
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6630275/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spinning continuous carbon nanotube yarns. Nature, 2002, 419, 801-801.	13.7	1,023
2	Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2. Nature Physics, 2016, 12, 1105-1110.	6.5	663
3	Grain-Boundary-Dependent CO ₂ Electroreduction Activity. Journal of the American Chemical Society, 2015, 137, 4606-4609.	6.6	583
4	Flexible, Stretchable, Transparent Carbon Nanotube Thin Film Loudspeakers. Nano Letters, 2008, 8, 4539-4545.	4.5	472
5	Superaligned Carbon Nanotube Arrays, Films, and Yarns: A Road to Applications. Advanced Materials, 2011, 23, 1154-1161.	11.1	391
6	A Direct Grain-Boundary-Activity Correlation for CO Electroreduction on Cu Nanoparticles. ACS Central Science, 2016, 2, 169-174.	5.3	362
7	Efficient solar-driven water splitting by nanocone BiVO ₄ -perovskite tandem cells. Science Advances, 2016, 2, e1501764.	4.7	351
8	Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2. Nature Communications, 2017, 8, 257.	5.8	337
9	Ultrathin MnO ₂ /Graphene Oxide/Carbon Nanotube Interlayer as Efficient Polysulfideâ€Trapping Shield for Highâ€Performance Li–S Batteries. Advanced Functional Materials, 2017, 27, 1606663.	7.8	306
10	Binderâ€Free LiCoO ₂ /Carbon Nanotube Cathodes for Highâ€Performance Lithium Ion Batteries. Advanced Materials, 2012, 24, 2294-2298.	11.1	271
11	Sulfur Nanocrystals Confined in Carbon Nanotube Network As a Binder-Free Electrode for High-Performance Lithium Sulfur Batteries. Nano Letters, 2014, 14, 4044-4049.	4.5	262
12	Superâ€Aligned Carbon Nanotube Films as Current Collectors for Lightweight and Flexible Lithium Ion Batteries. Advanced Functional Materials, 2013, 23, 846-853.	7.8	258
13	Fast Adaptive Thermal Camouflage Based on Flexible VO ₂ /Graphene/CNT Thin Films. Nano Letters, 2015, 15, 8365-8370.	4.5	253
14	Scratch-Resistant, Highly Conductive, and High-Strength Carbon Nanotube-Based Composite Yarns. ACS Nano, 2010, 4, 5827-5834.	7.3	243
15	Sulfur Embedded in a Mesoporous Carbon Nanotube Network as a Binder-Free Electrode for High-Performance Lithium–Sulfur Batteries. ACS Nano, 2016, 10, 1300-1308.	7.3	196
16	Reversibility of Noble Metal-Catalyzed Aprotic Li-O ₂ Batteries. Nano Letters, 2015, 15, 8084-8090.	4.5	165
17	Crossâ€Stacked Superaligned Carbon Nanotube Films for Transparent and Stretchable Conductors. Advanced Functional Materials, 2011, 21, 2721-2728.	7.8	156
18	Multiresponsive Bidirectional Bending Actuators Fabricated by a Pencilâ€onâ€Paper Method. Advanced Functional Materials, 2016, 26, 7244-7253.	7.8	145

#	Article	IF	CITATIONS
19	Multifunctional Interlayer Based on Molybdenum Diphosphide Catalyst and Carbon Nanotube Film for Lithium–Sulfur Batteries. Small, 2018, 14, 1702853.	5.2	142
20	Large-Deformation Curling Actuators Based on Carbon Nanotube Composite: Advanced-Structure Design and Biomimetic Application. ACS Nano, 2015, 9, 12189-12196.	7.3	126
21	In situ prepared nano-crystalline TiO2–poly(methyl methacrylate) hybrid enhanced composite polymer electrolyte for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 5955.	5.2	125
22	Super-aligned carbon nanotube/graphene hybrid materials as a framework for sulfur cathodes in high performance lithium sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 5305-5312.	5.2	112
23	Thermionic emission and work function of multiwalled carbon nanotube yarns. Physical Review B, 2006, 73, .	1.1	98
