Eugenia Valsami-Jones

List of Publications by Citations

 $\textbf{Source:} \ https://exaly.com/author-pdf/6630762/eugenia-valsami-jones-publications-by-citations.pdf$

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

182 papers 8,696 citations

52 h-index 88 g-index

2O2 ext. papers

9,844 ext. citations

6.5 avg, IF

6.23 L-index

#	Paper	IF	Citations
182	The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. <i>Ecotoxicology</i> , 2008 , 17, 315-25	2.9	646
181	Phosphorus Recovery from Wastewater by Struvite Crystallization: A Review. <i>Critical Reviews in Environmental Science and Technology</i> , 2009 , 39, 433-477	11.1	480
180	The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. <i>Science of the Total Environment</i> , 2012 , 438, 225-32	10.2	340
179	Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials. <i>Biomaterials</i> , 2004 , 25, 229-38	15.6	306
178	Impact of calcium on struvite crystal size, shape and purity. Journal of Crystal Growth, 2005, 283, 514-52	2 1.6	295
177	The dissolution of apatite in the presence of aqueous metal cations at pH 21. Chemical Geology, 1998, 151, 215-233	4.2	214
176	Behavioural and biochemical responses of two marine invertebrates Scrobicularia plana and Hediste diversicolor to copper oxide nanoparticles. <i>Chemosphere</i> , 2011 , 84, 166-74	8.4	203
175	Bone and Tooth Mineralization: Why Apatite?. <i>Elements</i> , 2008 , 4, 97-104	3.8	201
174	Silver bioaccumulation dynamics in a freshwater invertebrate after aqueous and dietary exposures to nanosized and ionic Ag. <i>Environmental Science & Environmental Science & E</i>	10.3	166
173	NANOSAFETY. How safe are nanomaterials?. <i>Science</i> , 2015 , 350, 388-9	33.3	148
172	Advanced tools for the safety assessment of nanomaterials. <i>Nature Nanotechnology</i> , 2018 , 13, 537-543	28.7	145
171	A strategy for grouping of nanomaterials based on key physico-chemical descriptors as a basis for safer-by-design NMs. <i>Nano Today</i> , 2014 , 9, 266-270	17.9	143
170	Cellular internalization of silver nanoparticles in gut epithelia of the estuarine polychaete Nereis diversicolor. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	118
169	Bonemeal Additions as a Remediation Treatment for Metal Contaminated Soil. <i>Environmental Science & Environmental Science & En</i>	10.3	116
168	Arsenic pollution sources. Reviews of Environmental Contamination and Toxicology, 2008, 197, 17-60	3.5	111
167	A marine mesocosm study on the environmental fate of silver nanoparticles and toxicity effects on two endobenthic species: the ragworm Hediste diversicolor and the bivalve mollusc Scrobicularia plana. <i>Science of the Total Environment</i> , 2014 , 470-471, 1151-9	10.2	109
166	Phosphate Mineral Reactivity and Global Sustainability. <i>Elements</i> , 2008 , 4, 83-87	3.8	103

165	A stable droplet reactor for high temperature nanocrystal synthesis. Lab on A Chip, 2011, 11, 1221-7	7.2	97
164	A novel approach reveals that zinc oxide nanoparticles are bioavailable and toxic after dietary exposures. <i>Nanotoxicology</i> , 2011 , 5, 79-90	5.3	97
163	Climate Change and Biosphere Response: Unlocking the Collections Vault. <i>BioScience</i> , 2011 , 61, 147-15	5 3 5.7	92
162	Respiratory epithelial cytotoxicity and membrane damage (holes) caused by amine-modified nanoparticles. <i>Nanotoxicology</i> , 2012 , 6, 94-108	5.3	91
161	Agglomeration of struvite crystals. Water Research, 2007, 41, 419-25	12.5	91
160	Use of bone meal amendments to immobilise Pb, Zn and Cd in soil: A leaching column study. <i>Environmental Pollution</i> , 2006 , 144, 816-25	9.3	90
159	Effect of bone meal (calcium phosphate) amendments on metal release from contaminated soilsa leaching column study. <i>Environmental Pollution</i> , 2001 , 112, 233-43	9.3	89
158	Size dependent bioaccumulation and ecotoxicity of gold nanoparticles in an endobenthic invertebrate: the Tellinid clam Scrobicularia plana. <i>Environmental Pollution</i> , 2012 , 168, 37-43	9.3	86
157	Structural and chemical changes of thermally treated bone apatite. <i>Journal of Materials Science</i> , 2007 , 42, 9807-9816	4.3	85
156	Mineralogical controls on phosphorus recovery from wastewaters. <i>Mineralogical Magazine</i> , 2001 , 65, 611-620	1.7	84
155	Isotopically modified nanoparticles for enhanced detection in bioaccumulation studies. <i>Environmental Science & Environmental </i>	10.3	81
154	Toxic effects and bioaccumulation of nano-, micron- and ionic-Ag in the polychaete, Nereis diversicolor. <i>Aquatic Toxicology</i> , 2011 , 105, 403-11	5.1	81
153	Bioaccumulation and toxicity of CuO nanoparticles by a freshwater invertebrate after waterborne and dietborne exposures. <i>Environmental Science & Environmental Science & Envi</i>	10.3	76
152	The effect of organic ligands on the crystallinity of calcium phosphate. <i>Journal of Crystal Growth</i> , 2003 , 249, 572-583	1.6	74
151	Role of the crystalline form of titanium dioxide nanoparticles: Rutile, and not anatase, induces toxic effects in Balb/3T3 mouse fibroblasts. <i>Toxicology in Vitro</i> , 2016 , 31, 137-45	3.6	73
150	Remediation Technologies for Arsenic Contaminated Drinking Waters (9 pp). <i>Journal of Soils and Sediments</i> , 2005 , 5, 182-190	3.4	73
149	The application of calcium phosphate precipitation chemistry to phosphorus recovery: the influence of organic ligands. <i>Environmental Technology (United Kingdom)</i> , 2001 , 22, 1325-35	2.6	71

