantioselective Sulfaâ€Michael Addition of Aliphatic Thiols to α,βâ€Unsaturated <i>N</i> â€Acylpyrazoles. European Journal of Organic Chemistry, 2016, 2016, 887-890.	1.2	33
98	Visible-Light-Activated Enantioselective Perfluoroalkylation with a Chiral Iridium Photoredox Catalyst. Synlett, 2016, 27, 749-753.	1.0	43
99	Chiral-at-metal iridium complex for efficient enantioselective transfer hydrogenation of ketones. Chemical Communications, 2016, 52, 4207-4210.	2.2	57
100	PIM kinases as therapeutic targets against advanced melanoma. Oncotarget, 2016, 7, 54897-54912.	0.8	16
101	Probing Chiral Recognition of Enzyme Active Sites with Octahedral Iridium(III) Propeller Complexes. European Journal of Inorganic Chemistry, 2015, 2015, 1654-1659.	1.0	20
102	Asymmetric Synthesis of Hydrocarbazoles Catalyzed by an Octahedral Chiralâ€atâ€Rhodium Lewis Acid. Chemistry - an Asian Journal, 2015, 10, 2738-2743.	1.7	29
103	Bioorthogonal Enzymatic Activation of Caged Compounds. Angewandte Chemie - International Edition, 2015, 54, 13440-13443.	7.2	41
104	Enantioselective Sulfaâ€Michael Addition to α,βâ€Unsaturated γâ€Oxoesters Catalyzed by a Metalâ€Templated Chiral BrÃ,nsted Base. Asian Journal of Organic Chemistry, 2015, 4, 434-437.	1.3	26
105	Octahedral rhodium(III) complexes as kinase inhibitors: Control of the relative stereochemistry with acyclic tridentate ligands. Journal of Inorganic Biochemistry, 2015, 148, 11-21.	1.5	26
106	Transition-metal-mediated uncaging in living human cells â€" an emerging alternative to photolabile protecting groups. Current Opinion in Chemical Biology, 2015, 25, 48-54.	2.8	106
107	Asymmetric catalysis activated by visible light. Chemical Communications, 2015, 51, 3290-3301.	2.2	325
108	Asymmetric aza-Henry reaction to provide oxindoles with quaternary carbon stereocenter catalyzed by a metal-templated chiral BrÃ,nsted base. Organic Chemistry Frontiers, 2015, 2, 968-972.	2.3	50

#	Article	IF	CITATIONS
109	Correlation between the Stereochemistry and Bioactivity in Octahedral Rhodium Prolinato Complexes. Inorganic Chemistry, 2015, 54, 8111-8120.	1.9	14
110	Enantioselective, Catalytic Trichloromethylation through Visible-Light-Activated Photoredox Catalysis with a Chiral Iridium Complex. Journal of the American Chemical Society, 2015, 137, 9551-9554.	6.6	162
111	Asymmetric Friedel–Crafts alkylation of indoles with 2-nitro-3-arylacrylates catalyzed by a metal-templated hydrogen bonding catalyst. Tetrahedron Letters, 2015, 56, 4653-4656.	0.7	46
112	Merger of Visible Light Induced Oxidation and Enantioselective Alkylation with a Chiral Iridium Catalyst. Chemistry - A European Journal, 2015, 21, 7355-7359.	1.7	78
113	Asymmetric Lewis acid catalysis directed by octahedral rhodium centrochirality. Chemical Science, 2015, 6, 1094-1100.	3.7	148
114	Octahedral Chiralâ€atâ€Metal Iridium Catalysts: Versatile Chiral Lewis Acids for Asymmetric Conjugate Additions. Chemistry - A European Journal, 2015, 21, 9720-9726.	1.7	66
115	Aerobic Asymmetric Dehydrogenative Crossâ€Coupling between Two CH Groups Catalyzed by a Chiralâ€atâ€Metal Rhodium Complex. Angewandte Chemie - International Edition, 2015, 54, 13045-13048.	7.2	135
116	Development of Organometallic S6K1 Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 305-314.	2.9	20
117	Abstract 687: Compound screen identifies PIM kinases as therapeutic targets for melanoma. , 2015, , .		0
118	Rhenium Complexes with Redâ€Lightâ€Induced Anticancer Activity. European Journal of Inorganic Chemistry, 2014, 2014, 807-811.	1.0	63