24	Highly Nitridated Graphene–Li ₂ S Cathodes with Stable Modulated Cycles. Advanced Energy Materials, 2015, 5, 1501369.	10.2	97
25	Cross-stacked superaligned carbon nanotube electrodes for efficient hole conductor-free perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 5569-5577.	5.2	92
26	In Situ TEM observation of the gasification and growth of carbon nanotubes using iron catalysts. Nano Research, 2011, 4, 767-779.	5.8	91
27	Progress and challenges of flexible lithium ion batteries. Journal of Power Sources, 2020, 454, 227932.	4.0	89
28	Polarized incandescent light emission from carbon nanotubes. Applied Physics Letters, 2003, 82, 1763-1765.	1.5	87
29	Fabrication and properties of aligned multiwalled carbon nanotube-reinforced epoxy composites. Journal of Materials Research, 2008, 23, 2975-2983.	1.2	86
30	Grapheneâ€Based Actuator with Integratedâ€Sensing Function. Advanced Functional Materials, 2019, 29, 1806057.	7.8	85
31	Development of an ultra-thin film comprised of a graphene membrane and carbon nanotube vein support. Nature Communications, 2013, 4, 2920.	5.8	71
32	Transparent actuators and robots based on single-layer superaligned carbon nanotube sheet and polymer composites. Nanoscale, 2016, 8, 6877-6883.	2.8	71
33	Selfâ€assembly of 3D Carbon Nanotube Sponges: A Simple and Controllable Way to Build Macroscopic and Ultralight Porous Architectures. Advanced Materials, 2017, 29, 1603549.	11.1	69
34	Mn3O4 nanoparticles anchored on continuous carbon nanotube network as superior anodes for lithium ion batteries. Journal of Power Sources, 2014, 249, 463-469.	4.0	68
35	A photocapacitor based on organometal halide perovskite and PANI/CNT composites integrated using a CNT bridge. Journal of Materials Chemistry A, 2017, 5, 23078-23084.	5.2	68
36	Thermoacoustic Chips with Carbon Nanotube Thin Yarn Arrays. Nano Letters, 2013, 13, 4795-4801.	4.5	67

#	Article	IF	CITATIONS
37	Well-Constructed CNT Mesh/PANI Nanoporous Electrode and Its Thickness Effect on the Supercapacitor Properties. Journal of Physical Chemistry C, 2012, 116, 26185-26189.	1.5	66
38	Three-Dimensional Flexible Complementary Metal–Oxide–Semiconductor Logic Circuits Based On Two-Layer Stacks of Single-Walled Carbon Nanotube Networks. ACS Nano, 2016, 10, 2193-2202.	7.3	66
39	Amorphous MoS ₂ Photodetector with Ultra-Broadband Response. ACS Applied Electronic Materials, 2019, 1, 1314-1321.	2.0	65
40	Binder-free polymer encapsulated sulfur–carbon nanotube composite cathodes for high performance lithium batteries. Carbon, 2016, 96, 1053-1059.	5.4	64
41	Auxetic materials with large negative Poisson's ratios based on highly oriented carbon nanotube structures. Applied Physics Letters, 2009, 94, .	1.5	62
42	Ultrafast self-heating synthesis of robust heterogeneous nanocarbides for high current density hydrogen evolution reaction. Nature Communications, 2022, 13, .	5.8	62
43	High frequency response of carbon nanotube thin film speaker in gases. Journal of Applied Physics, 2011, 110, .	1.1	61
44	Growing highly pure semiconducting carbon nanotubes by electrotwisting the helicity. Nature Catalysis, 2018, 1, 326-331.	16.1	61
45	High quality light guide plates that can control the illumination angle based on microprism structures. Applied Physics Letters, 2004, 85, 6016-6018.	1.5	59
