
Franz Zehetner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6629878/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of Slow Pyrolysis Biochars: Effects of Feedstocks and Pyrolysis Temperature on Biochar Properties. Journal of Environmental Quality, 2012, 41, 990-1000.	2.0	736
2	Long-term effects of biochar on soil physical properties. Geoderma, 2016, 282, 96-102.	5.1	317
3	Biochar application to temperate soils: Effects on soil fertility and crop growth under greenhouse conditions. Journal of Plant Nutrition and Soil Science, 2014, 177, 3-15.	1.9	175
4	Microbial community composition and activity in different Alpine vegetation zones. Soil Biology and Biochemistry, 2010, 42, 155-161.	8.8	156
5	Soil organicâ€matter stocks and characteristics along an Alpine elevation gradient. Journal of Plant Nutrition and Soil Science, 2010, 173, 30-38.	1.9	133
6	Changes in biochar physical and chemical properties: Accelerated biochar aging in an acidic soil. Carbon, 2017, 115, 209-219.	10.3	128
7	Phosphorus sorption–desorption in alluvial soils of a young weathering sequence at the Danube River. Geoderma, 2009, 149, 39-44.	5.1	87
8	Distribution of Road Salt Residues, Heavy Metals and Polycyclic Aromatic Hydrocarbons across a Highway-Forest Interface. Water, Air, and Soil Pollution, 2009, 198, 125-132.	2.4	85
9	Rapid carbon accretion and organic matter pool stabilization in riverine floodplain soils. Global Biogeochemical Cycles, 2009, 23, .	4.9	80
10	Enhanced Cu and Cd sorption after soil aging of woodchip-derived biochar: What were the driving factors?. Chemosphere, 2019, 216, 463-471.	8.2	71
11	Effects of Biochars and Compost Mixtures and Inorganic Additives on Immobilisation of Heavy Metals in Contaminated Soils. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	60
12	Dating of soil layers in a young floodplain using iron oxide crystallinity. Quaternary Geochronology, 2009, 4, 260-266.	1.4	57
13	Trace element concentrations in leachates and mustard plant tissue (Sinapis alba L.) after biochar application to temperate soils. Science of the Total Environment, 2014, 481, 498-508.	8.0	56
14	Decomposition of beech (Fagus sylvatica) and pine (Pinus nigra) litter along an Alpine elevation gradient: Decay and nutrient release. Geoderma, 2015, 251-252, 92-104.	5.1	55
15	Spatial distribution of microbial biomass and residues across soil aggregate fractions at different elevations in the Central Austrian Alps. Geoderma, 2019, 339, 1-8.	5.1	55
16	Erodibility and runoff-infiltration characteristics of volcanic ash soils along an altitudinal climosequence in the Ecuadorian Andes. Catena, 2006, 65, 201-213.	5.0	48
17	<i>In situ</i> carbon turnover dynamics and the role of soil microorganisms therein: a climate warming study in an Alpine ecosystem. FEMS Microbiology Ecology, 2013, 83, 112-124.	2.7	48
18	Does organic carbon sequestration in volcanic soils offset volcanic CO2 emissions?. Quaternary Science Reviews, 2010, 29, 1313-1316.	3.0	40