119	Asymmetric Catalysis with Substitutionally Labile yet Stereochemically Stable Chiral-at-Metal Iridium(III) Complex. Journal of the American Chemical Society, 2014, 136, 2990-2993.	6.6	161
120	An Organometallic Inhibitor for the Human Repair Enzyme 7,8â€Dihydroâ€8â€oxoguanosine Triphosphatase. Angewandte Chemie - International Edition, 2014, 53, 305-309.	7.2	60
121	Asymmetric photoredox transition-metal catalysis activated by visible light. Nature, 2014, 515, 100-103.	13.7	527
122	Synthesis and anticancer activity of ruthenium half-sandwich complexes comprising combined metal centrochirality and planar chirality. Inorganica Chimica Acta, 2014, 423, 530-539.	1.2	9
123	Progress towards Bioorthogonal Catalysis with Organometallic Compounds. Angewandte Chemie - International Edition, 2014, 53, 10536-10540.	7.2	231
124	Metal-templated chiral Brønsted base organocatalysis. Nature Communications, 2014, 5, 4531.	5.8	65
125	Novel metal-coordinated 1,10-phenanthroline ligands functionalized with a lactam or imide. Inorganica Chimica Acta, 2014, 421, 489-495.	1.2	1
126	Asymmetric Catalysis Mediated by the Ligand Sphere of Octahedral Chiralâ€atâ€Metal Complexes. Angewandte Chemie - International Edition, 2014, 53, 10868-10874.	7.2	137

#	Article	IF	CITATIONS
127	Synthesis and Functionalization of Hexacoordinate (Arenediolato)bis(polypyridyl)silicon(IV) Complexes. European Journal of Inorganic Chemistry, 2014, 2014, 2924-2933.	1.0	5
128	Metal-templated enantioselective enamine/H-bonding dual activation catalysis. Chemical Communications, 2014, 50, 10409.	2.2	54
129	Metal complexes as structural templates for targeting proteins. Current Opinion in Chemical Biology, 2014, 19, 76-81.	2.8	106
130	DNA Mismatch Recognition by a Hexacoordinate Silicon Sandwich–Ruthenium Hybrid Complex. Organometallics, 2014, 33, 3219-3222.	1.1	13
131	Nonfitting protein–ligand interaction scoring function based on firstâ€principles theoretical chemistry methods: Development and application on kinase inhibitors. Journal of Computational Chemistry, 2013, 34, 1636-1646.	1.5	37
132	Method for the Preparation of Nonracemic Bis-Cyclometalated Iridium(III) Complexes. European Journal of Inorganic Chemistry, 2013, 2013, 4164-4172.	1.0	58
133	Strainâ€Promoted Azide–Alkyne Cycloaddition with Ruthenium(II)–Azido Complexes. Chemistry - A European Journal, 2013, 19, 16682-16689.	1.7	39
134	Rhenium Complexes with Visibleâ€Lightâ€Induced Anticancer Activity. ChemMedChem, 2013, 8, 924-927.	1.6	74
135	Reductive Labilization of a Cyclometalating Ligand Applied to Auxiliary-Mediated Asymmetric Coordination Chemistry. Organometallics, 2013, 32, 5103-5113.	1.1	4
136	Continuous synthesis of pyridocarbazoles and initial photophysical and bioprobe characterization. Chemical Science, 2013, 4, 4067.	3.7	14
137	Thioether-based anchimeric assistance for asymmetric coordination chemistry with ruthenium(ii) and osmium(ii). Dalton Transactions, 2013, 42, 5623.	1.6	8
138	Metal complex catalysis in living biological systems. Chemical Communications, 2013, 49, 1581-1587.	2.2	194
139	Chiral-Auxiliary-Mediated Asymmetric Synthesis of Ruthenium Polypyridyl Complexes. Accounts of Chemical Research, 2013, 46, 2635-2644.	7.6	86
140	Asymmetric Catalysis with an Inert Chiral-at-Metal Iridium Complex. Journal of the American Chemical Society, 2013, 135, 10598-10601.	6.6	145