46	A lightly Fe-doped (NiS ₂ /MoS ₂)/carbon nanotube hybrid electrocatalyst film with laser-drilled micropores for stabilized overall water splitting and pH-universal hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 17527-17536.	5.2	59
47	Ultra-stretchable conductors based on buckled super-aligned carbon nanotube films. Nanoscale, 2015, 7, 10178-10185.	2.8	55
48	Applications of carbon nanotubes in high performance lithium ion batteries. Frontiers of Physics, 2014, 9, 351-369.	2.4	54
49	Fano resonance boosted cascaded optical field enhancement in a plasmonic nanoparticle-in-cavity nanoantenna array and its SERS application. Light: Science and Applications, 2015, 4, e296-e296.	7.7	53
50	Linearly Polarized Light Emission from Quantum Dots with Plasmonic Nanoantenna Arrays. Nano Letters, 2015, 15, 2951-2957.	4.5	51
51	Enhanced rate capabilities of Co3O4/carbon nanotube anodes for lithium ion battery applications. Journal of Materials Chemistry A, 2013, 1, 11121.	5.2	50
52	Heating graphene to incandescence and the measurement of its work function by the thermionic emission method. Nano Research, 2014, 7, 553-560.	5.8	50
53	Phase-transition modulated, high-performance dual-mode photodetectors based on WSe ₂ /VO ₂ heterojunctions. Applied Physics Reviews, 2019, 6, 041407.	5.5	50
54	Mesoporous Li ₄ Ti ₅ O ₁₂ nanoclusters anchored on super-aligned carbon nanotubes as high performance electrodes for lithium ion batteries. Nanoscale, 2016, 8, 617-625.	2.8	46

#	Article	IF	CITATIONS
55	Ultrastretchable carbon nanotube composite electrodes for flexible lithium-ion batteries. Nanoscale, 2018, 10, 19972-19978.	2.8	46
56	A Polymer Supercapacitor Capable of Self-Charging under Light Illumination. Journal of Physical Chemistry C, 2015, 119, 8488-8491.	1.5	42
57	Monolayer MoS ₂ Synaptic Transistors for High-Temperature Neuromorphic Applications. Nano Letters, 2021, 21, 10400-10408.	4.5	41
58	Entrapping electrode materials within ultrathin carbon nanotube network for flexible thin film lithium ion batteries. RSC Advances, 2014, 4, 20010-20016.	1.7	39
59	Load Characteristics of a Suspended Carbon Nanotube Film Heater and the Fabrication of a Fast-Response Thermochromic Display Prototype. ACS Nano, 2015, 9, 3753-3759.	7.3	39
60	Boosting the Oxidative Potential of Polyethylene Glycolâ€Based Polymer Electrolyte to 4.36ÂV by Spatially Restricting Hydroxyl Groups for Highâ€Voltage Flexible Lithiumâ€Ion Battery Applications. Advanced Science, 2021, 8, e2100736.	5.6	39
61	Silicon nanowires grown on iron-patterned silicon substrates. Applied Physics Letters, 2000, 76, 3020-3021.	1.5	38
62	High-strength composite yarns derived from oxygen plasma modified super-aligned carbon nanotube arrays. Nano Research, 2013, 6, 208-215.	5.8	38
63	Organic polymer material with a multi-electron process redox reaction: towards ultra-high reversible lithium storage capacity. RSC Advances, 2013, 3, 3227.	1.7	35
64	Low-energy transmission electron diffraction and imaging of large-area graphene. Science Advances, 2017, 3, e1603231.	4.7	35
65	Macroscopic Carbon Nanotube Structures for Lithium Batteries. Small, 2020, 16, e1902719.	5.2	35
66	Periodically striped films produced from super-aligned carbon nanotube arrays. Nanotechnology, 2009, 20, 335705.	1.3	34
67	True-color real-time imaging and spectroscopy of carbon nanotubes on substrates using enhanced Rayleigh scattering. Nano Research, 2015, 8, 2721-2732.	5.8	34