147	The dissolution rates of SiO2 nanoparticles as a function of particle size. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	68
146	Bioaccumulation dynamics and modeling in an estuarine invertebrate following aqueous exposure to nanosized and dissolved silver. <i>Environmental Science & Environmental & Envi</i>	10.3	68
145	Effects of sediment-associated copper to the deposit-feeding snail, Potamopyrgus antipodarum: a comparison of Cu added in aqueous form or as nano- and micro-CuO particles. <i>Aquatic Toxicology</i> , 2012 , 106-107, 114-22	5.1	67
144	Fate and effects of metal-based nanoparticles in two marine invertebrates, the bivalve mollusc Scrobicularia plana and the annelid polychaete Hediste diversicolor. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 7899-912	5.1	66
143	Biochemical and behavioural responses of the endobenthic bivalve Scrobicularia plana to silver nanoparticles in seawater and microalgal food. <i>Ecotoxicology and Environmental Safety</i> , 2013 , 89, 117-24	1 7	66
142	Synthesis of isotopically modified ZnO nanoparticles and their potential as nanotoxicity tracers. <i>Environmental Pollution</i> , 2011 , 159, 266-273	9.3	62
141	Tracing bioavailability of ZnO nanoparticles using stable isotope labeling. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	61
140	Cytotoxicity and cellular mechanisms of toxicity of CuO NPs in mussel cells in vitro and comparative sensitivity with human cells. <i>Toxicology in Vitro</i> , 2018 , 48, 146-158	3.6	60
139	Fate of isotopically labeled zinc oxide nanoparticles in sediment and effects on two endobenthic species, the clam Scrobicularia plana and the ragworm Hediste diversicolor. <i>Ecotoxicology and Environmental Safety</i> , 2012 , 84, 191-8	7	60
138	Comparative study using spheres, rods and spindle-shaped nanoplatelets on dispersion stability, dissolution and toxicity of CuO nanomaterials. <i>Nanotoxicology</i> , 2014 , 8, 422-32	5.3	59
137	An evaluation of the reactivity of synthetic and natural apatites in the presence of aqueous metals. <i>Science of the Total Environment</i> , 2009 , 407, 2953-65	10.2	59
136	Struvite crystallisation and recovery using a stainless steel structure as a seed material. <i>Water Research</i> , 2007 , 41, 2449-56	12.5	59
135	The role of hydrogen bonding in the thermal expansion and dehydration of brushite, di-calcium phosphate dihydrate. <i>Physics and Chemistry of Minerals</i> , 2004 , 31, 606-624	1.6	57
134	The role of heterotrophic bacteria in feldspar dissolution han experimental approach. <i>Mineralogical Magazine</i> , 2003 , 67, 1157-1170	1.7	57
133	Toxicity and bioaccumulation of sediment-associated silver nanoparticles in the estuarine polychaete, Nereis (Hediste) diversicolor. <i>Aquatic Toxicology</i> , 2014 , 156, 106-15	5.1	54
132	Comparative toxicity of metal oxide nanoparticles (CuO, ZnO and TiO2) to developing zebrafish embryos. <i>Journal of Nanoparticle Research</i> , 2014 , 16, 1	2.3	54
131	In vivo retention of ingested Au NPs by Daphnia magna: no evidence for trans-epithelial alimentary uptake. <i>Chemosphere</i> , 2014 , 100, 97-104	8.4	53
130	Multiple cytotoxic and genotoxic effects induced in vitro by differently shaped copper oxide nanomaterials. <i>Mutagenesis</i> , 2013 , 28, 287-99	2.8	51

