Shoushan Fan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6630275/shoushan-fan-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

8,749 169 45 91 h-index g-index citations papers 180 6.14 9,916 10.2 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
169	Iodide-substitution-induced phase transition of chemical-vapor-deposited MoS2. <i>Journal of Materials Chemistry C</i> , 2022 , 10, 1638-1644	7.1	
168	Gate-tunable contact-induced Fermi-level shift in semimetal <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119, e2119016119	11.5	1
167	Tailorable Capacitive Tactile Sensor Based on Stretchable and Dissolvable Porous Silver Nanowire/Polyvinyl Alcohol Nanocomposite Hydrogel for Wearable Human Motion Detection (Adv. Mater. Interfaces 20/2021). <i>Advanced Materials Interfaces</i> , 2021 , 8, 2170110	4.6	
166	Toward an Intelligent Synthesis: Monitoring and Intervening in the Catalytic Growth of Carbon Nanotubes. <i>Journal of the American Chemical Society</i> , 2021 , 143, 17607-17614	16.4	1
165	Enhanced Visible-Light Absorption and Photocurrent Generation of Three-Dimensional Metal D ielectric Hybrid-Structured Films. <i>ACS Applied Energy Materials</i> , 2021 , 4, 10542-10552	6.1	1
164	On-chip torsion balances with femtonewton force resolution at room temperature enabled by carbon nanotube and graphene. <i>Science Advances</i> , 2021 , 7,	14.3	1
163	Interfacial Gated Graphene Photodetector with Broadband Response. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 22796-22805	9.5	4
162	Few-Layer MoS2 Nanosheet/Carbon Nanotube Composite Films for Long-Lifetime Lithium Storage and Hydrogen Generation. <i>ACS Applied Nano Materials</i> , 2021 , 4, 4754-4762	5.6	6
161	Boosting the Oxidative Potential of Polyethylene Glycol-Based Polymer Electrolyte to 4.36 by Spatially Restricting Hydroxyl Groups for High-Voltage Flexible Lithium-Ion Battery Applications. <i>Advanced Science</i> , 2021 , 8, e2100736	13.6	11
160	Unraveling Shuttle Effect and Suppression Strategy in Lithium/Sulfur Cells by In Situ/Operando X-ray Absorption Spectroscopic Characterization. <i>Energy and Environmental Materials</i> , 2021 , 4, 222-228	13	13
159	Advances of CNT-based systems in thermal management. <i>Nano Research</i> , 2021 , 14, 2471-2490	10	8
158	Nanostructured Co3O4 Asymmetrically Deposited on a Single Carbon Cloth for an All-Solid-State Integrated Hybrid Device with Reversible Zinc-Air High-Energy Conversion and Asymmetric Supercapacitive High-Power Delivery. <i>Energy & Delivery</i> 2021, 35, 12706-12717	4.1	2
157	Reconfigurable Tunneling Transistors Heterostructured by an Individual Carbon Nanotube and MoS. <i>Nano Letters</i> , 2021 , 21, 6843-6850	11.5	4
156	Substrate Engineering-Tailored Fabrication of Aligned Graphene Nanoribbon Arrays: Implications for Graphene Electronic Devices. <i>ACS Applied Nano Materials</i> , 2021 , 4, 13838-13847	5.6	0
155	Lithium Storage Mechanism and Application of Micron-Sized Lattice-Reversible Binary Intermetallic Compounds as High-Performance Flexible Lithium-Ion Battery Anodes. <i>Small</i> , 2021 , e2105172	11	2
154	Ultra-stretchable supercapacitors based on biaxially pre-strained super-aligned carbon nanotube films. <i>Nanoscale</i> , 2020 , 12, 24259-24265	7.7	2
153	Free-standing hybrid films comprising of ultra-dispersed titania nanocrystals and hierarchical conductive network for excellent high rate performance of lithium storage. <i>Nano Research</i> , 2020 , 14, 2301	10	3

(2020-2020)

