
Deqiang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6630008/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamic physiological and transcriptome changes reveal a potential relationship between the circadian clock and salt stress response in Ulmus pumila. Molecular Genetics and Genomics, 2022, 297, 303-317.	1.0	5
2	Transposable Elements: Distribution, Polymorphism, and Climate Adaptation in Populus. Frontiers in Plant Science, 2022, 13, 814718.	1.7	3
3	Transcriptome and miRNAome analysis reveals components regulating tissue differentiation of bamboo shoots. Plant Physiology, 2022, 188, 2182-2198.	2.3	16
4	The Genetic Basis of Phosphorus Utilization Efficiency in Plants Provide New Insight into Woody Perennial Plants Improvement. International Journal of Molecular Sciences, 2022, 23, 2353.	1.8	10
5	LncRNA PMAT–PtoMYB46 module represses PtoMATE and PtoARF2 promoting Pb2+ uptake and plant growth in poplar. Journal of Hazardous Materials, 2022, 433, 128769.	6.5	12
6	Singleâ€cell RNA sequencing profiles of stemâ€differentiating xylem in poplar. Plant Biotechnology Journal, 2022, 20, 417-419.	4.1	32
7	Miniature inverted repeat transposable elements <i>cis</i> -regulate circular RNA expression and promote ethylene biosynthesis, reducing heat tolerance in <i>Populus tomentosa</i> . Journal of Experimental Botany, 2021, 72, 1978-1994.	2.4	9
8	Transcriptome analysis and association mapping reveal the genetic regulatory network response to cadmium stress in <i>Populus tomentosa</i> . Journal of Experimental Botany, 2021, 72, 576-591.	2.4	21
9	Genetic Architecture Underlying the Metabolites of Chlorogenic Acid Biosynthesis in Populus tomentosa. International Journal of Molecular Sciences, 2021, 22, 2386.	1.8	7
10	Synonymous mutation in <i>Growth Regulating Factor 15</i> of miR396a target sites enhances photosynthetic efficiency and heat tolerance in poplar. Journal of Experimental Botany, 2021, 72, 4502-4519.	2.4	18
11	Genome-wide association studies reveal the coordinated regulatory networks underlying photosynthesis and wood formation in <i>Populus</i> . Journal of Experimental Botany, 2021, 72, 5372-5389.	2.4	12
12	Gene Coexpression Network Analysis Indicates that Hub Genes Related to Photosynthesis and Starch Synthesis Modulate Salt Stress Tolerance in Ulmus pumila. International Journal of Molecular Sciences, 2021, 22, 4410.	1.8	10
13	Genetic architecture of the metabolic pathway of salicylic acid biosynthesis in <i>Populus</i> . Tree Physiology, 2021, 41, 2198-2215.	1.4	13
14	Genetic Effects and Expression Patterns of the Nitrate Transporter (NRT) Gene Family in Populus tomentosa. Frontiers in Plant Science, 2021, 12, 661635.	1.7	16
15	Integration of genome wide association studies and coâ€expression networks reveal roles of <i>PtoWRKY42â€PtoUGT76C1â€I</i> in <i>trans</i> â€zeatin metabolism and cytokinin sensitivity in poplar. New Phytologist, 2021, 231, 1462-1477.	3.5	13
16	Association Study and Mendelian Randomization Analysis Reveal Effects of the Genetic Interaction Between PtoMIR403b and PtoGT31B-1 on Wood Formation in Populus tomentosa. Frontiers in Plant Science, 2021, 12, 704941.	1.7	2
17	Genetic Architecture and Genome-Wide Adaptive Signatures Underlying Stem Lenticel Traits in Populus tomentosa. International Journal of Molecular Sciences, 2021, 22, 9249.	1.8	3
18	Multi-omics analysis provides insights into genetic architecture of flavonoid metabolites in Populus. Industrial Crops and Products, 2021, 168, 113612.	2.5	7

#	Article	IF	CITATIONS
19	Pyramiding superior haplotypes and epistatic alleles to accelerate wood quality and yield improvement in poplar breeding. Industrial Crops and Products, 2021, 171, 113891.	2.5	7
20	Drought Stress Triggers Shifts in the Root Microbial Community and Alters Functional Categories in the Microbial Gene Pool. Frontiers in Microbiology, 2021, 12, 744897.	1.5	26
