Peter F Decarlo

List of Publications by Citations

Source: https://exaly.com/author-pdf/662967/peter-f-decarlo-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

154 papers

22,566 citations

65 h-index

150 g-index

177 ext. papers

25,445 ext. citations

7.2 avg, IF

6.01 L-index

#	Paper	IF	Citations
154	Evolution of organic aerosols in the atmosphere. <i>Science</i> , 2009 , 326, 1525-9	33.3	2767
153	Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer. <i>Analytical Chemistry</i> , 2006 , 78, 8281-9	7.8	1699
152	Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. <i>Geophysical Research Letters</i> , 2007 , 34, n/a-n/a	4.9	1497
151	Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. <i>Mass Spectrometry Reviews</i> , 2007 , 26, 185-222	11	1443
150	O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	1324
149	Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 4625-4641	6.8	749
148	Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 1: Theory. <i>Aerosol Science and Technology</i> , 2004 , 38, 1185-1205	3.4	727
147	A New Time-of-Flight Aerosol Mass Spectrometer (TOF-AMS)[hstrument Description and First Field Deployment. <i>Aerosol Science and Technology</i> , 2005 , 39, 637-658	3.4	638
146	Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 1155-1169	6.8	463
145	Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) Part 1: Fine particle composition and organic source apportionment. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 6633-6653	6.8	440
144	Elemental analysis of organic species with electron ionization high-resolution mass spectrometry. <i>Analytical Chemistry</i> , 2007 , 79, 8350-8	7.8	435
143	Fast airborne aerosol size and chemistry measurements above Mexico City and Central Mexico during the MILAGRO campaign. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 4027-4048	6.8	361
142	Emissions from biomass burning in the Yucatan. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 5785-5812	6.8	358
141	Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 1649-1665	6.8	353
140	A simplified description of the evolution of organic aerosol composition in the atmosphere. <i>Geophysical Research Letters</i> , 2010 , 37,	4.9	352
139	Pollutant emissions and energy efficiency under controlled conditions for household biomass cookstoves and implications for metrics useful in setting international test standards. <i>Environmental Science & Description</i> (2012), 2012, 46, 10827-34	10.3	328
138	Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 961-981	6.8	307

137	Characterization of ambient aerosols in Mexico City during the MCMA-2003 campaign with Aerosol Mass Spectrometry: results from the CENICA Supersite. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 925-	-946	302
136	Modeling organic aerosols in a megacity: potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 5491-5514	6.8	292
135	Investigation of the sources and processing of organic aerosol over the Central Mexican Plateau from aircraft measurements during MILAGRO. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 5257-5280	6.8	279
134	Relating hygroscopicity and composition of organic aerosol particulate matter. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 1155-1165	6.8	268
133	Chemically-resolved aerosol volatility measurements from two megacity field studies. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 7161-7182	6.8	246
132	Apportionment of primary and secondary organic aerosols in southern California during the 2005 study of organic aerosols in riverside (SOAR-1). <i>Environmental Science & Enp.; Technology</i> , 2008 , 42, 7655	- 62 .3	244
131	Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 6159-6176	6.8	232
130	Loading-dependent elemental composition of Epinene SOA particles. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 771-782	6.8	230
129	Importance of secondary sources in the atmospheric budgets of formic and acetic acids. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 1989-2013	6.8	226
128	Characterization of aerosol chemical composition with aerosol mass spectrometry in Central Europe: an overview. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 10453-10471	6.8	225
127	Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 13503-8	11.5	201
126	Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 12673-12696	6.8	199
125	Organic aerosol formation in urban and industrial plumes near Houston and Dallas, Texas. <i>Journal of Geophysical Research</i> , 2009 , 114,		196
124	Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 2: Application to Combustion-Generated Soot Aerosols as a Function of Fuel Equivalence Ratio. <i>Aerosol Science and Technology</i> , 2004 , 38, 1206-1222	3.4	196
123	Investigations of primary and secondary particulate matter of different wood combustion appliances with a high-resolution time-of-flight aerosol mass spectrometer. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 5945-5957	6.8	188
122	Mexico city aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) [Part 2: Analysis of the biomass burning contribution and the non-fossil carbon fraction. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 5315-5341	6.8	157
121	A missing source of aerosols in Antarctica lbeyond long-range transport, phytoplankton, and photochemistry. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 1-20	6.8	156
120	Evolution of Asian aerosols during transpacific transport in INTEX-B. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 7257-7287	6.8	155