152	The Influence of Carbon Nanotube's Conductivity and Diameter on Its Thermionic Electron Emission. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2020 , 217, 2000069	1.6	
151	Optical Phonon Scattering Dominated Transport in Individual Suspended Carbon Nanotubes. <i>Physica Status Solidi (B): Basic Research</i> , 2020 , 257, 2000103	1.3	
150	A flexible, multifunctional, active terahertz modulator with an ultra-low triggering threshold. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 10213-10220	7.1	9
149	Direct laser patterning of two-dimensional lateral transition metal disulfide-oxide-disulfide heterostructures for ultrasensitive sensors. <i>Nano Research</i> , 2020 , 13, 2035-2043	10	8
148	Ionic Sensing Hydrogels: Ultrasensitive, Low-Voltage Operational, and Asymmetric Ionic Sensing Hydrogel for Multipurpose Applications (Adv. Funct. Mater. 12/2020). <i>Advanced Functional Materials</i> , 2020 , 30, 2070080	15.6	1
147	Bidirectional micro-actuators based on eccentric coaxial composite oxide nanofiber. <i>Nano Research</i> , 2020 , 13, 2451-2459	10	1
146	Progress and challenges of flexible lithium ion batteries. <i>Journal of Power Sources</i> , 2020 , 454, 227932	8.9	46
145	Mixed-Dimensional Vertical Point pn Junctions. ACS Nano, 2020 , 14, 3181-3189	16.7	10
144	Ultrasensitive, Low-Voltage Operational, and Asymmetric Ionic Sensing Hydrogel for Multipurpose Applications. <i>Advanced Functional Materials</i> , 2020 , 30, 1909616	15.6	16
143	Flexible and free-standing hetero-electrocatalyst of high-valence-cation doped MoS2/MoO2/CNT foam with synergistically enhanced hydrogen evolution reaction catalytic activity. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 14944-14954	13	13
142	Energy Harvesting and Storage by Water Infiltration of Eggshell Membrane. <i>Energy Technology</i> , 2020 , 8, 1901192	3.5	2
141	Hard Carbon Nanotube Sponges for Highly Efficient Cooling Moisture Absorption-Desorption Process. <i>ACS Nano</i> , 2020 , 14, 14091-14099	16.7	15
140	A lightly Fe-doped (NiS2/MoS2)/carbon nanotube hybrid electrocatalyst film with laser-drilled micropores for stabilized overall water splitting and pH-universal hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 17527-17536	13	33
139	Seeded growth of high-quality transition metal dichalcogenide single crystals via chemical vapor transport. <i>CrystEngComm</i> , 2020 , 22, 8017-8022	3.3	0
138	Enhanced light transmission of carbon nanotube film by ultrathin oxide coatings. <i>AIP Advances</i> , 2020 , 10, 075304	1.5	0
137	Structural Effects on a Sandwich-Like Hydrocapacitor and Its Mechanism Research. <i>ACS Applied Energy Materials</i> , 2020 , 3, 9468-9476	6.1	2
136	The Influence of Carbon Nanotube's Conductivity and Diameter on Its Thermionic Electron Emission. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2020 , 217, 2070048	1.6	
135	Macroscopic Carbon Nanotube Structures for Lithium Batteries. <i>Small</i> , 2020 , 16, e1902719	11	14