21	Genetic dissection of the gene coexpression network underlying photosynthesis in <i>Populus</i> . Plant Biotechnology Journal, 2020, 18, 1015-1026.	4.1	21
22	Linkageâ€linkage disequilibrium dissection of the epigenetic quantitative trait loci (epiQTLs) underlying growth and wood properties in <i>Populus</i> . New Phytologist, 2020, 225, 1218-1233.	3.5	25
23	High-Temperature-Responsive Poplar IncRNAs Modulate Target Gene Expression via RNA Interference and Act as RNA Scaffolds to Enhance Heat Tolerance. International Journal of Molecular Sciences, 2020, 21, 6808.	1.8	16
24	Genome Cytosine Methylation May Affect Growth and Wood Property Traits in Populations of Populus tomentosa. Forests, 2020, 11, 828.	0.9	1
25	Genetic interactions among Pto-miR319 family members and their targets influence growth and wood properties in Populus tomentosa. Molecular Genetics and Genomics, 2020, 295, 855-870.	1.0	2
26	Key Genes and Genetic Interactions of Plant-Pathogen Functional Modules in Poplar Infected by <i>Marssonina brunnea</i> . Molecular Plant-Microbe Interactions, 2020, 33, 1080-1090.	1.4	11
27	Evolution and Functional Divergence of the Fructokinase Gene Family in Populus. Frontiers in Plant Science, 2020, 11, 484.	1.7	6
28	Identification of a transcriptional regulatory module that reduces leaf temperature in poplar under heat stress. Tree Physiology, 2020, 40, 1108-1125.	1.4	5
29	Changes in DNA Methylation in Response to 6-Benzylaminopurine Affect Allele-Specific Gene Expression in Populus Tomentosa. International Journal of Molecular Sciences, 2020, 21, 2117.	1.8	3
30	Machine learning models for net photosynthetic rate prediction using poplar leaf phenotype data. PLoS ONE, 2020, 15, e0228645.	1.1	14
31	A Higher Order Prediction Model of Populus Simonii's Net Photosynthetic Rate Based on Improved Gradient Boosting Method. Communications in Computer and Information Science, 2020, , 373-385.	0.4	0
32	Osmotic stressâ€responsive promoter upstream transcripts (<scp>PROMPT</scp> s) act as carriers of <scp>MYB</scp> transcription factors to induce the expression of target genes in <i>Populus simonii</i> . Plant Biotechnology Journal, 2019, 17, 164-177.	4.1	29
33	Genetic architecture underlying the lignin biosynthesis pathway involves noncoding <scp>RNA</scp> s and transcription factors for growth and wood properties in <i>Populus</i> . Plant Biotechnology Journal, 2019, 17, 302-315.	4.1	54
34	Timeâ€specific and pleiotropic quantitative trait loci coordinately modulate stem growth in <i>Populus</i> . Plant Biotechnology Journal, 2019, 17, 608-624.	4.1	34
35	Indole-3-acetic acid has long-term effects on long non-coding RNA gene methylation and growth in Populus tomentosa. Molecular Genetics and Genomics, 2019, 294, 1511-1525.	1.0	9
36	Origination and Function of Plant Pseudogenes. Plant Signaling and Behavior, 2019, 14, 1625698.	1.2	8

#	Article	IF	CITATIONS
37	Transcription factors involved in the regulatory networks governing the Calvin–Benson–Bassham cycle. Tree Physiology, 2019, 39, 1159-1172.	1.4	3
38	Evolutionary Origins of Pseudogenes and Their Association with Regulatory Sequences in Plants. Plant Cell, 2019, 31, 563-578.	3.1	47
39	Transcriptional regulation of chilling stress responsive long noncoding RNAs in Populus simonii. Trees - Structure and Function, 2019, 33, 733-749.	0.9	3
40	Conserved noncoding sequences conserve biological networks and influence genome evolution. Heredity, 2018, 120, 437-451.	1.2	13
41	Genome-Wide Association Studies to Improve Wood Properties: Challenges and Prospects. Frontiers in Plant Science, 2018, 9, 1912.	1.7	34
42	Association Genetics in Populus Reveal the Allelic Interactions of Pto-MIR167a and Its Targets in Wood Formation. Frontiers in Plant Science, 2018, 9, 744.	1.7	14
43	Cenetic variation in transcription factors and photosynthesis light-reaction genes regulates photosynthetic traits. Tree Physiology, 2018, 38, 1871-1885.	1.4	6