129	Biochemical and behavioural responses of the marine polychaete Hediste diversicolor to cadmium sulfide quantum dots (CdS QDs): waterborne and dietary exposure. <i>Chemosphere</i> , 2014 , 100, 63-70	8.4	49	
128	Impact of reactor operation on success of struvite precipitation from synthetic liquors. <i>Environmental Technology (United Kingdom)</i> , 2007 , 28, 1245-56	2.6	49	
127	The geochemistry of fluids from an active shallow submarine hydrothermal system: Milos island, Hellenic Volcanic Arc. <i>Journal of Volcanology and Geothermal Research</i> , 2005 , 148, 130-151	2.8	49	
126	Impact of surface coating and environmental conditions on the fate and transport of silver nanoparticles in the aquatic environment. <i>Science of the Total Environment</i> , 2016 , 568, 95-106	10.2	48	
125	Electrophoretic deposition of ZnO/alginate and ZnO-bioactive glass/alginate composite coatings for antimicrobial applications. <i>Materials Science and Engineering C</i> , 2015 , 55, 137-44	8.3	48	
124	Electrophoretic deposition of organic/inorganic composite coatings containing ZnO nanoparticles exhibiting antibacterial properties. <i>Materials Science and Engineering C</i> , 2017 , 77, 780-789	8.3	46	
123	Earthworm Uptake Routes and Rates of Ionic Zn and ZnO Nanoparticles at Realistic Concentrations, Traced Using Stable Isotope Labeling. <i>Environmental Science & Eamp; Technology</i> , 2016 , 50, 412-9	10.3	46	
122	Aneuploidogenic effects and DNA oxidation induced in vitro by differently sized gold nanoparticles. <i>International Journal of Nanomedicine</i> , 2014 , 9, 2191-204	7.3	46	
121	Cytotoxicity of Au, ZnO and SiOINPs using in vitro assays with mussel hemocytes and gill cells: Relevance of size, shape and additives. <i>Nanotoxicology</i> , 2016 , 10, 185-93	5.3	43	
120	A mesocosm study of fate and effects of CuO nanoparticles on endobenthic species (Scrobicularia plana, Hediste diversicolor). <i>Environmental Science & Environmental Science &</i>	10.3	43	
119	Characterization of Nanoparticle Batch-To-Batch Variability. Nanomaterials, 2018, 8,	5.4	42	
118	NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integrated tools for nanosafety assessment. <i>Computational and Structural Biotechnology Journal</i> , 2020 , 18, 583-602	6.8	41	
117	An investigation into arsenic(V) removal from aqueous solutions by hydroxylapatite and bone-char. <i>Mineralogical Magazine</i> , 2005 , 69, 769-780	1.7	40	
116	The integrated biomarker response: a suitable tool to evaluate toxicity of metal-based nanoparticles. <i>Nanotoxicology</i> , 2017 , 11, 1-6	5.3	39	
115	Cytotoxicity of TiO2 nanoparticles to mussel hemocytes and gill cells in vitro: Influence of synthesis method, crystalline structure, size and additive. <i>Nanotoxicology</i> , 2015 , 9, 543-53	5.3	39	
114	Inhibition of potential uptake pathways for silver nanoparticles in the estuarine snail Peringia ulvae. <i>Nanotoxicology</i> , 2015 , 9, 493-501	5.3	39	
113	Stable isotope tracer to determine uptake and efflux dynamics of ZnO Nano- and bulk particles and dissolved Zn to an estuarine snail. <i>Environmental Science & Environmental S</i>	10.3	39	
112	Toxicity and accumulation of silver nanoparticles during development of the marine polychaete Platynereis dumerilii. <i>Science of the Total Environment</i> , 2014 , 476-477, 688-95	10.2	38	

111	An atomic force microscopy study of the dissolution of calcite in the presence of phosphate ions. <i>Geochimica Et Cosmochimica Acta</i> , 2013 , 117, 115-128	5.5	37
110	Seasonal variability of natural water chemistry affects the fate and behaviour of silver nanoparticles. <i>Chemosphere</i> , 2018 , 191, 616-625	8.4	36
109	Isotopically modified silver nanoparticles to assess nanosilver bioavailability and toxicity at environmentally relevant exposures. <i>Environmental Chemistry</i> , 2014 , 11, 247	3.2	36
108	Characterization and identification of mixed-metal phosphates in soils: the application of Raman spectroscopy. <i>Mineralogical Magazine</i> , 2003 , 67, 1299-1316	1.7	36
107	Evaluation of topically applied copper(II) oxide nanoparticle cytotoxicity in human skin organ culture. <i>Toxicology in Vitro</i> , 2013 , 27, 292-8	3.6	34
106	Elucidation of toxicity pathways in lung epithelial cells induced by silicon dioxide nanoparticles. <i>PLoS ONE</i> , 2013 , 8, e72363	3.7	34
105	An Experimental Investigation of the Effect of Bacillus megaterium on Apatite Dissolution. <i>Geomicrobiology Journal</i> , 2006 , 23, 177-182	2.5	34
104	Plant species-dependent transformation and translocation of ceria nanoparticles. <i>Environmental Science: Nano</i> , 2019 , 6, 60-67	7.1	32
103	Bioaccumulation and effects of different-shaped copper oxide nanoparticles in the deposit-feeding snail Potamopyrgus antipodarum. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 1976-87	3.8	32
102	Multi-walled carbon nanotube length as a critical determinant of bioreactivity with primary human pulmonary alveolar cells. <i>Carbon</i> , 2014 , 78, 26-37	10.4	32
101	Macromolecular Coronas and Their Importance in Nanotoxicology and Nanoecotoxicology. <i>Frontiers of Nanoscience</i> , 2014 , 7, 127-156	0.7	32
100	Microscopy-based high-throughput assays enable multi-parametric analysis to assess adverse effects of nanomaterials in various cell lines. <i>Archives of Toxicology</i> , 2018 , 92, 633-649	5.8	31
99	Kinetics of struvite precipitation: effect of the magnesium dose on induction times and precipitation rates. <i>Environmental Technology (United Kingdom)</i> , 2007 , 28, 1317-24	2.6	30
98	Uptake and impacts of polyvinylpyrrolidone (PVP) capped metal oxide nanoparticles on Daphnia magna: role of core composition and acquired corona. <i>Environmental Science: Nano</i> , 2018 , 5, 1745-1756	7.1	29
97	A nanoinformatics decision support tool for the virtual screening of gold nanoparticle cellular association using protein corona fingerprints. <i>Nanotoxicology</i> , 2018 , 12, 1148-1165	5.3	29
96	Subcellular localization of gold nanoparticles in the estuarine bivalve Scrobicularia plana after exposure through the water. <i>Gold Bulletin</i> , 2013 , 46, 47-56	1.6	27
95	Mechanisms of Iron Uptake from Ferric Phosphate Nanoparticles in Human Intestinal Caco-2 Cells. <i>Nutrients</i> , 2017 , 9,	6.7	26
94	Shape and Charge of Gold Nanomaterials Influence Survivorship, Oxidative Stress and Moulting of Daphnia magna. <i>Nanomaterials</i> , 2016 , 6,	5.4	26