119	Impact of aftertreatment devices on primary emissions and secondary organic aerosol formation potential from in-use diesel vehicles: results from smog chamber experiments. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 11545-11563	6.8	152
118	Black carbon physical properties and mixing state in the European megacity Paris. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 5831-5856	6.8	138
117	Identification of marine and continental aerosol sources in Paris using high resolution aerosol mass spectrometry. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 1950-1963	4.4	126
116	Evaluating simulated primary anthropogenic and biomass burning organic aerosols during MILAGRO: implications for assessing treatments of secondary organic aerosols. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 6191-6215	6.8	124
115	Changes of hygroscopicity and morphology during ageing of diesel soot. <i>Environmental Research Letters</i> , 2011 , 6, 034026	6.2	121
114	Ubiquity of organic nitrates from nighttime chemistry in the European submicron aerosol. <i>Geophysical Research Letters</i> , 2016 , 43, 7735-7744	4.9	119
113	Biomass burning and urban air pollution over the Central Mexican Plateau. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 4929-4944	6.8	119
112	The 2005 Study of Organic Aerosols at Riverside (SOAR-1): instrumental intercomparisons and fine particle composition. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 12387-12420	6.8	111
111	Aged organic aerosol in the Eastern Mediterranean: the Finokalia Aerosol Measurement Experiment 12008. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 4167-4186	6.8	109
110	Design and Operation of a Pressure-Controlled Inlet for Airborne Sampling with an Aerodynamic Aerosol Lens. <i>Aerosol Science and Technology</i> , 2008 , 42, 465-471	3.4	109
109	Prediction of cloud condensation nucleus number concentration using measurements of aerosol size distributions and composition and light scattering enhancement due to humidity. <i>Journal of Geophysical Research</i> , 2007 , 112,		108
108	Volatility and hygroscopicity of aging secondary organic aerosol in a smog chamber. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 11477-11496	6.8	100
107	Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): emissions of trace gases and light-absorbing carbon from wood and dung cooking fires, garbage and crop residue burning, brick kilns, and other sources. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 11043-11081	6.8	93
106	Overview of HOMEChem: House Observations of Microbial and Environmental Chemistry. <i>Environmental Sciences: Processes and Impacts</i> , 2019 , 21, 1280-1300	4.3	92
105	OH clock determination by proton transfer reaction mass spectrometry at an environmental chamber. <i>Atmospheric Measurement Techniques</i> , 2012 , 5, 647-656	4	90
104	Observations of heterogeneous reactions between Asian pollution and mineral dust over the Eastern North Pacific during INTEX-B. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 8283-8308	6.8	89
103	Modeling the multiday evolution and aging of secondary organic aerosol during MILAGRO 2006. <i>Environmental Science & Environmental Science & Environme</i>	10.3	85
102	Source apportionment of size and time resolved trace elements and organic aerosols from an urban courtyard site in Switzerland. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 8945-8963	6.8	84

(2011-2008)

