
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6630511/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aging-related olfactory loss is associated with olfactory stem cell transcriptional alterations in humans. Journal of Clinical Investigation, 2022, 132, .	3.9	20
2	Olfactory receptor 2 in vascular macrophages drives atherosclerosis by NLRP3-dependent IL-1 production. Science, 2022, 375, 214-221.	6.0	81
3	Sequence coevolution and structure stabilization modulate olfactory receptor expression. Biophysical Journal, 2022, 121, 830-840.	0.2	4
4	Large-Scale G Protein-Coupled Olfactory Receptor–Ligand Pairing. ACS Central Science, 2022, 8, 379-387.	5.3	23
5	Hot Spot Mutagenesis Improves the Functional Expression of Unique Mammalian Odorant Receptors. International Journal of Molecular Sciences, 2022, 23, 277.	1.8	6
6	Interactions among key residues regulate mammalian odorant receptor trafficking. FASEB Journal, 2022, 36, .	0.2	1
7	Abstract 2655: The GPCR OR13A1 is essential for lymphoma cells. Cancer Research, 2022, 82, 2655-2655.	0.4	1
8	Estrogen and sex-dependent loss of the vocal learning system in female zebra finches. Hormones and Behavior, 2021, 129, 104911.	1.0	11
9	19-hydroxy Steroids in the Aromatase Reaction: Review on Expression and Potential Functions. Journal of the Endocrine Society, 2021, 5, bvab050.	0.1	6
10	Generation and Characterization of a Cell Type-Specific, Inducible Cre-Driver Line to Study Olfactory Processing. Journal of Neuroscience, 2021, 41, 6449-6467.	1.7	4
11	Machine Learning Assisted Approach for Finding Novel High Activity Agonists of Human Ectopic Olfactory Receptors. International Journal of Molecular Sciences, 2021, 22, 11546.	1.8	10
12	Comparative Genomic Analysis of the Pheromone Receptor Class 1 Family (V1R) Reveals Extreme Complexity in Mouse Lemurs (Genus, Microcebus) and a Chromosomal Hotspot across Mammals. Genome Biology and Evolution, 2020, 12, 3562-3579.	1.1	12
13	Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Science Advances, 2020, 6, .	4.7	865
14	Modulation of the combinatorial code of odorant receptor response patterns in odorant mixtures. Molecular and Cellular Neurosciences, 2020, 104, 103469.	1.0	33
15	Single-cell analysis of olfactory neurogenesis and differentiation in adult humans. Nature Neuroscience, 2020, 23, 323-326.	7.1	165
16	Structural instability and divergence from conserved residues underlie intracellular retention of mammalian odorant receptors. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2957-2967.	3.3	27
17	Maternally inherited peptides as strain-specific chemosignals. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30738-30743.	3.3	8
18	Concentration-Dependent Recruitment of Mammalian Odorant Receptors. ENeuro, 2020, 7, ENEURO.0103-19.2019.	0.9	12

