
Zheng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6630311/publications.pdf Version: 2024-02-01

ZHENC MANC

#	Article	IF	CITATIONS
1	A higher-level phylogenetic classification of the Fungi. Mycological Research, 2007, 111, 509-547.	2.5	1,994
2	Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature, 2006, 443, 818-822.	13.7	1,625
3	Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nature Biotechnology, 2015, 33, 408-414.	9.4	1,023
4	Improved software detection and extraction of ITS1 and <scp>ITS</scp> 2 from ribosomal <scp>ITS</scp> sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods in Ecology and Evolution, 2013, 4, 914-919.	2.2	868
5	The Ascomycota Tree of Life: A Phylum-wide Phylogeny Clarifies the Origin and Evolution of Fundamental Reproductive and Ecological Traits. Systematic Biology, 2009, 58, 224-239.	2.7	581
6	Pan-Genome of Wild and Cultivated Soybeans. Cell, 2020, 182, 162-176.e13.	13.5	508
7	Projecting hospital utilization during the COVID-19 outbreaks in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9122-9126.	3.3	441
8	Impact of international travel and border control measures on the global spread of the novel 2019 coronavirus outbreak. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7504-7509.	3.3	429
9	Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Molecular Phylogenetics and Evolution, 2007, 43, 430-451.	1.2	341
10	Preserving Accuracy in GenBank. Science, 2008, 319, 1616-1616.	6.0	198
11	Parallel selection on a dormancy gene during domestication of crops from multiple families. Nature Genetics, 2018, 50, 1435-1441.	9.4	168
12	Evolution of helotialean fungi (Leotiomycetes, Pezizomycotina): A nuclear rDNA phylogeny. Molecular Phylogenetics and Evolution, 2006, 41, 295-312.	1.2	165
13	The durability of immunity against reinfection by SARS-CoV-2: a comparative evolutionary study. Lancet Microbe, The, 2021, 2, e666-e675.	3.4	147
14	A multigene phylogeny toward a new phylogenetic classification of Leotiomycetes. IMA Fungus, 2019, 10, 1.	1.7	140
15	Toward a phylogenetic classification of the Leotiomycetes based on rDNA data. Mycologia, 2006, 98, 1065-1075.	0.8	128
16	Improving ITS sequence data for identification of plant pathogenic fungi. Fungal Diversity, 2014, 67, 11-19.	4.7	123
17	Metaxa: a software tool for automated detection and discrimination among ribosomal small subunit (12S/16S/18S) sequences of archaea, bacteria, eukaryotes, mitochondria, and chloroplasts in metagenomes and environmental sequencing datasets. Antonie Van Leeuwenhoek, 2011, 100, 471-475.	0.7	88
18	Molecular phylogenetics of the Gloeophyllales and relative ages of clades of Agaricomycotina producing a brown rot. Mycologia, 2011, 103, 510-524.	0.8	69