134	A super compact self-powered device based on paper-like supercapacitors. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 3642-3647	13	16
133	A universal in situ strategy for charging supercapacitors. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 1513	31 <u>£</u> 3513	36 0
132	Continuous, Ultra-lightweight, and Multipurpose Super-aligned Carbon Nanotube Tapes Viable over a Wide Range of Temperatures. <i>Nano Letters</i> , 2019 , 19, 6756-6764	11.5	9
131	Amorphous MoS2 Photodetector with Ultra-Broadband Response. <i>ACS Applied Electronic Materials</i> , 2019 , 1, 1314-1321	4	39
130	High temperature performance of coaxial h-BN/CNT wires above 1,000 °C: Thermionic electron emission and thermally activated conductivity. <i>Nano Research</i> , 2019 , 12, 1855-1861	10	6
129	Emission Enhancement from CdSe/ZnS Quantum Dots Induced by Strong Localized Surface Plasmonic Resonances without Damping. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 2113-2120	6.4	6
128	Electrical control of spatial resolution in mixed-dimensional heterostructured photodetectors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 6586-6593	11.5	14
127	High areal capacity flexible sulfur cathode based on multi-functionalized super-aligned carbon nanotubes. <i>Nano Research</i> , 2019 , 12, 1105-1113	10	25
126	Sub-10 nm Monolayer MoS Transistors Using Single-Walled Carbon Nanotubes as an Evaporating Mask. <i>ACS Applied Materials & Discrete Mate</i>	9.5	15
125	The influence of charging and discharging on the thermal properties of a carbon nanotube/polyaniline nanocomposite electrode <i>RSC Advances</i> , 2019 , 9, 7629-7634	3.7	2
124	High Water-Absorbent and Phase-Change Heat Dissipation Materials Based on Super-Aligned Cross-Stack CNT Films. <i>Advanced Engineering Materials</i> , 2019 , 21, 1801216	3.5	6
123	Laser-Graving-Assisted Fabrication of Foldable Supercapacitors for On-Chip Energy Storage. <i>ACS Applied Materials & District Science</i> , 2019 , 11, 42172-42178	9.5	5
122	Watching Dynamic Self-Assembly of Web Buckles in Strained MoS Thin Films. ACS Nano, 2019, 13, 3106	-31161,6	17
121	Gravity-Induced Self-Charging in Carbon Nanotube/Polymer Supercapacitors. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 5249-5254	3.8	10
120	Phase-transition modulated, high-performance dual-mode photodetectors based on WSe2/VO2 heterojunctions. <i>Applied Physics Reviews</i> , 2019 , 6, 041407	17.3	27
119	Graphene-Based Actuator with Integrated-Sensing Function. <i>Advanced Functional Materials</i> , 2019 , 29, 1806057	15.6	52
118	Effect of an Auxiliary Plate on Passive Heat Dissipation of Carbon Nanotube-Based Materials. <i>Nano Letters</i> , 2018 , 18, 1770-1776	11.5	22
117	Growing highly pure semiconducting carbon nanotubes by electrotwisting the helicity. <i>Nature Catalysis</i> , 2018 , 1, 326-331	36.5	42

(2017-2018)

116	Multifunctional Interlayer Based on Molybdenum Diphosphide Catalyst and Carbon Nanotube Film for Lithium-Sulfur Batteries. <i>Small</i> , 2018 , 14, 1702853	11	108
115	Free-Standing, Binder-Free Titania/Super-Aligned Carbon Nanotube Anodes for Flexible and Fast-Charging Li-Ion Batteries. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 3426-3433	8.3	22
114	Ultrastretchable carbon nanotube composite electrodes for flexible lithium-ion batteries. <i>Nanoscale</i> , 2018 , 10, 19972-19978	7.7	37
113	Hydrocapacitor for Harvesting and Storing Energy from Water Movement. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 35273-35280	9.5	16
112	The adsorption state and the evolution of field emission properties of graphene edges at different temperatures <i>RSC Advances</i> , 2018 , 8, 31830-31834	3.7	3
111	Stressed carbon nanotube devices for high tunability, high quality factor, single mode GHz resonators. <i>Nano Research</i> , 2018 , 11, 5812-5822	10	5
110	Carbon Nanotube Film Gate in Vacuum Electronic Devices. <i>Nano Letters</i> , 2018 , 18, 4691-4696	11.5	6
109	Sandwich-structured cathodes with cross-stacked carbon nanotube films as conductive layers for high-performance lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 4047-4057	13	9
108	Scanning electron microscopy imaging of single-walled carbon nanotubes on substrates. <i>Nano Research</i> , 2017 , 10, 1804-1818	10	10
107	Interfacial thermal resistance and thermal rectification in carbon nanotube film-copper systems. <i>Nanoscale</i> , 2017 , 9, 3133-3139	7.7	19
106	Epitaxial Growth of Aligned and Continuous Carbon Nanofibers from Carbon Nanotubes. <i>ACS Nano</i> , 2017 , 11, 1257-1263	16.7	17
105	Inverse Hysteresis and Ultrasmall Hysteresis Thin-Film Transistors Fabricated Using Sputtered Dielectrics. <i>Advanced Electronic Materials</i> , 2017 , 3, 1600483	6.4	7
104	Li-S Batteries: Ultrathin MnO2/Graphene Oxide/Carbon Nanotube Interlayer as Efficient Polysulfide-Trapping Shield for High-Performance LiB Batteries (Adv. Funct. Mater. 18/2017). <i>Advanced Functional Materials</i> , 2017 , 27,	15.6	1
103	Influence of Asymmetric Contact Form on Contact Resistance and Schottky Barrier, and Corresponding Applications of Diode. <i>ACS Applied Materials & Diodes amp; Interfaces</i> , 2017 , 9, 18945-18955	9.5	16
102	Self-Expansion Construction of Ultralight Carbon Nanotube Aerogels with a 3D and Hierarchical Cellular Structure. <i>Small</i> , 2017 , 13, 1700966	11	9
101	Ultrathin MnO2/Graphene Oxide/Carbon Nanotube Interlayer as Efficient Polysulfide-Trapping Shield for High-Performance Liß Batteries. <i>Advanced Functional Materials</i> , 2017 , 27, 1606663	15.6	228
100	SWCNT-MoS -SWCNT Vertical Point Heterostructures. <i>Advanced Materials</i> , 2017 , 29, 1604469	24	26
99	Direct discrimination between semiconducting and metallic single-walled carbon nanotubes with high spatial resolution by SEM. <i>Nano Research</i> , 2017 , 10, 1896-1902	10	10