68	Effect of an Auxiliary Plate on Passive Heat Dissipation of Carbon Nanotube-Based Materials. Nano Letters, 2018, 18, 1770-1776.	4.5	34
69	Free-Standing, Binder-Free Titania/Super-Aligned Carbon Nanotube Anodes for Flexible and Fast-Charging Li-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 3426-3433.	3.2	34
70	Advances of CNT-based systems in thermal management. Nano Research, 2021, 14, 2471-2490.	5.8	34
71	Thermal Analysis Study of the Growth Kinetics of Carbon Nanotubes and Epitaxial Graphene Layers on Them. Journal of Physical Chemistry C, 2009, 113, 9623-9631.	1.5	32
72	SWCNTâ€MoS ₂ â€SWCNT Vertical Point Heterostructures. Advanced Materials, 2017, 29, 1604469.	11.1	32

#	Article	IF	CITATIONS
73	Hard Carbon Nanotube Sponges for Highly Efficient Cooling <i>via</i> Moisture Absorption–Desorption Process. ACS Nano, 2020, 14, 14091-14099.	7.3	31
74	Unraveling Shuttle Effect and Suppression Strategy in Lithium/Sulfur Cells by In Situ/Operando Xâ€ray Absorption Spectroscopic Characterization. Energy and Environmental Materials, 2021, 4, 222-228.	7.3	31
75	Sharp-Tip Silver Nanowires Mounted on Cantilevers for High-Aspect-Ratio High-Resolution Imaging. Nano Letters, 2016, 16, 6896-6902.	4.5	30
76	Observation of Charge Generation and Transfer during CVD Growth of Carbon Nanotubes. Nano Letters, 2016, 16, 4102-4109.	4.5	30
77	Broadband asymmetric transmission of optical waves from spiral plasmonic metamaterials. Applied Physics Letters, 2014, 104, .	1.5	29
78	Ultrasensitive, Lowâ€Voltage Operational, and Asymmetric Ionic Sensing Hydrogel for Multipurpose Applications. Advanced Functional Materials, 2020, 30, 1909616.	7.8	29
79	Barium-functionalized multiwalled carbon nanotube yarns as low-work-function thermionic cathodes. Applied Physics Letters, 2008, 92, .	1.5	28
80	High areal capacity flexible sulfur cathode based on multi-functionalized super-aligned carbon nanotubes. Nano Research, 2019, 12, 1105-1113.	5.8	28
81	Sub-10 nm Monolayer MoS ₂ Transistors Using Single-Walled Carbon Nanotubes as an Evaporating Mask. ACS Applied Materials & Interfaces, 2019, 11, 11612-11617.	4.0	27
82	Highly catalytic cross-stacked superaligned carbon nanotube sheets for iodine-free dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 22756.	6.7	26
83	Fabrication of air-stable n-type carbon nanotube thin-film transistors on flexible substrates using bilayer dielectrics. Nanoscale, 2015, 7, 17693-17701.	2.8	26
84	Hydrocapacitor for Harvesting and Storing Energy from Water Movement. ACS Applied Materials & Interfaces, 2018, 10, 35273-35280.	4.0	26
85	Tailorable Capacitive Tactile Sensor Based on Stretchable and Dissolvable Porous Silver Nanowire/Polyvinyl Alcohol Nanocomposite Hydrogel for Wearable Human Motion Detection. Advanced Materials Interfaces, 2021, 8, 2100998.	1.9	26
86	Highly Sensitive, Uniform, and Reproducible Surface-Enhanced Raman Spectroscopy Substrate with Nanometer-Scale Quasi-periodic Nanostructures. ACS Applied Materials & Interfaces, 2017, 9, 32369-32376.	4.0	25
87	Flexible and free-standing hetero-electrocatalyst of high-valence-cation doped MoS ₂ /MoO ₂ /CNT foam with synergistically enhanced hydrogen evolution reaction catalytic activity. Journal of Materials Chemistry A, 2020, 8, 14944-14954.	5.2	25
88	Hybrid energy storage devices combining carbon-nanotube/polyaniline supercapacitor with lead-acid battery assembled through a "directly-inserted―method. RSC Advances, 2014, 4, 26378-26382.	1.7	24