141	Chiral Enol Oxazolines and Thiazolines as Auxiliary Ligands for the Asymmetric Synthesis of Rutheniumâ€Polypyridyl Complexes. Chemistry - an Asian Journal, 2013, 8, 2274-2280.	1.7	6
142	Nonâ€ATPâ€Mimetic Organometallic Protein Kinase Inhibitor. ChemistryOpen, 2013, 2, 180-185.	0.9	12
143	Chiralâ€atâ€Metal Octahedral Iridium Catalyst for the Asymmetric Construction of an Allâ€Carbon Quaternary Stereocenter. Angewandte Chemie - International Edition, 2013, 52, 14021-14025.	7.2	107
144	Cyclometalated phenylquinoline rhodium complexes as protein kinase inhibitors. Inorganica Chimica Acta, 2012, 393, 261-268.	1.2	23

#	Article	IF	CITATIONS
145	PIM1 kinase as a target for cancer therapy. Expert Opinion on Investigational Drugs, 2012, 21, 425-436.	1.9	108
146	${\sf GSK3\hat{I}^2}$ Inhibition Blocks Melanoma Cell/Host Interactions by Downregulating N-Cadherin Expression and Decreasing FAK Phosphorylation. Journal of Investigative Dermatology, 2012, 132, 2818-2827.	0.3	37
147	Sixty Years Young: The Diverse Biological Activities of Metal Polypyridyl Complexes Pioneered by Francis P. Dwyer. Australian Journal of Chemistry, 2012, 65, 1325.	0.5	61
148	Bioactive cyclometalated phthalimides: design, synthesis and kinase inhibition. Dalton Transactions, 2012, 41, 9337.	1.6	27
149	Proline as Chiral Auxiliary for the Economical Asymmetric Synthesis of Ruthenium(II) Polypyridyl Complexes. Inorganic Chemistry, 2012, 51, 10004-10011.	1.9	33
150	Active <i>>versus</i> Passive Substituent Participation in the Auxiliaryâ€Mediated Asymmetric Synthesis of an Octahedral Metal Complex. Chemistry - an Asian Journal, 2012, 7, 2523-2526.	1.7	10
151	Light-Triggered Ruthenium-Catalyzed Allylcarbamate Cleavage in Biological Environments. Organometallics, 2012, 31, 5968-5970.	1.1	67
152	Dual anticancer activity in a single compound: visible-light-induced apoptosis by an antiangiogenic iridium complex. Chemical Communications, 2012, 48, 1863-1865.	2.2	103
153	Chiral (Mercaptophenyl)oxazolines as Auxiliaries for Asymmetric Coordination Chemistry. European Journal of Inorganic Chemistry, 2012, 2012, 3168-3175.	1.0	7
154	The Art of Filling Protein Pockets Efficiently with Octahedral Metal Complexes. Angewandte Chemie - International Edition, 2012, 51, 5244-5246.	7.2	88
155	Catalytic Azide Reduction in Biological Environments. ChemBioChem, 2012, 13, 1116-1120.	1.3	113
156	Hydrolytically stable octahedral silicon complexes as bioactive scaffolds: application to the design of DNA intercalators. Chemical Communications, 2012, 48, 7131.	2.2	18
157	Pyridocarbazole-Rhodium(III) Complexes as Protein Kinase Inhibitors. European Journal of Inorganic Chemistry, 2012, 2012, 813-821.	1.0	32
158	2-Diphenylphosphino- $2\hat{a}\in^2$ -hydroxy- 1 , $1\hat{a}\in^2$ -binaphthyl as a chiral auxiliary for asymmetric coordination chemistry. New Journal of Chemistry, 2011, 35, 788.	1.4	10
159	On the Structure and Dynamics of Duplex GNA. Journal of Organic Chemistry, 2011, 76, 7964-7974.	1.7	22
160	Size Does Matter. Sterically Demanding Metallocene-Substituted 3-Methylidene-Oxindoles Exhibit Poor Kinase Inhibitory Action. Organometallics, 2011, 30, 3177-3181.	1.1	19
161	Organometallic Pyridylnaphthalimide Complexes as Protein Kinase Inhibitors. Organometallics, 2011, 30, 4598-4606.	1.1	35
162	Structurally Sophisticated Octahedral Metal Complexes as Highly Selective Protein Kinase Inhibitors. Journal of the American Chemical Society, 2011, 133, 5976-5986.	6.6	218