98	A photocapacitor based on organometal halide perovskite and PANI/CNT composites integrated using a CNT bridge. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 23078-23084	13	47
97	Carbon-Nanotube-Confined Vertical Heterostructures with Asymmetric Contacts. <i>Advanced Materials</i> , 2017 , 29, 1702942	24	14
96	Highly Sensitive, Uniform, and Reproducible Surface-Enhanced Raman Spectroscopy Substrate with Nanometer-Scale Quasi-periodic Nanostructures. <i>ACS Applied Materials & Description</i> , 2017, 9, 3236	9 <i>-</i> 3 2 37	6 ²¹
95	Low-energy transmission electron diffraction and imaging of large-area graphene. <i>Science Advances</i> , 2017 , 3, e1603231	14.3	18
94	Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe. <i>Nature Communications</i> , 2017 , 8, 257	17.4	239
93	Perovskite photodetectors prepared by flash evaporation printing. RSC Advances, 2017, 7, 34795-3480	0 3.7	7
92	Flash-evaporation printing methodology for perovskite thin films. NPG Asia Materials, 2017, 9, e395-e3	95 0.3	12
91	Self-assembly of 3D Carbon Nanotube Sponges: A Simple and Controllable Way to Build Macroscopic and Ultralight Porous Architectures. <i>Advanced Materials</i> , 2017 , 29, 1603549	24	58
90	Multiresponsive Bidirectional Bending Actuators Fabricated by a Pencil-on-Paper Method. <i>Advanced Functional Materials</i> , 2016 , 26, 7244-7253	15.6	124
89	Sharp-Tip Silver Nanowires Mounted on Cantilevers for High-Aspect-Ratio High-Resolution Imaging. <i>Nano Letters</i> , 2016 , 16, 6896-6902	11.5	19
88	Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells. <i>Science Advances</i> , 2016 , 2, e1501764	14.3	281
87	Actuators: Multiresponsive Bidirectional Bending Actuators Fabricated by a Pencil-on-Paper Method (Adv. Funct. Mater. 40/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 7368-7368	15.6	3
86	Cross-stacked carbon nanotubes assisted self-separation of free-standing GaN substrates by hydride vapor phase epitaxy. <i>Scientific Reports</i> , 2016 , 6, 28620	4.9	11
85	Observation of Charge Generation and Transfer during CVD Growth of Carbon Nanotubes. <i>Nano Letters</i> , 2016 , 16, 4102-9	11.5	23
84	Grouped and Multistep Nanoheteroepitaxy: Toward High-Quality GaN on Quasi-Periodic Nano-Mask. <i>ACS Applied Materials & Acs Applied & Acs Appli</i>	9.5	10
83	Three-Dimensional Flexible Complementary Metal-Oxide-Semiconductor Logic Circuits Based On Two-Layer Stacks of Single-Walled Carbon Nanotube Networks. <i>ACS Nano</i> , 2016 , 10, 2193-202	16.7	47
82	A Direct Grain-Boundary-Activity Correlation for CO Electroreduction on Cu Nanoparticles. <i>ACS Central Science</i> , 2016 , 2, 169-74	16.8	272
81	Cross-stacked superaligned carbon nanotube electrodes for efficient hole conductor-free perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 5569-5577	13	82