93	A safe-by-design tool for functionalised nanomaterials through the Enalos Nanoinformatics Cloud platform. <i>Nanoscale Advances</i> , 2019 , 1, 706-718	5.1	24
92	Current Application of Capillary Electrophoresis in Nanomaterial Characterisation and Its Potential to Characterise the Protein and Small Molecule Corona. <i>Nanomaterials</i> , 2018 , 8,	5.4	24
91	A novel method for sampling bacteria on plant root and soil surfaces at the microhabitat scale. Journal of Microbiological Methods, 2008 , 75, 12-8	2.8	24
90	Phosphate mineral reactivity: from global cycles to sustainable development. <i>Mineralogical Magazine</i> , 2008 , 72, 337-340	1.7	24
89	Cerium oxide nanoparticles induce oxidative stress in the sediment-dwelling amphipod Corophium volutator. <i>Nanotoxicology</i> , 2016 , 10, 480-7	5.3	23
88	Field trial using bone meal amendments to remediate mine waste derived soil contaminated with zinc, lead and cadmium. <i>Applied Geochemistry</i> , 2008 , 23, 2414-2424	3.5	23
87	Bioaccumulation, toxicokinetics, and effects of copper from sediment spiked with aqueous Cu, nano-CuO, or micro-CuO in the deposit-feeding snail, Potamopyrgus antipodarum. <i>Environmental Toxicology and Chemistry</i> , 2013 , 32, 1561-73	3.8	22
86	Impact of particle size, oxidation state and capping agent of different cerium dioxide nanoparticles on the phosphate-induced transformations at different pH and concentration. <i>PLoS ONE</i> , 2019 , 14, e02	1 3 7483	21
85	Zeta-Potential Read-Across Model Utilizing Nanodescriptors Extracted via the NanoXtract Image Analysis Tool Available on the Enalos Nanoinformatics Cloud Platform. <i>Small</i> , 2020 , 16, e1906588	11	21
84	Remediation strategies for historical mining and smelting sites. <i>Science Progress</i> , 2006 , 89, 71-138	1.1	21
83	A new terrestrial active mineralizing hydrothermal system associated with ore-bearing travertines in Greece (northern Euboea Island and Sperchios area). <i>Journal of Geochemical Exploration</i> , 2017 , 179, 9-24	3.8	20
82	Graphene Oxide-Induced pH Alteration, Iron Overload, and Subsequent Oxidative Damage in Rice (L.): A New Mechanism of Nanomaterial Phytotoxicity. <i>Environmental Science & Environmental Science & Env</i>	10.3	20
81	Synthesis and characterization of isotopically labeled silver nanoparticles for tracing studies. <i>Environmental Science: Nano</i> , 2014 , 1, 271-283	7.1	20
80	Predicting Cytotoxicity of Metal Oxide Nanoparticles using Isalos Analytics Platform. <i>Nanomaterials</i> , 2020 , 10,	5.4	20
79	Dispersion of Nanomaterials in Aqueous Media: Towards Protocol Optimization. <i>Journal of Visualized Experiments</i> , 2017 ,	1.6	19
78	Stable isotope labeling of metal/metal oxide nanomaterials for environmental and biological tracing. <i>Nature Protocols</i> , 2019 , 14, 2878-2899	18.8	18
77	Time-resolved toxicity study reveals the dynamic interactions between uncoated silver nanoparticles and bacteria. <i>Nanotoxicology</i> , 2017 , 11, 637-646	5.3	17
76	Development of scalable and versatile nanomaterial libraries for nanosafety studies: polyvinylpyrrolidone (PVP) capped metal oxide nanoparticles. <i>RSC Advances</i> , 2017 , 7, 3894-3906	3.7	17