#	Article	IF	CITATION
163	P-donor ligand containing ruthenium half-sandwich complexes as protein kinase inhibitors. Inorganica Chimica Acta, 2011, 377, 34-41.	1.2	12
164	Asymmetric Coordination Chemistry by Chiralâ€Auxiliaryâ€Mediated Dynamic Resolution under Thermodynamic Control. Chemistry - an Asian Journal, 2011, 6, 474-481.	1.7	20
165	Structure of anticancer ruthenium half-sandwich complex bound to glycogen synthase kinase $3\hat{l}^2$. Journal of Biological Inorganic Chemistry, 2011, 16, 45-50.	1.1	44
166	Asymmetric Synthesis of Octahedral Coordination Complexes. European Journal of Inorganic Chemistry, 2011, 2011, 2911-2926.	1.0	103
167	From Conventional to Unusual Enzyme Inhibitor Scaffolds: The Quest for Target Specificity. Angewandte Chemie - International Edition, 2011, 50, 2442-2448.	7.2	149
168	<i>N</i> â€Sulfinylcarboximidates as a New Class of Chiral Bidentate Ligands: Application to Asymmetric Coordination Chemistry. Chemistry - A European Journal, 2011, 17, 12602-12605.	1.7	25
169	Unusual η ² â€Allene Osmacycle with Apoptotic Properties. ChemBioChem, 2010, 11, 1607-1613.	1.3	9
170	Chiral Auxiliaries as Emerging Tools for the Asymmetric Synthesis of Octahedral Metal Complexes. Chemistry - A European Journal, 2010, 16, 752-758.	1.7	100
171	Iridium Complex with Antiangiogenic Properties. Angewandte Chemie - International Edition, 2010, 49, 3839-3842.	7.2	155
172	Isomerizationâ€Induced Asymmetric Coordination Chemistry: From Auxiliary Control to Asymmetric Catalysis. Angewandte Chemie - International Edition, 2010, 49, 7955-7957.	7.2	50
173	Organometallics as Structural Scaffolds for Enzyme Inhibitor Design. Topics in Organometallic Chemistry, 2010, , 141-153.	0.7	33
174	Chiral Salicyloxazolines as Auxiliaries for the Asymmetric Synthesis of Ruthenium Polypyridyl Complexes. Inorganic Chemistry, 2010, 49, 7692-7699.	1.9	36
175	Synthesis and Properties of the Simplified Nucleic Acid Glycol Nucleic Acid. Accounts of Chemical Research, 2010, 43, 1092-1102.	7.6	76
176	Atomic resolution duplex structure of the simplified nucleic acidGNA. Chemical Communications, 2010, 46, 1094-1096.	2.2	35
177	Discovery of a strongly apoptotic ruthenium complex through combinatorial coordination chemistry. Dalton Transactions, 2010, 39, 8177.	1.6	48
178	Crystal Structure of the PIM2 Kinase in Complex with an Organoruthenium Inhibitor. PLoS ONE, 2009, 4, e7112.	1.1	79
179	Insight into the High Duplex Stability of the Simplified Nucleic Acid GNA. Angewandte Chemie - International Edition, 2009, 48, 960-963.	7.2	40
180	Toward the Development of a Potent and Selective Organoruthenium Mammalian Sterile 20 Kinase Inhibitor. Journal of Medicinal Chemistry, 2009, 52, 1602-1611.	2.9	74

#	Article	IF	CITATIONS
181	Improved Phosphoramidite Building Blocks for the Synthesis of the Simplified Nucleic Acid GNA. Journal of Organic Chemistry, 2009, 74, 4615-4618.	1.7	24
182	The Crystal Structure of BRAF in Complex with an Organoruthenium Inhibitor Reveals a Mechanism for Inhibition of an Active Form of BRAF Kinase. Biochemistry, 2009, 48, 5187-5198.	1.2	72
183	Strategy for the Stereochemical Assignment of Tris-Heteroleptic Ru(II) Complexes by NMR Spectroscopy. Inorganic Chemistry, 2009, 48, 1053-1061.	1.9	4
184	From Imide to Lactam Metallo-pyridocarbazoles: Distinct Scaffolds for the Design of Selective Protein Kinase Inhibitors. Journal of Organic Chemistry, 2009, 74, 8997-9009.	1.7	20
185	Chiral-Auxiliary-Mediated Asymmetric Synthesis of Tris-Heteroleptic Ruthenium Polypyridyl Complexes. Journal of the American Chemical Society, 2009, 131, 9602-9603.	6.6	53