(2015-2016)

80	Transparent actuators and robots based on single-layer superaligned carbon nanotube sheet and polymer composites. <i>Nanoscale</i> , 2016 , 8, 6877-83	7.7	60
79	Sulfur Embedded in a Mesoporous Carbon Nanotube Network as a Binder-Free Electrode for High-Performance Lithium-Sulfur Batteries. <i>ACS Nano</i> , 2016 , 10, 1300-8	16.7	176
78	Mesoporous Li4Ti5O12 nanoclusters anchored on super-aligned carbon nanotubes as high performance electrodes for lithium ion batteries. <i>Nanoscale</i> , 2016 , 8, 617-25	7.7	37
77	Binder-free polymer encapsulated sulfurdarbon nanotube composite cathodes for high performance lithium batteries. <i>Carbon</i> , 2016 , 96, 1053-1059	10.4	59
76	Deformation Effect on the Electrical Properties of a Flexible Organic Semiconductor composed of Poly(dimethylsiloxane) and Multiwalled Carbon Nanotubes. <i>Advanced Electronic Materials</i> , 2016 , 2, 150	00424	
75	Dielectric-Like Behavior of Graphene in Au Plasmon Resonator. <i>Nanoscale Research Letters</i> , 2016 , 11, 541	5	1
74	Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2. <i>Nature Physics</i> , 2016 , 12, 1105-1110	16.2	506
73	Photodetection and Photoswitch Based On Polarized Optical Response of Macroscopically Aligned Carbon Nanotubes. <i>Nano Letters</i> , 2016 , 16, 6378-6382	11.5	12
72	Interface dipole enhancement effect and enhanced Rayleigh scattering. <i>Nano Research</i> , 2015 , 8, 303-3	19 10	11
71	True-color real-time imaging and spectroscopy of carbon nanotubes on substrates using enhanced Rayleigh scattering. <i>Nano Research</i> , 2015 , 8, 2721-2732	10	31
70	Fano resonance boosted cascaded optical field enhancement in a plasmonic nanoparticle-in-cavity nanoantenna array and its SERS application. <i>Light: Science and Applications</i> , 2015 , 4, e296-e296	16.7	45
69	Freestanding macroscopic metal-oxide nanotube films derived from carbon nanotube film templates. <i>Nano Research</i> , 2015 , 8, 2024-2032	10	4
68	Linearly polarized light emission from quantum dots with plasmonic nanoantenna arrays. <i>Nano Letters</i> , 2015 , 15, 2951-7	11.5	42
67	Ultra-stretchable conductors based on buckled super-aligned carbon nanotube films. <i>Nanoscale</i> , 2015 , 7, 10178-85	7.7	48
66	Load characteristics of a suspended carbon nanotube film heater and the fabrication of a fast-response thermochromic display prototype. <i>ACS Nano</i> , 2015 , 9, 3753-9	16.7	30
65	A Polymer Supercapacitor Capable of Self-Charging under Light Illumination. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 8488-8491	3.8	30
64	Nanocarbon/Metal Oxide Hybrids for Lithium Ion Batteries 2015 , 87-118		
63	Grain-boundary-dependent CO2 electroreduction activity. <i>Journal of the American Chemical Society</i> , 2015 , 137, 4606-9	16.4	456