FRANZ ZEHETNER

#	Article	IF	CITATIONS
19	Compost and biochar interactions with copper immobilisation in copper-enriched vineyard soils. Applied Geochemistry, 2018, 88, 40-48.	3.0	35
20	From sediment to soil: floodplain phosphorus transformations at the Danube River. Biogeochemistry, 2008, 88, 117-126.	3.5	31
21	Activated biochar alters activities of carbon and nitrogen acquiring soil enzymes. Pedobiologia, 2018, 69, 1-10.	1.2	31
22	Lignin decomposition along an Alpine elevation gradient in relation to physicochemical and soil microbial parameters. Global Change Biology, 2014, 20, 2272-2285.	9.5	26
23	Variations in soil and microbial biomass C, N and fungal biomass ergosterol along elevation and depth gradients in Alpine ecosystems. Geoderma, 2019, 345, 93-103.	5.1	26
24	Microbial necromass formation, enzyme activities and community structure in two alpine elevation gradients with different bedrock types. Geoderma, 2021, 386, 114922.	5.1	26
25	Trace element biogeochemistry in the soil-water-plant system of a temperate agricultural soil amended with different biochars. Environmental Science and Pollution Research, 2015, 22, 4513-4526.	5.3	24
26	Soil and biomass carbon re-accumulation after landslide disturbances. Geomorphology, 2017, 288, 164-174.	2.6	24
27	Spectroscopic behaviour of 14C-labeled humic acids in a long-term field experiment with three cropping systems. Soil Research, 2009, 47, 459.	1.1	22
28	Heavy metal contents, mobility and origin in agricultural topsoils of the Galápagos Islands. Chemosphere, 2021, 272, 129821.	8.2	22
29	Biochar application increases sorption of nitrification inhibitor 3,4-dimethylpyrazole phosphate in soil. Environmental Science and Pollution Research, 2018, 25, 11173-11177.	5.3	21
30	Agriculture changes soil properties on the Galápagos Islands – two case studies. Soil Research, 2019, 57, 201.	1.1	21
31	Biochar application reduces protein sorption in soil. Organic Geochemistry, 2015, 87, 21-24.	1.8	19
32	Soil organic carbon and microbial communities respond to vineyard management. Soil Use and Management, 2015, 31, 528-533.	4.9	18
33	Soil and phosphorus redistribution along a steep tea plantation in the Feitsui reservoir catchment of northern Taiwan. Soil Science and Plant Nutrition, 2008, 54, 618-626.	1.9	17
34	Weathering and soil formation in rhyolitic tephra along a moisture gradient on Alcedo Volcano, Galápagos. Geoderma, 2019, 343, 215-225.	5.1	17
35	Linking rock age and soil cover across four islands on the Galápagos archipelago. Journal of South American Earth Sciences, 2020, 99, 102500.	1.4	13
36	Soil development and mineral transformations along a oneâ€millionâ€year chronosequence on the Galápagos Islands. Soil Science Society of America Journal, 2021, 85, 2077-2099.	2.2	13

Franz Zehetner

#	Article	IF	CITATIONS
37	Mid-infrared spectroscopy for topsoil layer identification according to litter type and decompositional stage demonstrated on a large sample set of Austrian forest soils. Geoderma, 2011, 166, 162-170.	5.1	11
38	Distribution of organic carbon and lignin in soils in a subtropical small mountainous river basin. Geoderma, 2017, 306, 81-88.	5.1	9
39	Impact of soil development on Cu sorption along gradients of soil age and moisture on the Galápagos Islands. Catena, 2020, 189, 104507.	5.0	9
40	Changes in topsoil characteristics with climate and island age in the agricultural zones of the Galápagos. Geoderma, 2020, 376, 114534.	5.1	8
41	Temperature sensitivity of CO2 efflux in soils from two alpine elevation levels with distinct bedrock types. Applied Soil Ecology, 2021, 162, 103875.	4.3	3
42	Phosphate sorptionâ€desorption properties in volcanic topsoils along a chronosequence and a climatic gradient on the Galápagos Islands. Journal of Plant Nutrition and Soil Science, 2021, 184, 479-491.	1.9	3
43	Recent Developments of No-Till and Organic Farming in India: Is a Combination of These Approaches Viable?. Agroecology and Sustainable Food Systems, 2011, 35, 576-612.	0.9	2
44	Biochar Applications to Agricultural Soils in Temperate Climates – More Than Carbon Sequestration?. , 2016, , 291-314.		2
45	Cadmium retention and microbial response in volcanic soils along gradients of soil age and climate on the Galápagos Islands. Journal of Environmental Quality, 2021, 50, 1233-1245.	2.0	2
46	Soil Fertility Changes With Climate and Island Age in Galápagos: New Baseline Data for Sustainable Agricultural Management. Frontiers in Environmental Science, 2021, 9, .	3.3	2
47	Soil organic carbon and fine particle stocks along a volcanic chrono- and elevation-sequence on the Galápagos archipelago/Ecuador. Geoderma Regional, 2022, 29, e00508.	2.1	2
48	Temporal Changes in the Efficiency of Biochar- and Compost-Based Amendments on Copper Immobilization in Vineyard Soils. Soil Systems, 2019, 3, 78.	2.6	1
49	Soil formation, nutrient supply and ecosystem productivity on basaltic lava vs rhyolitic pumice on Alcedo Volcano, Galápagos. Soil Research, 2022, 60, 173-186.	1.1	1