75	Bioaccumulation and toxic effects of nanoparticulate and ionic silver in Saccostrea glomerata (rock oyster). <i>Ecotoxicology and Environmental Safety</i> , 2019 , 179, 127-134	7	17
74	Air-Liquid Interface Exposure of Lung Epithelial Cells to Low Doses of Nanoparticles to Assess Pulmonary Adverse Effects. <i>Nanomaterials</i> , 2020 , 11,	5.4	17
73	New boron isotopic evidence for sedimentary and magmatic fluid influence in the shallow hydrothermal vent system of Milos Island (Aegean Sea, Greece). <i>Journal of Volcanology and Geothermal Research</i> , 2016 , 310, 58-71	2.8	17
72	Bioaccumulation, tissue and cell distribution, biomarkers and toxicopathic effects of CdS quantum dots in mussels, Mytilus galloprovincialis. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 167, 288-300	7	16
71	Dioxins as potential risk factors for autism spectrum disorder. <i>Environment International</i> , 2018 , 121, 906	5- <u>19</u> 15	16
70	Role of Humic Acid in the Stability of Ag Nanoparticles in Suboxic Conditions. <i>Environmental Science</i> & amp; Technology, 2017 , 51, 6063-6070	10.3	15
69	Cadmium sulfide quantum dots induce oxidative stress and behavioral impairments in the marine clam Scrobicularia plana. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 1659-64	3.8	15
68	Exposure medium and particle ageing moderate the toxicological effects of nanomaterials to Daphnia magna over multiple generations: a case for standard test review?. <i>Environmental Science: Nano</i> , 2020 , 7, 1136-1149	7.1	15
67	Linking rhizoplane pH and bacterial density at the microhabitat scale. <i>Journal of Microbiological Methods</i> , 2009 , 76, 101-4	2.8	15
66	Characterisation of carbon nanotubes in the context of toxicity studies. <i>Environmental Health</i> , 2009 , 8 Suppl 1, S3	6	15
65	Operationally defined associations of arsenic and copper from soil and mine waste in south-west England. <i>Chemical Speciation and Bioavailability</i> , 2005 , 17, 147-160		14
64	Deciphering the particle specific effects on metabolism in rat liver and plasma from ZnO nanoparticles versus ionic Zn exposure. <i>Environment International</i> , 2020 , 136, 105437	12.9	14
63	Internalization and toxicological mechanisms of uncoated and PVP-coated cerium oxide nanoparticles in the freshwater alga Chlamydomonas reinhardtii. <i>Environmental Science: Nano</i> , 2019 , 6, 1959-1972	7.1	13
62	Effectiveness of different biochar in aqueous zinc removal: Correlation with physicochemical characteristics. <i>Bioresource Technology Reports</i> , 2020 , 11, 100466	4.1	13
61	Multigenerational Exposures of Daphnia Magna to Pristine and Aged Silver Nanoparticles: Epigenetic Changes and Phenotypical Ageing Related Effects. <i>Small</i> , 2020 , 16, e2000301	11	13
60	Colloidal stability of nanoparticles derived from simulated cloud-processed mineral dusts. <i>Science of the Total Environment</i> , 2014 , 466-467, 864-70	10.2	13
59	Crystallinity depends on choice of iron salt precursor in the continuous hydrothermal synthesis of Fe©Lo oxide nanoparticles. <i>RSC Advances</i> , 2017 , 7, 37436-37440	3.7	13
58	Nano-titanium dioxide bioreactivity with human alveolar type-I-like epithelial cells: Investigating crystalline phase as a critical determinant. <i>Nanotoxicology</i> , 2015 , 9, 482-92	5.3	11

(2018-2017)