44	Genetic variants in micro <scp>RNA</scp> biogenesis genes as novel indicators for secondary growth in <i>Populus</i> . New Phytologist, 2018, 219, 1263-1282.	3.5	8
45	Adaptive evolution and functional innovation of <i>Populus</i> â€specific recently evolved micro <scp>RNA</scp> s. New Phytologist, 2017, 213, 206-219.	3.5	36
46	Identification and allelic dissection uncover roles of IncRNAs in secondary growth of Populus tomentosa. DNA Research, 2017, 24, 473-486.	1.5	37
47	The Role of Long Noncoding RNAs in Plant Stress Tolerance. Methods in Molecular Biology, 2017, 1631, 41-68.	0.4	15
48	Allelic variation in PtoPsbW associated with photosynthesis, growth, and wood properties in Populus tomentosa. Molecular Genetics and Genomics, 2017, 292, 77-91.	1.0	10
49	The Interactions between the Long Non-coding RNA NERDL and Its Target Gene Affect Wood Formation in Populus tomentosa. Frontiers in Plant Science, 2017, 8, 1035.	1.7	12
50	Allelic Interactions among Pto-MIR475b and Its Four Target Genes Potentially Affect Growth and Wood Properties in Populus. Frontiers in Plant Science, 2017, 8, 1055.	1.7	9
51	Dissection of Insertion–Deletion Variants within Differentially Expressed Genes Involved in Wood Formation in Populus. Frontiers in Plant Science, 2017, 8, 2199.	1.7	17
52	The Role of DNA Methylation in Xylogenesis in Different Tissues of Poplar. Frontiers in Plant Science, 2016, 7, 1003.	1.7	20
53	Association Studies in Populus tomentosa Reveal the Genetic Interactions of Pto-MIR156c and Its Targets in Wood Formation. Frontiers in Plant Science, 2016, 7, 1159.	1.7	12
54	Genetic variations and miRNA–target interactions contribute to natural phenotypic variations in <i>Populus</i> . New Phytologist, 2016, 212, 150-160.	3.5	17

#	Article	IF	CITATIONS
55	Genetic architecture of growth traits in <i>Populus</i> revealed by integrated quantitative trait locus (<scp>QTL</scp>) analysis and association studies. New Phytologist, 2016, 209, 1067-1082.	3.5	73
56	Association genetics and transcriptome analysis reveal a gibberellin-responsive pathway involved in regulating photosynthesis. Journal of Experimental Botany, 2016, 67, 3325-3338.	2.4	30
57	Dissection of additive, dominant, epistatic roles of allelic variation within heat shock factor genes in Chinese indigenous poplar (Populus simonii). Tree Genetics and Genomes, 2016, 12, 1.	0.6	2
58	Poplar CBF1 functions specifically in an integrated cold regulatory network. Tree Physiology, 2016, 37, 98-115.	1.4	9
59	Single nucleotide polymorphisms in two GID1 orthologs associate with growth and wood property traits in Populus tomentosa. Tree Genetics and Genomes, 2016, 12, 1.	0.6	1
60	Association studies reveal the effect of genetic variation in IncRNA UGTRL and its putative target PtoUGT88A1 on wood formation in Populus tomentosa. Tree Genetics and Genomes, 2016, 12, 1.	0.6	8
61	Association genetics in Populus reveals the interactions between Pto-miR160a and its target Pto-ARF16. Molecular Genetics and Genomics, 2016, 291, 1069-1082.	1.0	22
62	Variation in genomic methylation in natural populations of <i>Populus simonii</i> is associated with leaf shape and photosynthetic traits. Journal of Experimental Botany, 2016, 67, 723-737.	2.4	34
63	Population genomic analysis of gibberellin-responsive long non-coding RNAs in <i>Populus</i> . Journal of Experimental Botany, 2016, 67, 2467-2482.	2.4	98
64	Stable methylation of a non-coding RNA gene regulates gene expression in response to abiotic stress in <i>Populus simonii</i> . Journal of Experimental Botany, 2016, 67, 1477-1492.	2.4	57
65	The genetic regulatory network centered on Pto-Wuschela and its targets involved in wood formation revealed by association studies. Scientific Reports, 2015, 5, 16507.	1.6	2
66	Methylation of miRNA genes in the response to temperature stress in Populus simonii. Frontiers in Plant Science, 2015, 6, 921.	1.7	67