#	Article	IF	CITATIONS
19	Semiochemical responsive olfactory sensory neurons are sexually dimorphic and plastic. ELife, 2020, 9,	2.8	21
20	The N-terminal region of RTP1S plays important roles in dimer formation and odorant receptor-trafficking. Journal of Biological Chemistry, 2019, 294, 14661-14673.	1.6	15
21	Real-time In Vitro Monitoring of Odorant Receptor Activation by an Odorant in the Vapor Phase. Journal of Visualized Experiments, 2019, , .	0.2	3
22	A Scalable, Multiplexed Assay for Decoding GPCR-Ligand Interactions with RNA Sequencing. Cell Systems, 2019, 8, 254-260.e6.	2.9	22
23	Axonal Odorant Receptors Mediate Axon Targeting. Cell Reports, 2019, 29, 4334-4348.e7.	2.9	19
24	Beta-caryophyllene enhances wound healing through multiple routes. PLoS ONE, 2019, 14, e0216104.	1.1	60
25	Mammalian class I odorant receptors exhibit a conserved vestibular-binding pocket. Cellular and Molecular Life Sciences, 2019, 76, 995-1004.	2.4	16
26	Odorant Receptor 7D4 Activation Dynamics. Angewandte Chemie - International Edition, 2018, 57, 4554-4558.	7.2	26
27	Odorant Receptor 7D4 Activation Dynamics. Angewandte Chemie, 2018, 130, 4644-4648.	1.6	8
28	Molecular mechanism of activation of human musk receptors OR5AN1 and OR1A1 by (<i>R</i>) Tj ETQq0 0 0 Sciences of the United States of America, 2018, 115, E3950-E3958.	rgBT /Overl 3.3	ock 10 Tf 50 57
29	Structure–Function Relationships of Olfactory and Taste Receptors. Chemical Senses, 2018, 43, 81-87.	1.1	45
30	An Antimicrobial Peptide and Its Neuronal Receptor Regulate Dendrite Degeneration in Aging and Infection. Neuron, 2018, 97, 125-138.e5.	3.8	79
31	Carbon chain shape selectivity by the mouse olfactory receptor OR-17. Organic and Biomolecular Chemistry, 2018, 16, 2541-2548.	1.5	10
32	Lessons from single-cell transcriptome analysis of oxygen-sensing cells. Cell and Tissue Research, 2018, 372, 403-415.	1.5	8
33	The role of Olfr78 in the breathing circuit of mice. Nature, 2018, 561, E33-E40.	13.7	43
34	Vapor detection and discrimination with a panel of odorant receptors. Nature Communications, 2018, 9, 4556.	5.8	58
35	A Testosterone Metabolite 19-Hydroxyandrostenedione Induces Neuroendocrine Trans-Differentiation of Prostate Cancer Cells via an Ectopic Olfactory Receptor. Frontiers in Oncology, 2018, 8, 162.	1.3	41
36	High-Throughput Odorant Receptor Deorphanization Via Phospho-S6 Ribosomal Protein Immunoprecipitation and mRNA Profiling. Methods in Molecular Biology, 2018, 1820, 95-112.	0.4	5

#	Article	IF	CITATIONS
37	Numerical Models and In Vitro Assays to Study Odorant Receptors. Methods in Molecular Biology, 2018, 1820, 77-93.	0.4	14
38	Split luciferase complementation assay for the analysis of G proteinâ€coupled receptor ligand response in <i>Saccharomyces cerevisiae</i> . Biotechnology and Bioengineering, 2017, 114, 1354-1361.	1.7	3
39	The role of metals in mammalian olfaction of low molecular weight organosulfur compounds. Natural Product Reports, 2017, 34, 529-557.	5.2	33
40	Live-cell Measurement of Odorant Receptor Activation Using a Real-time cAMP Assay. Journal of Visualized Experiments, 2017, , .	0.2	9
41	Modification of the response of olfactory receptors to acetophenone by CYP1a2. Scientific Reports, 2017, 7, 10167.	1.6	32
42	Variation in olfactory neuron repertoires is genetically controlled and environmentally modulated. ELife, 2017, 6, .	2.8	86
43	Olfactory receptor accessory proteins play crucial roles in receptor function and gene choice. ELife, 2017, 6, .	2.8	34
44	Smelling Sulfur: Copper and Silver Regulate the Response of Human Odorant Receptor OR2T11 to Low-Molecular-Weight Thiols. Journal of the American Chemical Society, 2016, 138, 13281-13288.	6.6	60
45	The human olfactory transcriptome. BMC Genomics, 2016, 17, 619.	1.2	87
46	Single cell transcriptome analysis of mouse carotid body glomus cells. Journal of Physiology, 2016, 594, 4225-4251.	1.3	90
47	Human olfactory receptor responses to odorants. Scientific Data, 2015, 2, 150002.	2.4	102
48	Molecular recognition of ketamine by a subset of olfactory G protein–coupled receptors. Science Signaling, 2015, 8, ra33.	1.6	14
49	Muscarinic acetylcholine receptor M3 modulates odorant receptor activity via inhibition of β-arrestin-2 recruitment. Nature Communications, 2015, 6, 6448.	5.8	18
50	Implausibility of the vibrational theory of olfaction. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2766-74.	3.3	76
51	Cyclic Regulation of Sensory Perception by a Female Hormone Alters Behavior. Cell, 2015, 161, 1334-1344.	13.5	161
52	Responsiveness of G protein-coupled odorant receptors is partially attributed to the activation mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14966-14971.	3.3	48
53	Mammalian odorant receptors: functional evolution and variation. Current Opinion in Neurobiology, 2015, 34, 54-60.	2.0	33
54	Reply to Turin et al.: Vibrational theory of olfaction is implausible. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3155.	3.3	19