The effect of zirconium doping of cerium dioxide nanoparticles on pulmonary and cardiovascular toxicity and biodistribution in mice after inhalation. <i>Nanotoxicology</i> , 2017 , 11, 794-808	5.3	11	
The Vani manganese deposit, Milos island, Greece: A fossil stratabound MnBaBbInAsBbW-rich hydrothermal deposit. <i>Developments in Volcanology</i> , 2005 , 255-291		11	
Intranasal exposure to ZnO nanoparticles induces alterations in cholinergic neurotransmission in rat brain. <i>Nano Today</i> , 2020 , 35, 100977	17.9	11	
Elucidating the mechanism of the surface functionalization dependent neurotoxicity of graphene family nanomaterials. <i>Nanoscale</i> , 2020 , 12, 18600-18605	7.7	11	
New, rapid method to measure dissolved silver concentration in silver nanoparticle suspensions by aggregation combined with centrifugation. <i>Journal of Nanoparticle Research</i> , 2016 , 18, 259	2.3	11	
Silver nanoparticle induced toxicity and cell death mechanisms in embryonic zebrafish cells. <i>Nanoscale</i> , 2021 , 13, 6142-6161	7.7	11	
Br/Cl and I/Cl systematics in the shallow-water hydrothermal system at Milos Island, Hellenic Arc. <i>Marine Chemistry</i> , 2012 , 140-141, 33-43	3.7	10	
Trace metal distribution in the bed, bank and suspended sediment of the Ravensbourne River and its implication for sediment monitoring in an urban river. <i>Journal of Soils and Sediments</i> , 2019 , 19, 946-	9 <i>6</i> 3 ⁴	9	
Dietary bioavailability of cadmium presented to the gastropod Peringia ulvae as quantum dots and in ionic form. <i>Environmental Toxicology and Chemistry</i> , 2013 , 32, 2621-9	3.8	9	
Growing Rice () Aerobically Reduces Phytotoxicity, Uptake, and Transformation of CeO Nanoparticles. <i>Environmental Science & Environmental Science & E</i>	10.3	9	
Particle number-based trophic transfer of gold nanomaterials in an aquatic food chain. <i>Nature Communications</i> , 2021 , 12, 899	17.4	9	
A high throughput imaging database of toxicological effects of nanomaterials tested on HepaRG cells. <i>Scientific Data</i> , 2019 , 6, 46	8.2	8	
Two-cells phase separation in shallow submarine hydrothermal system at Milos Island, Greece: Boron isotopic evidence. <i>Geophysical Research Letters</i> , 2011 , 38, n/a-n/a	4.9	8	
Nanomaterial synthesis and characterization for toxicological studies: TiO2 case study. <i>Mineralogical Magazine</i> , 2008 , 72, 515-519	1.7	8	
Trophic transfer of CuO NPs from sediment to worms (Tubifex tubifex) to fish (Gasterosteus aculeatus): a comparative study of dissolved Cu and NPs enriched with a stable isotope tracer (65Cu). <i>Environmental Science: Nano</i> , 2020 , 7, 2360-2372	7.1	7	
A Dose Metrics Perspective on the Association of Gold Nanomaterials with Algal Cells. <i>Environmental Science and Technology Letters</i> , 2019 , 6, 732-738	11	7	
Physical and chemical transformations of zirconium doped ceria nanoparticles in the presence of phosphate: Increasing realism in environmental fate and behaviour experiments. <i>Environmental Pollution</i> , 2019 , 252, 974-981	9.3	6	
A New Occurrence of Terrestrial Native Iron in the Earth Surface: The Ilia Thermogenic Travertine Case, Northwestern Euboea, Greece. <i>Geosciences (Switzerland)</i> , 2018 , 8, 287	2.7	6	
	toxicity and biodistribution in mice after inhalation. <i>Nanotoxicology</i> , 2017 , 11, 794-808 The Vani manganese deposit, Milos island, Greece: A fossil stratabound MnBaBb@nBsBbW-rich hydrothermal deposit. <i>Developments in Volcanology</i> , 2005 , 255-291 Intranasal exposure to ZnO nanoparticles induces alterations in cholinergic neurotransmission in rat brain. <i>Nano Today</i> , 2020 , 35, 100977 Elucidating the mechanism of the surface functionalization dependent neurotoxicity of graphene family nanomaterials. <i>Nanoscale</i> , 2020 , 12, 18600-18605 New, rapid method to measure dissolved silver concentration in silver nanoparticle suspensions by aggregation combined with centrifugation. <i>Journal of Nanoparticle Research</i> , 2016 , 18, 259 Silver nanoparticle induced toxicity and cell death mechanisms in embryonic zebrafish cells. <i>Nanoscale</i> , 2021 , 13, 6142-6161 Br/Cl and I/Cl systematics in the shallow-water hydrothermal system at Milos Island, Hellenic Arc. <i>Marine Chemistry</i> , 2012 , 140-141, 33-43 Trace metal distribution in the bed, bank and suspended sediment of the Ravensbourne River and its implication for sediment monitoring in an urban river. <i>Journal of Soils and Sediments</i> , 2019 , 19, 946-Dietary bioavailability of cadmium presented to the gastropod Peringia ulvae as quantum dots and in ionic form. <i>Environmental Toxicology and Chemistry</i> , 2013 , 32, 2621-9 Growing Rice () Aerobically Reduces Phytotoxicity, Uptake, and Transformation of CeO Nanoparticles. <i>Environmental Science & Samp: Technology</i> , 2021 , 55, 8654-8664 Particle number-based trophic transfer of gold nanomaterials in an aquatic food chain. <i>Nature Communications</i> , 2021 , 12, 899 A high throughput imaging database of toxicological effects of nanomaterials tested on HepaRG cells. <i>Scientific Data</i> , 2019 , 6, 46 Two-cells phase separation in shallow submarine hydrothermal system at Milos Island, Greece: Boron isotopic evidence. <i>Geophysical Research Letters</i> , 2011 , 38, n/a-n/a Nanomaterial synthesis and characterization for to	toxicity and biodistribution in mice after inhalation. <i>Nanotoxicology</i> , 2017, 11, 794-808 The Vani manganese deposit, Milos island, Greece: A fossil stratabound MnBabBcn&SbW-rich hydrothermal deposit. <i>Developments in Volcanology</i> , 2005, 255-291 Intranasal exposure to ZnO nanoparticles induces alterations in cholinergic neurotransmission in rat brain. <i>Nano Today</i> , 2020, 35, 100977 Elucidating the mechanism of the surface functionalization dependent neurotoxicity of graphene family nanomaterials. <i>Nanoscale</i> , 2020, 12, 18600-18605 Rew, rapid method to measure dissolved silver concentration in silver nanoparticle suspensions by aggregation combined with centrifugation. <i>Journal of Nanoparticle Research</i> , 2016, 18, 259 Silver nanoparticle induced toxicity and cell death mechanisms in embryonic zebrafish cells. <i>Nanoscale</i> , 2021, 13, 6142-6161 Bir/Cl and I/Cl systematics in the shallow-water hydrothermal system at Milos Island, Hellenic Arc. <i>Marine Chemistry</i> , 2012, 140-141, 33-43 Trace metal distribution in the bed, bank and suspended sediment of the Ravensbourne River and its implication for sediment monitoring in an urban river. <i>Journal of Soils and Sediments</i> , 2019, 19, 946-964 Dietary bioavailability of cadmium presented to the gastropod Peringia ulvae as quantum dots and in ionic form. <i>Environmental Toxicology and Chemistry</i> , 2013, 32, 2621-9 Growing Rice () Aerobically Reduces Phytotoxicity, Uptake, and Transformation of CeO Nanoparticles. <i>Environmental Science & Bamp</i> , Technology, 2021, 55, 8654-8664 10:3 Particle number-based trophic transfer of gold nanomaterials in an aquatic food chain. <i>Nature Communications</i> , 2021, 12, 899 274 A high throughput imaging database of toxicological effects of nanomaterials tested on HepaRG cells. <i>Scientific Data</i> , 2019, 6, 46 Two-cells phase separation in shallow submarine hydrothermal system at Milos Island, Greece: Boron isotopic evidence. <i>Geophysical Research Letters</i> , 2011, 38, n/a-n/a A nose Metrics Perspective on the Association of Gold Nan	toxicity and biodistribution in mice after inhalation. <i>Nanotoxicology</i> , 2017, 11, 794-808 53 11 The Vani manganese deposit, Milos island, Greece: A fossil stratabound MnBaBbBah SabW-rich hydrothermal deposit. <i>Developments in Volcanology</i> , 2005, 255-291 11 Intranasal exposure to ZnO nanoparticles induces alterations in cholinergic neurotransmission in rat brain. <i>Nano Today</i> , 2020, 35, 100977 11 Elucidating the mechanism of the surface functionalization dependent neurotoxicity of graphene family nanomaterials. <i>Nanoscole</i> , 2020, 12, 18500-18605 77 New, rapid method to measure dissolved silver concentration in silver nanoparticle suspensions by aggregation combined with centrifugation. <i>Journal of Nanoparticle Research</i> , 2016, 18, 259 2.3 11 Silver nanoparticle induced toxicity and cell death mechanisms in embryonic zebrafish cells. 77 Intrace metal distribution in the bed, bank and suspended sediment of the Ravensbourne River and its implication for sediment monitoring in an urban river. <i>Journal of Soils and Sediments</i> , 2019, 19, 946-964 9 Dietary bioavailability of cadmium presented to the gastropod Peringia ulvae as quantum dots and in innic form. <i>Environmental Toxicology and Chemistry</i> , 2013, 32, 2621-9 Growing Rice () Aerobically Reduces Phytotoxicity, Uptake, and Transformation of CeO Nanoparticles. <i>Environmental Science & Bamp</i> , Technology, 2021, 55, 8654-8664 10-3 9 Particle number-based trophic transfer of gold nanomaterials in an aquatic food chain. <i>Nature Communications</i> , 2021, 12, 899 Ahigh throughput imaging database of toxicological effects of nanomaterials tested on HepaRG els. <i>Scientific Data</i> , 2019, 6, 46 Two-cells phase separation in shallow submarine hydrothermal system at Milos Island, Greece: 800 physical Research Letters, 2011, 138, n/a-n/a Nanomaterial synthesis and characterization for toxicological studies: TiO2 case study. <i>Mineralogical Mogazine</i> , 2008, 72, 515-519 Trophic transfer of CuO NPs from sediment to worms (Tublifex tublifex) to fish (Gasterosteus aculeatus)