89	Interfacial thermal resistance and thermal rectification in carbon nanotube film-copper systems. Nanoscale, 2017, 9, 3133-3139.	2.8	24
90	Watching Dynamic Self-Assembly of Web Buckles in Strained MoS ₂ Thin Films. ACS Nano, 2019, 13, 3106-3116.	7.3	24

#	Article	IF	CITATIONS
91	Epitaxial Growth of Aligned and Continuous Carbon Nanofibers from Carbon Nanotubes. ACS Nano, 2017, 11, 1257-1263.	7.3	23
92	A super compact self-powered device based on paper-like supercapacitors. Journal of Materials Chemistry A, 2019, 7, 3642-3647.	5.2	22
93	Carbonâ€Nanotube onfined Vertical Heterostructures with Asymmetric Contacts. Advanced Materials, 2017, 29, 1702942.	11.1	21
94	Gravity-Induced Self-Charging in Carbon Nanotube/Polymer Supercapacitors. Journal of Physical Chemistry C, 2019, 123, 5249-5254.	1.5	21
95	Direct laser patterning of two-dimensional lateral transition metal disulfide-oxide-disulfide heterostructures for ultrasensitive sensors. Nano Research, 2020, 13, 2035-2043.	5.8	21
96	A low-vacuum ionization gauge with HfC-modified carbon nanotube field emitters. Applied Physics Letters, 2008, 92, 153105.	1.5	20
97	Influence of Asymmetric Contact Form on Contact Resistance and Schottky Barrier, and Corresponding Applications of Diode. ACS Applied Materials & Interfaces, 2017, 9, 18945-18955.	4.0	20
98	Electrical control of spatial resolution in mixed-dimensional heterostructured photodetectors. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6586-6593.	3.3	20
99	Modulating lateral strain in GaN-based epitaxial layers by patterning sapphire substrates with aligned carbon nanotube films. Nano Research, 2012, 5, 646-653.	5.8	18
100	Photodetection and Photoswitch Based On Polarized Optical Response of Macroscopically Aligned Carbon Nanotubes. Nano Letters, 2016, 16, 6378-6382.	4.5	18
101	Mixed-Dimensional Vertical Point p <i>–</i> n Junctions. ACS Nano, 2020, 14, 3181-3189.	7.3	18
102	High quality GaN epilayers grown on carbon nanotube patterned sapphire substrate by metal–organic vapor phase epitaxy. CrystEngComm, 2012, 14, 4728.	1.3	17
103	Flash-evaporation printing methodology for perovskite thin films. NPG Asia Materials, 2017, 9, e395-e395.	3.8	17
104	Continuous, Ultra-lightweight, and Multipurpose Super-aligned Carbon Nanotube Tapes Viable over a Wide Range of Temperatures. Nano Letters, 2019, 19, 6756-6764.	4.5	17
105	Interfacial Gated Graphene Photodetector with Broadband Response. ACS Applied Materials & Interfaces, 2021, 13, 22796-22805.	4.0	16
106	Metal-film-assisted ultra-clean transfer of single-walled carbon nanotubes. Nano Research, 2014, 7, 981-989.	5.8	15
107	A flexible, multifunctional, active terahertz modulator with an ultra-low triggering threshold. Journal of Materials Chemistry C, 2020, 8, 10213-10220.	2.7	15
108	Effect of Mg Cation Diffusion Coefficient on Mg Dendrite Formation. ACS Applied Materials & Interfaces, 2022, 14, 6499-6506.	4.0	14

#	Article	IF	CITATIONS
109	Field emission behavior study of multiwalled carbon nanotube yarn under the influence of adsorbents. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 736-739.	0.6	13
110	Stressed carbon nanotube devices for high tunability, high quality factor, single mode GHz resonators. Nano Research, 2018, 11, 5812-5822.	5.8	13
111	A universal <i>in situ</i> strategy for charging supercapacitors. Journal of Materials Chemistry A, 2019, 7, 15131-15136.	5.2	13