#	Article	IF	CITATIONS
55	Conserved Residues Control Activation of Mammalian G Protein-Coupled Odorant Receptors. Journal of the American Chemical Society, 2015, 137, 8611-8616.	6.6	69
56	Molecular profiling of activated olfactory neurons identifies odorant receptors for odors in vivo. Nature Neuroscience, 2015, 18, 1446-1454.	7.1	106
57	Improving the odorant sensitivity of olfactory receptor-expressing yeast with accessory proteins. Analytical Biochemistry, 2015, 471, 1-8.	1.1	26
58	Calreticulin: Roles in Cell-Surface Protein Expression. Membranes, 2014, 4, 630-641.	1.4	28
59	<i>In Vivo</i> Identification of Eugenol-Responsive and Muscone-Responsive Mouse Odorant Receptors. Journal of Neuroscience, 2014, 34, 15669-15678.	1.7	48
60	The missense of smell: functional variability in the human odorant receptor repertoire. Nature Neuroscience, 2014, 17, 114-120.	7.1	269
61	QM/MM Model of the Mouse Olfactory Receptor MOR244-3 Validated by Site-Directed Mutagenesis Experiments. Biophysical Journal, 2014, 107, L5-L8.	0.2	32
62	Aldehyde Recognition and Discrimination by Mammalian Odorant Receptors via Functional Group-Specific Hydration Chemistry. ACS Chemical Biology, 2014, 9, 2563-2571.	1.6	19
63	Astringency: A More Stringent Definition. Chemical Senses, 2014, 39, 467-469.	1.1	22
64	Unfolding the Mystery of Olfactory Receptor Gene Expression. Developmental Cell, 2013, 27, 128-129.	3.1	5
65	Functional Evolution of Mammalian Odorant Receptors. PLoS Genetics, 2012, 8, e1002821.	1.5	176
66	Genetic Variation in the Odorant Receptor OR2J3 Is Associated with the Ability to Detect the "Grassy― Smelling Odor, cis-3-hexen-1-ol. Chemical Senses, 2012, 37, 585-593.	1.1	110
67	Receptor-transporting Protein 1 Short (RTP1S) Mediates Translocation and Activation of Odorant Receptors by Acting through Multiple Steps. Journal of Biological Chemistry, 2012, 287, 22287-22294.	1.6	42
68	Crucial role of copper in detection of metal-coordinating odorants. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3492-3497.	3.3	104
69	Calreticulin chaperones regulate functional expression of vomeronasal type 2 pheromone receptors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16651-16656.	3.3	56
70	G protein Gαo is essential for vomeronasal function and aggressive behavior in mice. Proceedings of the United States of America, 2011, 108, 12898-12903.	3.3	159
71	Activation State of the M3 Muscarinic Acetylcholine Receptor Modulates Mammalian Odorant Receptor Signaling. Science Signaling, 2011, 4, ra1.	1.6	67
72	Dynamic functional evolution of an odorant receptor for sex-steroid-derived odors in primates. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21247-21251.	3.3	42

HIROAKI MATSUNAMI

#	Article	IF	CITATIONS
73	SR1, a Mouse Odorant Receptor with an Unusually Broad Response Profile. Journal of Neuroscience, 2009, 29, 14545-14552.	1.7	105
74	Trafficking of Mammalian Chemosensory Receptors by Receptorâ€ŧransporting Proteins. Annals of the New York Academy of Sciences, 2009, 1170, 153-156.	1.8	26
75	Odor Coding by a Mammalian Receptor Repertoire. Science Signaling, 2009, 2, ra9.	1.6	487
76	Evaluating cell-surface expression and measuring activation of mammalian odorant receptors in heterologous cells. Nature Protocols, 2008, 3, 1402-1413.	5.5	178
77	Synergism of Accessory Factors in Functional Expression of Mammalian Odorant Receptors. Journal of Biological Chemistry, 2007, 282, 15284-15293.	1.6	160
78	Genetic variation in a human odorant receptor alters odour perception. Nature, 2007, 449, 468-472.	13.7	549
79	Functional Expression of Mammalian Odorant Receptors. Chemical Senses, 2005, 30, i95-i96.	1.1	7
80	RTP Family Members Induce Functional Expression of Mammalian Odorant Receptors. Cell, 2004, 119, 679-691.	13.5	528
81	Taste perception: how to make a gourmet mouse. Current Biology, 2004, 14, R118-20.	1.8	2
82	Taste and pheromone perception in mammals and flies. Genome Biology, 2003, 4, 220.	13.9	42