39	Simulations of morphological transformation in silver nanoparticles as a tool for assessing their reactivity and potential toxicity. <i>NanoImpact</i> , 2019 , 14, 100147	5.6	5
38	Overview of Environmental Nanoscience. <i>Frontiers of Nanoscience</i> , 2014 , 7, 1-54	0.7	5
37	Accurate Phase Quantification of Mineral Matter in Bulk Lignite Samples from Western Peloponnese (Greece). <i>Energy & Documents</i> 2004, 18, 547-559	4.1	5
36	Arsenian Pyrite and Cinnabar from Active Submarine Nearshore Vents, Paleochori Bay, Milos Island, Greece. <i>Minerals (Basel, Switzerland)</i> , 2021 , 11, 14	2.4	5
35	Computational enrichment of physicochemical data for the development of a Epotential read-across predictive model with Isalos Analytics Platform <i>NanoImpact</i> , 2021 , 22, 100308	5.6	5
34	Dietary uptake and effects of copper in Sticklebacks at environmentally relevant exposures utilizing stable isotope-labeled CuCl and CuO NPs. <i>Science of the Total Environment</i> , 2021 , 757, 143779	10.2	5
33	Toxicity and chemical transformation of silver nanoparticles in A549 lung cells: dose-rate-dependent genotoxic impact. <i>Environmental Science: Nano</i> , 2021 , 8, 806-821	7.1	5
32	Biotransformation modulates the penetration of metallic nanomaterials across an artificial blood-brain barrier model. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	5
31	Flooding with constraints: water meadow irrigation impacts on temperature, oxygen, phosphorus and sediment in water returned to a river. <i>Journal of Flood Risk Management</i> , 2017 , 10, 463-473	3.1	4
30	Nanomaterial Ontologies for Nanosafety: A Rose by any Other Name. <i>Journal of Nanomedicine Research</i> , 2016 , 3,	9	4
29	Strategy for Identification of Nanomaterials Critical Properties Linked to Biological Impacts: Interlinking of Experimental and Computational Approaches. <i>Challenges and Advances in Computational Chemistry and Physics</i> , 2017 , 385-424	0.7	4
28	Environmental context determines the impact of titanium oxide and silver nanoparticles on the functioning of intertidal microalgal biofilms. <i>Environmental Science: Nano</i> , 2020 , 7, 3020-3035	7.1	4
27	Greco-Roman mineral (litho)therapeutics and their relationship to their microbiome: The case of the red pigment. <i>Journal of Archaeological Science: Reports</i> , 2018 , 22, 179-192	0.7	4
26	Synthesis and characterization of Zr- and Hf-doped nano-TiO as internal standards for analytical quantification of nanomaterials in complex matrices. <i>Royal Society Open Science</i> , 2018 , 5, 171884	3.3	4
25	Core-Shell NaHoF@TiO NPs: A Labeling Method to Trace Engineered Nanomaterials of Ubiquitous Elements in the Environment. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 19452-19461	9.5	3
24	Surface functionalisation-dependent adverse effects of metal nanoparticles and nanoplastics in zebrafish embryos. <i>Environmental Science: Nano</i> ,	7.1	3
23	An Untargeted Thermogravimetric Analysis-Fourier Transform Infrared-Gas Chromatography-Mass Spectrometry Approach for Plastic Polymer Identification. <i>Environmental Science & amp; Technology</i> , 2021 , 55, 8721-8729	10.3	3
22	The analytical quest for sub-micron plastics in biological matrices. <i>Nano Today</i> , 2021 , 41, 101296	17.9	3