186	Inert ruthenium half-sandwich complexes with anticancer activity. Dalton Transactions, 2009, , 10882.	1.6	52
187	Targeting proteins with metal complexes. Chemical Communications, 2009, , 1001.	2.2	394
188	Metal-mediated base pairing within the simplified nucleic acid GNA. Organic and Biomolecular Chemistry, 2009, 7, 476-482.	1.5	60
189	Extremely Tight Binding of a Ruthenium Complex to Glycogen Synthase Kinase 3. ChemBioChem, 2008, 9, 2933-2936.	1.3	58
190	Similar Biological Activities of Two Isostructural Ruthenium and Osmium Complexes. Chemistry - A European Journal, 2008, 14, 4816-4822.	1.7	85
191	Synthesis of cyclopentadienyl ruthenium complexes bearing pendant chelating picolinates through an electrophilic precursor. Journal of Organometallic Chemistry, 2008, 693, 551-556.	0.8	10
192	Inorganic chemical biology: from small metal complexes in biological systems to metalloproteins. Current Opinion in Chemical Biology, 2008, 12, 194-196.	2.8	31
193	Targeting Large Kinase Active Site with Rigid, Bulky Octahedral Ruthenium Complexes. Journal of the American Chemical Society, 2008, 130, 15764-15765.	6.6	193
194	Duplex Structure of a Minimal Nucleic Acid. Journal of the American Chemical Society, 2008, 130, 8158-8159.	6.6	116
195	Structure-Based Design of an Organoruthenium Phosphatidyl-inositol-3-kinase Inhibitor Reveals a Switch Governing Lipid Kinase Potency and Selectivity. ACS Chemical Biology, 2008, 3, 305-316.	1.6	51
196	Solid-Phase Synthesis of Tris-heteroleptic Ruthenium(II) Complexes and Application to Acetylcholinesterase Inhibition. Inorganic Chemistry, 2008, 47, 5030-5032.	1.9	35
197	Exploring Chemical Space with Organometallics: Ruthenium Complexes as Protein Kinase Inhibitors. Synlett, 2007, 2007, 1177-1189.	1.0	133
198	An Organometallic Protein Kinase Inhibitor Pharmacologically Activates p53 and Induces Apoptosis in Human Melanoma Cells. Cancer Research, 2007, 67, 209-217.	0.4	224

#	Article	IF	CITATIONS
199	Ruthenium half-sandwich complexes as protein kinase inhibitors: derivatization of the pyridocarbazole pharmacophore ligand. Organic and Biomolecular Chemistry, 2007, 5, 1218.	1.5	82
200	Platinum Complex as a Nanomolar Protein Kinase Inhibitor. Inorganic Chemistry, 2007, 46, 2944-2946.	1.9	42
201	Duplex Formation of the Simplified Nucleic Acid GNA. ChemBioChem, 2007, 8, 927-932.	1.3	73
202	Exploring biologically relevant chemical space with metal complexes. Current Opinion in Chemical Biology, 2007, 11, 287-292.	2.8	257
203	Ruthenium Half-Sandwich Complexes as Protein Kinase Inhibitors:  AnN-Succinimidyl Ester for Rapid Derivatizations of the Cyclopentadienyl Moiety. Organic Letters, 2006, 8, 5465-5468.	2.4	77
204	Rapid Access to Unexplored Chemical Space by Ligand Scanning around a Ruthenium Center:Â Discovery of Potent and Selective Protein Kinase Inhibitors. Journal of the American Chemical Society, 2006, 128, 877-884.	6.6	144
205	Synthesis and cyclometalation of a pyrido[3,2-e]-2,10b-diaza-cyclopenta[c]fluorene-1,3-dione scaffold. Tetrahedron Letters, 2006, 47, 8877-8880.	0.7	8
206	Organometallic Compounds with Biological Activity: A Very Selective and Highly Potent Cellular Inhibitor for Glycogen Synthase Kinase 3. ChemBioChem, 2006, 7, 1443-1450.	1.3	110
207	Ruthenium Half-Sandwich Complexes Bound to Protein Kinase Pim-1. Angewandte Chemie - International Edition, 2006, 45, 1580-1585.	7.2	222