62	Schottky contact of an artificial polymer semiconductor composed of poly(dimethylsiloxane) and multiwall carbon nanotubes. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 19539-19544	13	6
61	Reversibility of Noble Metal-Catalyzed Aprotic Li-Oßatteries. <i>Nano Letters</i> , 2015 , 15, 8084-90	11.5	139
60	Large-Deformation Curling Actuators Based on Carbon Nanotube Composite: Advanced-Structure Design and Biomimetic Application. <i>ACS Nano</i> , 2015 , 9, 12189-96	16.7	104
59	Fabrication of air-stable n-type carbon nanotube thin-film transistors on flexible substrates using bilayer dielectrics. <i>Nanoscale</i> , 2015 , 7, 17693-701	7.7	24
58	Highly Nitridated Graphenelli2S Cathodes with Stable Modulated Cycles. <i>Advanced Energy Materials</i> , 2015 , 5, 1501369	21.8	87
57	Study of Carbon Nanotubes as Etching Masks and Related Applications in the Surface Modification of GaAs-based Light-Emitting Diodes. <i>Small</i> , 2015 , 11, 4111-6	11	8
56	Fast Adaptive Thermal Camouflage Based on Flexible VO//Graphene/CNT Thin Films. <i>Nano Letters</i> , 2015 , 15, 8365-70	11.5	180
55	Super-aligned carbon nanotube/graphene hybrid materials as a framework for sulfur cathodes in high performance lithium sulfur batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 5305-5312	13	106
54	Ice-assisted transfer of carbon nanotube arrays. <i>Nano Letters</i> , 2015 , 15, 1843-8	11.5	9
53	Heating graphene to incandescence and the measurement of its work function by the thermionic emission method. <i>Nano Research</i> , 2014 , 7, 553-560	10	45
52	Entrapping electrode materials within ultrathin carbon nanotube network for flexible thin film lithium ion batteries. <i>RSC Advances</i> , 2014 , 4, 20010-20016	3.7	37
51	Hybrid energy storage devices combining carbon-nanotube/polyaniline supercapacitor with lead-acid battery assembled through a directly-inserted[method. <i>RSC Advances</i> , 2014 , 4, 26378-26382	3.7	19
50	Metal-film-assisted ultra-clean transfer of single-walled carbon nanotubes. <i>Nano Research</i> , 2014 , 7, 981-	-989	15
49	Mn3O4 nanoparticles anchored on continuous carbon nanotube network as superior anodes for lithium ion batteries. <i>Journal of Power Sources</i> , 2014 , 249, 463-469	8.9	59
48	Sulfur nanocrystals confined in carbon nanotube network as a binder-free electrode for high-performance lithium sulfur batteries. <i>Nano Letters</i> , 2014 , 14, 4044-9	11.5	244
47	Applications of carbon nanotubes in high performance lithium ion batteries. <i>Frontiers of Physics</i> , 2014 , 9, 351-369	3.7	39
46	Broadband asymmetric transmission of optical waves from spiral plasmonic metamaterials. <i>Applied Physics Letters</i> , 2014 , 104, 121112	3.4	26
45	In situ prepared nano-crystalline TiO2poly(methyl methacrylate) hybrid enhanced composite polymer electrolyte for Li-ion batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 5955	13	101

(2011-2013)