112	Few-Layer MoS ₂ Nanosheet/Carbon Nanotube Composite Films for Long-Lifetime Lithium Storage and Hydrogen Generation. ACS Applied Nano Materials, 2021, 4, 4754-4762.	2.4	13
113	Interface dipole enhancement effect and enhanced Rayleigh scattering. Nano Research, 2015, 8, 303-319.	5.8	12
114	Grouped and Multistep Nanoheteroepitaxy: Toward High-Quality GaN on Quasi-Periodic Nano-Mask. ACS Applied Materials & Interfaces, 2016, 8, 18208-18214.	4.0	12
115	Scanning electron microscopy imaging of single-walled carbon nanotubes on substrates. Nano Research, 2017, 10, 1804-1818.	5.8	12
116	Glassy magnetic ground state in layered compound MnSb2Te4. Science China Materials, 2022, 65, 477-485.	3.5	12
117	Ice-Assisted Transfer of Carbon Nanotube Arrays. Nano Letters, 2015, 15, 1843-1848.	4.5	11
118	Cross-stacked carbon nanotubes assisted self-separation of free-standing GaN substrates by hydride vapor phase epitaxy. Scientific Reports, 2016, 6, 28620.	1.6	11
119	Sandwich-structured cathodes with cross-stacked carbon nanotube films as conductive layers for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 4047-4057.	5.2	11
120	Direct discrimination between semiconducting and metallic single-walled carbon nanotubes with high spatial resolution by SEM. Nano Research, 2017, 10, 1896-1902.	5.8	11
121	Reconfigurable Tunneling Transistors Heterostructured by an Individual Carbon Nanotube and MoS ₂ . Nano Letters, 2021, 21, 6843-6850.	4.5	11
122	Conventional triode ionization gauge with carbon nanotube cold electron emitter. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2008, 26, 1-4.	0.9	10
123	Formation of free-standing carbon nanotube array on super-aligned carbon nanotube film and its field emission properties. Nano Research, 2012, 5, 421-426.	5.8	10
124	Self-Expansion Construction of Ultralight Carbon Nanotube Aerogels with a 3D and Hierarchical Cellular Structure. Small, 2017, 13, 1700966.	5.2	10
125	Free-standing hybrid films comprising of ultra-dispersed titania nanocrystals and hierarchical conductive network for excellent high rate performance of lithium storage. Nano Research, 2021, 14, 2301-2308.	5.8	10
126	Spherical field emission cathode based on carbon nanotube paste and its application in luminescent bulbs. Journal of Vacuum Science & Technology B, 2008, 26, 1404.	1.3	9

#	Article	IF	CITATIONS
127	Nanoscale field emission in inert gas under atmospheric pressure. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 562-566.	0.6	9
128	Inverse Hysteresis and Ultrasmall Hysteresis Thinâ€Film Transistors Fabricated Using Sputtered Dielectrics. Advanced Electronic Materials, 2017, 3, 1600483.	2.6	9
129	Laser-Graving-Assisted Fabrication of Foldable Supercapacitors for On-Chip Energy Storage. ACS Applied Materials & Interfaces, 2019, 11, 42172-42178.	4.0	9
130	High temperature performance of coaxial h-BN/CNT wires above 1,000 °C: Thermionic electron emission and thermally activated conductivity. Nano Research, 2019, 12, 1855-1861.	5.8	9
131	Emission Enhancement from CdSe/ZnS Quantum Dots Induced by Strong Localized Surface Plasmonic Resonances without Damping. Journal of Physical Chemistry Letters, 2019, 10, 2113-2120.	2.1	9
132	Ultra-stretchable supercapacitors based on biaxially pre-strained super-aligned carbon nanotube films. Nanoscale, 2020, 12, 24259-24265.	2.8	9