ZHENG WANG

#	Article	IF	CITATIONS
19	Global Gene Expression and Focused Knockout Analysis Reveals Genes Associated with Fungal Fruiting Body Development in Neurospora crassa. Eukaryotic Cell, 2014, 13, 154-169.	3.4	66
20	Toward a phylogenetic classification of the Leotiomycetes based on rDNA data. Mycologia, 2006, 98, 1065-1075.	0.8	64
21	Evolutionary relationships of <i>Mycaureola dilseae</i> (Agaricales), a basidiomycete pathogen of a subtidal rhodophyte. American Journal of Botany, 2006, 93, 547-556.	0.8	58
22	Comparative Genomic and Transcriptomic Analysis of <i>Wangiella dermatitidis</i> , A Major Cause of Phaeohyphomycosis and a Model Black Yeast Human Pathogen. G3: Genes, Genomes, Genetics, 2014, 4, 561-578.	0.8	58
23	<i>Geoglossomycetes</i> cl. nov., <i>Geoglossales</i> ord. nov. and taxa above class rank in the <i>Ascomycota</i> Tree of Life. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2009, 22, 129-138.	1.6	55
24	Life history and systematics of the aquatic discomycete <i>Mitrula</i> (Helotiales, Ascomycota) based on cultural, morphological, and molecular studies. American Journal of Botany, 2005, 92, 1565-1574.	0.8	51
25	Phylogenetic relationships of <i>Sparassis</i> inferred from nuclear and mitochondrial ribosomal DNA and RNA polymerase sequences. Mycologia, 2004, 96, 1015-1029.	0.8	48
26	The ancestral levels of transcription and the evolution of sexual phenotypes in filamentous fungi. PLoS Genetics, 2017, 13, e1006867.	1.5	46
27	Light sensing by opsins and fungal ecology: NOPâ€1 modulates entry into sexual reproduction in response to environmental cues. Molecular Ecology, 2018, 27, 216-232.	2.0	43
28	Gene Expression Differences among Three Neurospora Species Reveal Genes Required for Sexual Reproduction in Neurospora crassa. PLoS ONE, 2014, 9, e110398.	1.1	39
29	Genomic Comparison Among Global Isolates of L. interrogans Serovars Copenhageni and Icterohaemorrhagiae Identified Natural Genetic Variation Caused by an Indel. Frontiers in Cellular and Infection Microbiology, 2018, 8, 193.	1.8	39
30	The Fast-Evolving <i>phy-2</i> Gene Modulates Sexual Development in Response to Light in the Model Fungus Neurospora crassa. MBio, 2016, 7, e02148.	1.8	37
31	Phylogenetic Relationships of Sparassis Inferred from Nuclear and Mitochondrial Ribosomal DNA and RNA Polymerase Sequences. Mycologia, 2004, 96, 1015.	0.8	35
32	Differential impact of nutrition on developmental and metabolic gene expression during fruiting body development in Neurospora crassa. Fungal Genetics and Biology, 2012, 49, 405-413.	0.9	33
33	Tasting Soil Fungal Diversity with Earth Tongues: Phylogenetic Test of SATé Alignments for Environmental ITS Data. PLoS ONE, 2011, 6, e19039.	1.1	32
34	Evolution of Reproductive Morphology in Leaf Endophytes. PLoS ONE, 2009, 4, e4246.	1.1	31
35	Sex-specific gene expression during asexual development of Neurospora crassa. Fungal Genetics and Biology, 2012, 49, 533-543.	0.9	31
36	Maximizing Power in Phylogenetics and Phylogenomics: A Perspective Illuminated by Fungal Big Data. Advances in Genetics, 2017, 100, 1-47.	0.8	28