44	Journal of Materials Chemistry A, 2013 , 1, 11121	13	46
43	Graphene as discharge layer for electron beam lithography on insulating substrate. <i>Applied Physics Letters</i> , 2013 , 103, 113107	3.4	5
42	Development of an ultra-thin film comprised of a graphene membrane and carbon nanotube vein support. <i>Nature Communications</i> , 2013 , 4, 2920	17.4	64
41	Thermoacoustic chips with carbon nanotube thin yarn arrays. <i>Nano Letters</i> , 2013 , 13, 4795-801	11.5	57
40	Modeling and optimization of ambipolar graphene transistors in the diffusive limit. <i>Journal of Applied Physics</i> , 2013 , 114, 164508	2.5	1
39	Organic polymer material with a multi-electron process redox reaction: towards ultra-high reversible lithium storage capacity. <i>RSC Advances</i> , 2013 , 3, 3227	3.7	29
38	High-strength composite yarns derived from oxygen plasma modified super-aligned carbon nanotube arrays. <i>Nano Research</i> , 2013 , 6, 208-215	10	32
37	Super-Aligned Carbon Nanotube Films as Current Collectors for Lightweight and Flexible Lithium Ion Batteries. <i>Advanced Functional Materials</i> , 2013 , 23, 846-853	15.6	223
36	Well-Constructed CNT Mesh/PANI Nanoporous Electrode and Its Thickness Effect on the Supercapacitor Properties. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 26185-26189	3.8	57
35	High quality GaN epilayers grown on carbon nanotube patterned sapphire substrate by metal b rganic vapor phase epitaxy. <i>CrystEngComm</i> , 2012 , 14, 4728	3.3	16
34	Highly catalytic cross-stacked superaligned carbon nanotube sheets for iodine-free dye-sensitized solar cells. <i>Journal of Materials Chemistry</i> , 2012 , 22, 22756		26
33	Modulating lateral strain in GaN-based epitaxial layers by patterning sapphire substrates with aligned carbon nanotube films. <i>Nano Research</i> , 2012 , 5, 646-653	10	13
32	Binder-free LiCoO2/carbon nanotube cathodes for high-performance lithium ion batteries. <i>Advanced Materials</i> , 2012 , 24, 2294-8	24	243
31	Formation of free-standing carbon nanotube array on super-aligned carbon nanotube film and its field emission properties. <i>Nano Research</i> , 2012 , 5, 421-426	10	7
30	In Situ TEM observation of the gasification and growth of carbon nanotubes using iron catalysts. <i>Nano Research</i> , 2011 , 4, 767-779	10	86
29	Cross-Stacked Superaligned Carbon Nanotube Films for Transparent and Stretchable Conductors. <i>Advanced Functional Materials</i> , 2011 , 21, 2721-2728	15.6	142
28	Superaligned carbon nanotube arrays, films, and yarns: a road to applications. <i>Advanced Materials</i> , 2011 , 23, 1154-61	24	349
27	UV-based nanoimprinting lithography with a fluorinated flexible stamp. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2011 , 29, 021015	1.3	5