133	Study of Carbon Nanotubes as Etching Masks and Related Applications in the Surface Modification of GaAsâ€based Lightâ€Emitting Diodes. Small, 2015, 11, 4111-4116.	5.2	8
134	Perovskite photodetectors prepared by flash evaporation printing. RSC Advances, 2017, 7, 34795-34800.	1.7	8
135	Carbon Nanotube Film Gate in Vacuum Electronic Devices. Nano Letters, 2018, 18, 4691-4696.	4.5	8
136	Nanostructured Co ₃ O ₄ Asymmetrically Deposited on a Single Carbon Cloth for an All-Solid-State Integrated Hybrid Device with Reversible Zinc-Air High-Energy Conversion and Asymmetric Supercapacitive High-Power Delivery. Energy & Fuels, 2021, 35, 12706-12717.	2.5	8
137	Schottky contact of an artificial polymer semiconductor composed of poly(dimethylsiloxane) and multiwall carbon nanotubes. Journal of Materials Chemistry A, 2015, 3, 19539-19544.	5.2	7
138	High Waterâ€Absorbent and Phaseâ€Change Heat Dissipation Materials Based on Superâ€Aligned Crossâ€Stack CNT Films. Advanced Engineering Materials, 2019, 21, 1801216.	1.6	7
139	Structural Effects on a Sandwich-Like Hydrocapacitor and Its Mechanism Research. ACS Applied Energy Materials, 2020, 3, 9468-9476.	2.5	7
140	A new type of flexible energy harvesting device working with micro water droplets achieving high output. Journal of Materials Chemistry A, 2021, 9, 23555-23562.	5.2	7
141	Gate-tunable contact-induced Fermi-level shift in semimetal. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119016119.	3.3	7
142	UV-based nanoimprinting lithography with a fluorinated flexible stamp. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 021015.	0.6	6
143	Energy Harvesting and Storage by Water Infiltration of Eggshell Membrane. Energy Technology, 2020, 8, 1901192.	1.8	6
144	Lithium Storage Mechanism and Application of Micronâ€Sized Latticeâ€Reversible Binary Intermetallic Compounds as Highâ€Performance Flexible Lithiumâ€Ion Battery Anodes. Small, 2022, 18, e2105172.	5.2	6

#	Article	IF	CITATIONS
145	Graphene as discharge layer for electron beam lithography on insulating substrate. Applied Physics Letters, 2013, 103, 113107.	1.5	5
146	Actuators: Multiresponsive Bidirectional Bending Actuators Fabricated by a Pencilâ€onâ€Paper Method (Adv. Funct. Mater. 40/2016). Advanced Functional Materials, 2016, 26, 7368-7368.	7.8	5
147	Seeded growth of high-quality transition metal dichalcogenide single crystals <i>via</i> chemical vapor transport. CrystEngComm, 2020, 22, 8017-8022.	1.3	5
148	Bidirectional micro-actuators based on eccentric coaxial composite oxide nanofiber. Nano Research, 2020, 13, 2451-2459.	5.8	5
149	Freestanding macroscopic metal-oxide nanotube films derived from carbon nanotube film templates. Nano Research, 2015, 8, 2024-2032.	5.8	4
150	The adsorption state and the evolution of field emission properties of graphene edges at different temperatures. RSC Advances, 2018, 8, 31830-31834.	1.7	4
151	The influence of charging and discharging on the thermal properties of a carbon nanotube/polyaniline nanocomposite electrode. RSC Advances, 2019, 9, 7629-7634.	1.7	4
152	Epitaxial growth and electrical transport properties of La0.5Sr0.5Co03 thin films prepared by pulsed laser deposition. Science in China Series A: Mathematics, 1999, 42, 865-872.	0.5	3
153	Raman spectra of SiC nanorods with different excitation wavelengths. Science Bulletin, 2001, 46, 1865-1866.	1.7	3