ZHENG WANG

#	Article	IF	CITATIONS
37	Another fossil agaric from Dominican amber. Mycologia, 2003, 95, 685-687.	0.8	27
38	New species and distinctive geographical divergences of the genus Sparassis (Basidiomycota): evidence from morphological and molecular data. Mycological Progress, 2013, 12, 445-454.	0.5	26
39	Sex-linked transcriptional divergence in the hermaphrodite fungus Neurospora tetrasperma. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130862.	1.2	26
40	Phylogeny and a new species of Sparassis (Polyporales, Basidiomycota): evidence from mitochondrial atp6, nuclear rDNA and rpb2 genes. Mycologia, 2006, 98, 584-592.	0.8	25
41	Phylogeny and a new species of Sparassis (Polyporales, Basidiomycota): evidence from mitochondrial atp6, nuclear rDNA and rpb2 genes. Mycologia, 2006, 98, 584-592.	0.8	24
42	Unmatched Level of Molecular Convergence among Deeply Divergent Complex Multicellular Fungi. Molecular Biology and Evolution, 2020, 37, 2228-2240.	3.5	23
43	Using evolutionary genomics, transcriptomics, and systems biology to reveal gene networks underlying fungal development. Fungal Biology Reviews, 2018, 32, 249-264.	1.9	22
44	Metabolism and Development during Conidial Germination in Response to a Carbon-Nitrogen-Rich Synthetic or a Natural Source of Nutrition in <i>Neurospora crassa</i> . MBio, 2019, 10, .	1.8	21
45	3 Pezizomycotina: Sordariomycetes and Leotiomycetes. , 2015, , 57-88.		19
46	Lvr, a Signaling System That Controls Global Gene Regulation and Virulence in Pathogenic Leptospira. Frontiers in Cellular and Infection Microbiology, 2018, 8, 45.	1.8	19
47	Solving the ecological puzzle of mycorrhizal associations using data from annotated collections and environmental samples – an example of saddle fungi. Environmental Microbiology Reports, 2015, 7, 658-667.	1.0	18
48	A new species ofCudoniabased on morphological and molecular data. Mycologia, 2002, 94, 641-650.	0.8	16
49	<i>Sparassis cystidiosa</i> sp. nov. from Thailand is described using morphological and molecular data. Mycologia, 2004, 96, 1010-1014.	0.8	16
50	Future Perspectives and Challenges of Fungal Systematics in the Age of Big Data. Fungal Biology, 2016, , 25-46.	0.3	16
51	Sparassis cystidiosa sp. nov. from Thailand Is Described Using Morphological and Molecular Data. Mycologia, 2004, 96, 1010.	0.8	15
52	Multi-targeted priming for genome-wide gene expression assays. BMC Genomics, 2010, 11, 477.	1.2	14
53	Northern species of earth tongue genus <i>Thuemenidium</i> revisited, considering morphology, ecology and molecular phylogeny. Mycologia, 2010, 102, 1089-1095.	0.8	11
54	Genomic and Gene-Expression Comparisons among Phage-Resistant Type-IV Pilus Mutants of Pseudomonas syringae pathovar phaseolicola. PLoS ONE, 2015, 10, e0144514.	1.1	11

ZHENG WANG

#	Article	IF	CITATIONS
55	Phylogenetic relationships of Sparassis inferred from nuclear and mitochondrial ribosomal DNA and RNA polymerase sequences. Mycologia, 2004, 96, 1015-29.	0.8	11
56	A New Species of Cudonia Based on Morphological and Molecular Data. Mycologia, 2002, 94, 641.	0.8	9
57	A note on the incidence of reverse complementary fungal ITS sequences in the public sequence databases and a software tool for their detection and reorientation. Mycoscience, 2011, 52, 278-282.	0.3	7
58	The impact of incorporating molecular evolutionary model into predictions of phylogenetic signal and noise. Frontiers in Ecology and Evolution, 2014, 2, .	1.1	7
59	Integrative Activity of Mating Loci, Environmentally Responsive Genes, and Secondary Metabolism Pathways during Sexual Development of Chaetomium globosum. MBio, 2019, 10, .	1.8	7
60	A new Sparassis species from Spain described using morphological and molecular data. Mycological Research, 2006, 110, 1227-1231.	2.5	6
61	Comparative Genomics within and across Bilaterians Illuminates the Evolutionary History of ALK and LTK Proto-Oncogene Origination and Diversification. Genome Biology and Evolution, 2021, 13, .	1.1	6
62	The GUL-1 Protein Binds Multiple RNAs Involved in Cell Wall Remodeling and Affects the MAK-1 Pathway in Neurospora crassa. Frontiers in Fungal Biology, 2021, 2, .	0.9	4
63	Transcriptional Divergence Underpinning Sexual Development in the Fungal Class Sordariomycetes. MBio, 2022, 13, .	1.8	4
64	Secondary Metabolism Gene Clusters Exhibit Increasingly Dynamic and Differential Expression during Asexual Growth, Conidiation, and Sexual Development in Neurospora crassa. MSystems, 2022, 7, .	1.7	2
65	Article Commentary: Snapshots of Tree Space. Evolutionary Bioinformatics, 2009, 5, EBO.S3416.	0.6	1
66	197â€The benefits of integrating compensation data with survey data: the Prospective Outcomes of Injury Study experience. Occupational and Environmental Medicine, 2013, 70, A66.4-A67.	1.3	0