67	Association genetics and expression patterns of a CBF4 homolog in Populus under abiotic stress. Molecular Genetics and Genomics, 2015, 290, 913-928.	1.0	7
68	Methylation of microRNA genes regulates gene expression in bisexual flower development in andromonoecious poplar. Journal of Experimental Botany, 2015, 66, 1891-1905.	2.4	55
69	Identification of additive, dominant, and epistatic variation conferred by key genes in cellulose biosynthesis pathway in Populus tomentosa. DNA Research, 2015, 22, 53-67.	1.5	46
70	Exploring the Secrets of Long Noncoding RNAs. International Journal of Molecular Sciences, 2015, 16, 5467-5496.	1.8	125
71	Association genetics in Populus reveals the interactions between Pt-miR397a and its target genes. Scientific Reports, 2015, 5, 11672.	1.6	8
72	Transcript abundance patterns of Populus C-repeat binding factor2 orthologs and genetic association of PsCBF2 allelic variation with physiological and biochemical traits in response to abiotic stress. Planta, 2015, 242, 295-312.	1.6	4

#	Article	IF	CITATIONS
73	Populus endo-β-1,4-glucanases gene family: genomic organization, phylogenetic analysis, expression profiles and association mapping. Planta, 2015, 241, 1417-1434.	1.6	16
74	Association mapping in Populus reveals the interaction between Pto-miR530a and its target Pto-KNAT1. Planta, 2015, 242, 77-95.	1.6	9
75	Transcript profiling of Populus tomentosa genes in normal, tension, and opposite wood by RNA-seq. BMC Genomics, 2015, 16, 164.	1.2	58
76	Genome-wide identification of novel long non-coding RNAs in Populus tomentosa tension wood, opposite wood and normal wood xylem by RNA-seq. Planta, 2015, 241, 125-143.	1.6	109
77	Association of Allelic Variation in PtoXET16A with Growth and Wood Properties in Populus tomentosa. International Journal of Molecular Sciences, 2014, 15, 16949-16974.	1.8	16
78	Single nucleotide polymorphisms in a cellulose synthase gene (PtoCesA3) are associated with growth and wood properties in Populus tomentosa. Planta, 2014, 240, 1269-1286.	1.6	4
79	Biochemical, physiological and gene expression analysis reveals sexâ€specific differences in <i>Populus tomentosa</i> floral development. Physiologia Plantarum, 2014, 150, 18-31.	2.6	14
80	Effects of high temperature on photosynthesis and related gene expression in poplar. BMC Plant Biology, 2014, 14, 111.	1.6	188
81	Single-nucleotide polymorphisms in PtoCesA7 and their association with growth and wood properties in Populus tomentosa. Molecular Genetics and Genomics, 2014, 289, 439-455.	1.0	23
82	Identification of Genes Differentially Expressed in Shoot Apical Meristems and in Mature Xylem of Populus tomentosa. Plant Molecular Biology Reporter, 2014, 32, 452-464.	1.0	7
83	Single-nucleotide polymorphisms in the 5′ UTR of UDP-glucose dehydrogenase (PtUGDH) associate with wood properties in Populus tomentosa. Tree Genetics and Genomes, 2014, 10, 339-354.	0.6	11
84	Variation in growth, leaf, and wood property traits of Chinese white poplar (Populus tomentosa), a major industrial tree species in Northern China. Canadian Journal of Forest Research, 2014, 44, 326-339.	0.8	70
85	Comparison of the physiological effects and transcriptome responses of Populus simonii under different abiotic stresses. Plant Molecular Biology, 2014, 86, 139-156.	2.0	41
86	Identification and characterization of nuclear genes involved in photosynthesis in Populus. BMC Plant Biology, 2014, 14, 81.	1.6	20
87	Allelic variation within the S-adenosyl-L-homocysteine hydrolase gene family is associated with wood properties in Chinese white poplar (Populus tomentosa). BMC Genetics, 2014, 15, S4.	2.7	8
88	Association mapping for morphological and physiological traits in Populus simonii. BMC Genetics, 2014, 15, S3.	2.7	11
89	Sexual dimorphic floral development in dioecious plants revealed by transcriptome, phytohormone, and DNA methylation analysis in Populus tomentosa. Plant Molecular Biology, 2013, 83, 559-576.	2.0	66