154	On-chip torsion balances with femtonewton force resolution at room temperature enabled by carbon nanotube and graphene. Science Advances, 2021, 7, .	4.7	3
155	Superaligned arrays, films, and yarns of carbon nanotubes: a road toward applications. Scientia Sinica: Physica, Mechanica Et Astronomica, 2011, 41, 390-403.	0.2	3
156	Toward an Intelligent Synthesis: Monitoring and Intervening in the Catalytic Growth of Carbon Nanotubes. Journal of the American Chemical Society, 2021, 143, 17607-17614.	6.6	3
157	Enhanced Visible-Light Absorption and Photocurrent Generation of Three-Dimensional Metal–Dielectric Hybrid-Structured Films. ACS Applied Energy Materials, 2021, 4, 10542-10552.	2.5	3
158	Substrate Engineering-Tailored Fabrication of Aligned Graphene Nanoribbon Arrays: Implications for Graphene Electronic Devices. ACS Applied Nano Materials, 2021, 4, 13838-13847.	2.4	3
159	A process study of electron beam nano-lithography and deep etching with an ICP system. Science in China Series D: Earth Sciences, 2009, 52, 1665-1671.	0.9	2
160	CNT Research: from Academic Wonder to Industrial Exploration. , 2009, , .		2
161	Modeling and optimization of ambipolar graphene transistors in the diffusive limit. Journal of Applied Physics, 2013, 114, 164508.	1.1	2
162	Dielectric-Like Behavior of Graphene in Au Plasmon Resonator. Nanoscale Research Letters, 2016, 11, 541.	3.1	1

SHOUSHAN FAN

#	Article	IF	CITATIONS
163	Liâ€5 Batteries: Ultrathin MnO ₂ /Graphene Oxide/Carbon Nanotube Interlayer as Efficient Polysulfideâ€Trapping Shield for Highâ€Performance Li–S Batteries (Adv. Funct. Mater. 18/2017). Advanced Functional Materials, 2017, 27, .	7.8	1
164	Enhanced light transmission of carbon nanotube film by ultrathin oxide coatings. AIP Advances, 2020, 10, 075304.	0.6	1
165	The Influence of Carbon Nanotube's Conductivity and Diameter on Its Thermionic Electron Emission. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000069.	0.8	1
166	Optical Phonon Scattering Dominated Transport in Individual Suspended Carbon Nanotubes. Physica Status Solidi (B): Basic Research, 2020, 257, 2000103.	0.7	1
167	Ionic Sensing Hydrogels: Ultrasensitive, Lowâ€Voltage Operational, and Asymmetric Ionic Sensing Hydrogel for Multipurpose Applications (Adv. Funct. Mater. 12/2020). Advanced Functional Materials, 2020, 30, 2070080.	7.8	1
168	Iodide-substitution-induced phase transition of chemical-vapor-deposited MoS2. Journal of Materials Chemistry C, 2022, 10, 1638-1644.	2.7	1
169	SEM imaging of insulating specimen through a transparent conducting veil of carbon nanotube. Nano Research, 2022, 15, 6407-6415.	5.8	1
170	The exposure process study of 100KV JBX-6300LS electron-beam nanolithograph system. , 2008, , .		0
171	Lithium Batteries: Highly Nitridated Graphene-Li2S Cathodes with Stable Modulated Cycles (Adv.) Tj ETQq1 1 0.7	84314 rgE 10.2	3T Overlock
172	Deformation Effect on the Electrical Properties of a Flexible Organic Semiconductor composed of Poly(dimethylsiloxane) and Multiwalled Carbon Nanotubes. Advanced Electronic Materials, 2016, 2, 1500421.	2.6	0
173	The Influence of Carbon Nanotube's Conductivity and Diameter on Its Thermionic Electron Emission. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2070048.	0.8	0

Tailorable Capacitive Tactile Sensor Based on Stretchable and Dissolvable Porous Silver Nanowire/Polyvinyl Alcohol Nanocomposite Hydrogel for Wearable Human Motion Detection (Adv.) Tj ETQq0 0 0 rgBJ /Overlock 10 Tf 5 174