26	High frequency response of carbon nanotube thin film speaker in gases. <i>Journal of Applied Physics</i> , 2011 , 110, 084311	2.5	56
25	Superaligned arrays, films, and yarns of carbon nanotubes: a road toward applications. <i>Scientia Sinica: Physica, Mechanica Et Astronomica</i> , 2011 , 41, 390-403	1.5	3
24	Nanoscale field emission in inert gas under atmospheric pressure. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2010 , 28, 562-566	1.3	8
23	Field emission behavior study of multiwalled carbon nanotube yarn under the influence of adsorbents. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2010 , 28, 736-739	1.3	11
22	Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns. <i>ACS Nano</i> , 2010 , 4, 5827-34	16.7	217
21	Auxetic materials with large negative Poisson® ratios based on highly oriented carbon nanotube structures. <i>Applied Physics Letters</i> , 2009 , 94, 253111	3.4	54
20	Periodically striped films produced from super-aligned carbon nanotube arrays. <i>Nanotechnology</i> , 2009 , 20, 335705	3.4	31
19	A process study of electron beam nano-lithography and deep etching with an ICP system. <i>Science in China Series D: Earth Sciences</i> , 2009 , 52, 1665-1671		2
18	Thermal Analysis Study of the Growth Kinetics of Carbon Nanotubes and Epitaxial Graphene Layers on Them. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 9623-9631	3.8	30
17	Flexible, stretchable, transparent carbon nanotube thin film loudspeakers. <i>Nano Letters</i> , 2008 , 8, 4539-	- 45 1.5	408
17 16	Flexible, stretchable, transparent carbon nanotube thin film loudspeakers. <i>Nano Letters</i> , 2008 , 8, 4539. Fabrication and properties of aligned multiwalled carbon nanotube-reinforced epoxy composites. <i>Journal of Materials Research</i> , 2008 , 23, 2975-2983	-4 5 1.5	408 74
ĺ	Fabrication and properties of aligned multiwalled carbon nanotube-reinforced epoxy composites.		
16	Fabrication and properties of aligned multiwalled carbon nanotube-reinforced epoxy composites. Journal of Materials Research, 2008, 23, 2975-2983 Spherical field emission cathode based on carbon nanotube paste and its application in luminescent		74
16	Fabrication and properties of aligned multiwalled carbon nanotube-reinforced epoxy composites. Journal of Materials Research, 2008, 23, 2975-2983 Spherical field emission cathode based on carbon nanotube paste and its application in luminescent bulbs. Journal of Vacuum Science & Technology B, 2008, 26, 1404 A low-vacuum ionization gauge with HfC-modified carbon nanotube field emitters. Applied Physics	2.5	74
16 15 14	Fabrication and properties of aligned multiwalled carbon nanotube-reinforced epoxy composites. Journal of Materials Research, 2008, 23, 2975-2983 Spherical field emission cathode based on carbon nanotube paste and its application in luminescent bulbs. Journal of Vacuum Science & Technology B, 2008, 26, 1404 A low-vacuum ionization gauge with HfC-modified carbon nanotube field emitters. Applied Physics Letters, 2008, 92, 153105 Barium-functionalized multiwalled carbon nanotube yarns as low-work-function thermionic	2.5	74 7 17
16 15 14	Fabrication and properties of aligned multiwalled carbon nanotube-reinforced epoxy composites. Journal of Materials Research, 2008, 23, 2975-2983 Spherical field emission cathode based on carbon nanotube paste and its application in luminescent bulbs. Journal of Vacuum Science & Technology B, 2008, 26, 1404 A low-vacuum ionization gauge with HfC-modified carbon nanotube field emitters. Applied Physics Letters, 2008, 92, 153105 Barium-functionalized multiwalled carbon nanotube yarns as low-work-function thermionic cathodes. Applied Physics Letters, 2008, 92, 153108 Conventional triode ionization gauge with carbon nanotube cold electron emitter. Journal of	2.5 3.4 3.4	74 7 17 25
16 15 14 13	Fabrication and properties of aligned multiwalled carbon nanotube-reinforced epoxy composites. Journal of Materials Research, 2008, 23, 2975-2983 Spherical field emission cathode based on carbon nanotube paste and its application in luminescent bulbs. Journal of Vacuum Science & Technology B, 2008, 26, 1404 A low-vacuum ionization gauge with HfC-modified carbon nanotube field emitters. Applied Physics Letters, 2008, 92, 153105 Barium-functionalized multiwalled carbon nanotube yarns as low-work-function thermionic cathodes. Applied Physics Letters, 2008, 92, 153108 Conventional triode ionization gauge with carbon nanotube cold electron emitter. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2008, 26, 1-4 Thermionic emission and work function of multiwalled carbon nanotube yarns. Physical Review B,	2.5 3.4 3.4 2.9	74 7 17 25 7

LIST OF PUBLICATIONS

8	Nanotechnology: spinning continuous carbon nanotube yarns. <i>Nature</i> , 2002 , 419, 801	1 9	926
7	Raman spectra of SiC nanorods with different excitation wavelengths. <i>Science Bulletin</i> , 2001 , 46, 1865-1866	Ĵ	3
6	Silicon nanowires grown on iron-patterned silicon substrates. <i>Applied Physics Letters</i> , 2000 , 76, 3020-302 _{3.4}	3	35
5	Epitaxial growth and electrical transport properties of La0.5Sr0.5Co03 thin films prepared by pulsed laser deposition. <i>Science in China Series A: Mathematics</i> , 1999 , 42, 865-872	1	2
4	A new type of flexible energy harvesting device working with micro water droplets achieving high output. <i>Journal of Materials Chemistry A</i> ,	,	1
3	Glassy magnetic ground state in layered compound MnSb2Te4. <i>Science China Materials</i> ,1 7.1	1	2
2	Tailorable Capacitive Tactile Sensor Based on Stretchable and Dissolvable Porous Silver Nanowire/Polyvinyl Alcohol Nanocomposite Hydrogel for Wearable Human Motion Detection. 4.6 Advanced Materials Interfaces, 2100998	{	8
1	SEM imaging of insulating specimen through a transparent conducting veil of carbon nanotube. Nano Research,1	(O