90	Transcriptome profiling reveals differential transcript abundance in response to chilling stress in Populus simonii. Plant Cell Reports, 2013, 32, 1407-1425.	2.8	38

#	Article	IF	CITATIONS
91	The SUPERMAN gene family in Populus: nucleotide diversity and gene expression in a dioecious plant. Plant Cell Reports, 2013, 32, 1277-1288.	2.8	4
92	The low fertility of Chinese white poplar: dynamic changes in anatomical structure, endogenous hormone concentrations, and key gene expression in the reproduction of a naturally occurring hybrid. Plant Cell Reports, 2013, 32, 401-414.	2.8	9
93	Genome-Wide Analysis of Gene Expression in Response to Drought Stress in Populus simonii. Plant Molecular Biology Reporter, 2013, 31, 946-962.	1.0	46
94	Development and Application of Microsatellites in Candidate Genes Related to Wood Properties in the Chinese White Poplar (Populus tomentosa Carr.). DNA Research, 2013, 20, 31-44.	1.5	29
95	Polymorphic simple sequence repeat (<scp>SSR</scp>) loci within cellulose synthase (<scp><i>PtoCesA</i></scp>) genes are associated with growth and wood properties in <i><scp>P</scp>opulus tomentosa</i> . New Phytologist, 2013, 197, 763-776.	3.5	47
96	Genetic Diversity and Population Structure in Chinese Indigenous Poplar (Populus simonii) Populations Using Microsatellite Markers. Plant Molecular Biology Reporter, 2013, 31, 620-632.	1.0	42
97	Allelic Variation in a Cellulose Synthase Gene (<i>PtoCesA4</i>) Associated with Growth and Wood Properties in <i>Populus tomentosa</i> . G3: Genes, Genomes, Genetics, 2013, 3, 2069-2084.	0.8	28
98	The UDP-Glucuronate Decarboxylase Gene Family in Populus: Structure, Expression, and Association Genetics. PLoS ONE, 2013, 8, e60880.	1.1	24
99	Sexual Dimorphism Floral MicroRNA Profiling and Target Gene Expression in Andromonoecious Poplar (Populus tomentosa). PLoS ONE, 2013, 8, e62681.	1.1	31
100	Variation in Genomic Methylation in Natural Populations of Chinese White Poplar. PLoS ONE, 2013, 8, e63977.	1.1	20
101	Photosynthetic response to genome methylation affects the growth of Chinese white poplar. Tree Genetics and Genomes, 2012, 8, 1407-1421.	0.6	25
102	Genetic Diversity and Population Structure of Chinese White Poplar (Populus tomentosa) Revealed by SSR Markers. Journal of Heredity, 2012, 103, 853-862.	1.0	129
103	Transcriptional profiling by cDNA-AFLP analysis showed differential transcript abundance in response to water stress in Populus hopeiensis. BMC Genomics, 2012, 13, 286.	1.2	29
104	Sex-specific DNA methylation and gene expression in andromonoecious poplar. Plant Cell Reports, 2012, 31, 1393-1405.	2.8	38
105	Allelic Variation in PtGA20Ox Associates with Growth and Wood Properties in Populus spp. PLoS ONE, 2012, 7, e53116.	1.1	22
106	The sucrose synthase gene family in Populus: structure, expression, and evolution. Tree Genetics and Genomes, 2011, 7, 443-456.	0.6	77
107	Preparation and properties of solution-processed zinc tin oxide films from a new organic precursor. Science China Chemistry, 2011, 54, 651-655.	4.2	3
108	The actin multigene family in Populus: organization, expression and phylogenetic analysis. Molecular Genetics and Genomics, 2010, 284, 105-119.	1.0	56

#	Article	IF	CITATIONS
109	Expression and nucleotide diversity of the poplar COBL gene. Tree Genetics and Genomes, 2010, 6, 331-344.	0.6	20
110	Salt-induced expression of genes related to Na+/K+ and ROS homeostasis in leaves of salt-resistant and salt-sensitive poplar species. Plant Molecular Biology, 2010, 73, 251-269.	2.0	129
111	Identification of a <i>Cis</i> -Acting Regulatory Polymorphism in a Eucalypt <i>COBRA</i> -Like Gene Affecting Cellulose Content. Genetics, 2009, 183, 1153-1164.	1.2	89
112	QTL analysis of growth and wood chemical content traits in an interspecific backcross family of white poplar (Populus tomentosa × P. bolleana) × P. tomentosa. Canadian Journal of Forest Research, 2006, 36, 2015-2023.	0.8	36