21	Silica Nanoparticle Synthesis and Multi-Method Characterisation. <i>Materials Science Forum</i> , 2019 , 947, 82-90	0.4	2
20	Engineered nanoselenium supplemented fish diet: toxicity comparison with ionic selenium and stability against particle dissolution, aggregation and release. <i>Environmental Science: Nano</i> , 2020 , 7, 23	2 <i>3</i> -233	66 ²
19	The interweaving roles of mineral and microbiome in shaping the antibacterial activity of archaeological medicinal clays. <i>Journal of Ethnopharmacology</i> , 2020 , 260, 112894	5	2
18	On the transformation mechanism of polyethylene glycol- and citrate-coated silver nanocolloids under sunlight exposure. <i>Journal of Nanoparticle Research</i> , 2019 , 21, 1	2.3	2
17	Chapter 4:Nanotoxicity: Are We Confident for Modelling? [An Experimentalist] Point of View. <i>RSC Nanoscience and Nanotechnology</i> , 2012 , 54-68		2
16	Metal phosphates and remediation of contaminated land 2000,		2
15	Multigenerational Exposure to Nano-TiO2 Induces Ageing as a Stress Response Mitigated by Environmental Interactions. <i>Advanced NanoBiomed Research</i> , 2021 , 1, 2000083	O	2
14	The stochastic association of nanoparticles with algae at the cellular level: Effects of NOM, particle size and particle shape. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 218, 112280	7	2
13	Thermal transformations of manufactured nanomaterials as a proposed proxy for ageing. <i>Environmental Science: Nano</i> , 2018 , 5, 1618-1627	7.1	2
12	Facile Method to Prepare pH-Sensitive PEI-Functionalized Carbon Nanotubes as Rationally Designed Vehicles for Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) Delivery. <i>Journal of Carbon Research</i> , 2020 , 6, 62	3.3	1
11	Phosphorus in Environmental Technology: Principles and Applications. <i>Water Intelligence Online</i> , 2015 , 4, 9781780402758-9781780402758		1
10	Mechanisms of Silver Nanoparticle Uptake by Embryonic Zebrafish Cells. <i>Nanomaterials</i> , 2021 , 11,	5.4	1
9	Experimental Evolution of Pseudomonas putida under Silver Ion versus Nanoparticle Stress		1
8	Cellular repair mechanisms triggered by exposure to silver nanoparticles and ionic silver in embryonic zebrafish cells. <i>Environmental Science: Nano</i> , 2021 , 8, 2507-2522	7.1	1
7	From small to clever: What does the future hold for the safety and sustainability of advanced materials?. <i>Nano Today</i> , 2022 , 42, 101364	17.9	О
6	Safe by Design for Nanomaterials[late Lessons from Early Warnings for Sustainable Innovation. <i>NanoEthics</i> , 2021 , 15, 99-103	1	O
5	Environmental Mineralogy: introduction to a thematic set of papers arising out of sessions held at IMA 2002, Edinburgh, UK. <i>Mineralogical Magazine</i> , 2003 , 67, 1123-1125	1.7	
4	Engineered Nanomaterials287-318		

3 Biominerals **2021**, 517-519

2 Phosphates **2021**, 422-427

Scanning transmission X-ray microscopy study of subcellular granules in human platelets at the carbon K- and calcium L2,3-edges.. *Platelets*, **2021**, 1-8

3.6