208	Ruthenium-Induced Allylcarbamate Cleavage in Living Cells. Angewandte Chemie - International Edition, 2006, 45, 5645-5648.	7.2	237
209	Switching on a Signaling Pathway with an Organoruthenium Complex. Angewandte Chemie - International Edition, 2005, 44, 1984-1987.	7.2	82
210	Pyrido[2,3-a]pyrrolo[3,4-c]carbazole-5,7(6H)-diones: Synthesis, Cyclometalation, and Protein Kinase Inhibition. Synthesis, 2005, 2005, 1521-1527.	1.2	4
211	A Simple Glycol Nucleic Acid. Journal of the American Chemical Society, 2005, 127, 4174-4175.	6.6	276
212	An Extremely Stable and Orthogonal DNA Base Pair with a Simplified Three-Carbon Backbone. Journal of the American Chemical Society, 2005, 127, 74-75.	6.6	129
213	A second-generation copper(II)-mediated metallo-DNA-base pair. Bioorganic Chemistry, 2004, 32, 13-25.	2.0	78
214	Ruthenium Complexes as Protein Kinase Inhibitors. Organic Letters, 2004, 6, 521-523.	2.4	67
215	An Organometallic Inhibitor for Glycogen Synthase Kinase 3. Journal of the American Chemical Society, 2004, 126, 13594-13595.	6.6	129
216	Progress Toward an Expanded Eukaryotic Genetic Code. Chemistry and Biology, 2003, 10, 511-519.	6.2	83

#	Article	IF	CITATIONS
217	A Novel Silver(I)-Mediated DNA Base Pair. Journal of the American Chemical Society, 2002, 124, 13684-13685.	6.6	150
218	Structure of a Copper-Mediated Base Pair in DNA. Journal of the American Chemical Society, 2001, 123, 12364-12367.	6.6	243
219	Electron Transfer in DNA from Guanine and 8-Oxoguanine to a Radical Cation of the Carbohydrate Backbone. Chemistry - A European Journal, 2000, 6, 485-492.	1.7	56
220	A Novel Copper-Mediated DNA Base Pair. Journal of the American Chemical Society, 2000, 122, 10714-10715.	6.6	338
221	Electron Transfer in DNA from Guanine and 8-Oxoguanine to a Radical Cation of the Carbohydrate Backbone., 2000, 6, 485.		2
222	Hole Transport Between G Bases in DNA. Nucleosides & Nucleotides, 1999, 18, 1317-1318.	0.5	9
223	On the Mechanism of Long-Range Electron Transfer through DNA. Angewandte Chemie - International Edition, 1999, 38, 996-998.	7.2	225
224	On the Mechanism of Long-Range Electron Transfer through DNA. , 1999, 38, 996.		2
225	Electron Transfer through DNA in the Course of Radical-Induced Strand Cleavage. Angewandte Chemie - International Edition, 1998, 37, 460-462.	7.2	169
226	Spontaneous Cleavage of 4â€~-DNA Radicals under Aerobic Conditions: Apparent Discrepancy between Trapping Rates and Cleavage Products. Journal of the American Chemical Society, 1998, 120, 7399-7403.	6.6	43
227	Sequence Dependent Long Range Hole Transport in DNA. Journal of the American Chemical Society, 1998, 120, 12950-12955.	6.6	645
228	The Generation of Hydroxymethyl Radicals: Photoinduced Electron Transfer as Opposed to Electrochemical Electron Transfer. , 1998, , 367-369.		2
229	Conformation, Lifetime, and Repair of 4â€~-DNA Radicals. Journal of the American Chemical Society, 1997, 119, 11130-11131.	6.6	60
230	An Efficient Synthesis of Enantiomerically Pure ?- and ?-Ruthenium(II)-Labelled Oligonucleotides. Helvetica Chimica Acta, 1997, 80, 640-652.	1.0	37
231	Radikalische Câ€Câ€Bindungsknüpfung durch photoelektronentransferkatalysierte Addition von αâ€6ilylcarbamaten an acceptorsubstituierte Alkene. Angewandte Chemie, 1995, 107, 2317-2319.	1.6	9
232	Radical CC Bond Formation by Photoinduced Electron Transfer Addition ofl±-Silyl Carbamates to Acceptor-Substituted Alkenes. Angewandte Chemie International Edition in English, 1995, 34, 2137-2139.	4.4	24