-	101	Total observed organic carbon (TOOC) in the atmosphere: a synthesis of North American observations. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 2007-2025	6.8	81	
-	100	Investigation of the correlation between odd oxygen and secondary organic aerosol in Mexico City and Houston. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 8947-8968	6.8	80	
٥	99	Measured and modelled cloud condensation nuclei number concentration at the high alpine site Jungfraujoch. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 7891-7906	6.8	80	
٥	98	Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 1: Theory. <i>Aerosol Science and Technology</i> , 2004 , 38, 1185-1205	3.4	79	
Š	97	Cloud Activating Properties of Aerosol Observed during CELTIC. <i>Journals of the Atmospheric Sciences</i> , 2007 , 64, 441-459	2.1	77	
٥	96	Primary and secondary organic aerosol origin by combined gas-particle phase source apportionment. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 8411-8426	6.8	75	
Ç	95	Airborne cloud condensation nuclei measurements during the 2006 Texas Air Quality Study. <i>Journal of Geophysical Research</i> , 2011 , 116,		75	
رَ	94	Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): emissions of particulate matter from wood- and dung-fueled cooking fires, garbage and crop residue burning, brick kilns, and other sources. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 2259-2286	6.8	74	
Š	93	Measured and predicted aerosol light scattering enhancement factors at the high alpine site Jungfraujoch. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 2319-2333	6.8	74	
ر	92	Impact of Mexico City emissions on regional air quality from MOZART-4 simulations. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 6195-6212	6.8	70	
ç	91	Measurement of the ambient organic aerosol volatility distribution: application during the Finokalia Aerosol Measurement Experiment (FAME-2008). <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 12149-12	168	68	
ý	90	Aerosol optical properties relevant to regional remote sensing of CCN activity and links to their organic mass fraction: airborne observations over Central Mexico and the US West Coast during MILAGRO/INTEX-B. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 6727-6742	6.8	67	
8	89	Indoor Particulate Matter during HOMEChem: Concentrations, Size Distributions, and Exposures. <i>Environmental Science & Environmental Science & Environ</i>	10.3	64	
8	88	Evaluation of the particle measurement programme (PMP) protocol to remove the vehiclesR exhaust aerosol volatile phase. <i>Science of the Total Environment</i> , 2010 , 408, 5106-16	10.2	63	
8	87	Surface reservoirs dominate dynamic gas-surface partitioning of many indoor air constituents. <i>Science Advances</i> , 2020 , 6, eaay8973	14.3	62	
8	86	Aerosol and trace gas vehicle emission factors measured in a tunnel using an Aerosol Mass Spectrometer and other on-line instrumentation. <i>Atmospheric Environment</i> , 2011 , 45, 2182-2192	5.3	59	
8	85	Oxidative potential of logwood and pellet burning particles assessed by a novel profluorescent nitroxide probe. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	57	
{	84	Relating cloud condensation nuclei activity and oxidation level of ⊕inene secondary organic aerosols. <i>Journal of Geophysical Research</i> , 2011 , 116, n/a-n/a		51	

83	Aqueous phase processing of secondary organic aerosol from isoprene photooxidation. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 5879-5895	6.8	51
82	Thirdhand smoke uptake to aerosol particles in the indoor environment. Science Advances, 2018, 4, eaap	0 8 468	50
81	Multiphase Chemistry Controls Inorganic Chlorinated and Nitrogenated Compounds in Indoor Air during Bleach Cleaning. <i>Environmental Science & Environmental Science & Environm</i>	10.3	49
80	Spatial variation of chemical composition and sources of submicron aerosol in Zurich during wintertime using mobile aerosol mass spectrometer data. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 7465-7482	6.8	49
79	Demonstration of a VUV Lamp Photoionization Source for Improved Organic Speciation in an Aerosol Mass Spectrometer. <i>Aerosol Science and Technology</i> , 2007 , 41, 828-839	3.4	48
78	Real-time transformation of outdoor aerosol components upon transport indoors measured with aerosol mass spectrometry. <i>Indoor Air</i> , 2017 , 27, 230-240	5.4	47
77	Organic molecular markers and signature from wood combustion particles in winter ambient aerosols: aerosol mass spectrometer (AMS) and high time-resolved GC-MS measurements in Augsburg, Germany. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 6113-6128	6.8	47
76	Atmospheric emission characterization of Marcellus shale natural gas development sites. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	45
75	Time-resolved characterization of primary emissions from residential wood combustion appliances. <i>Environmental Science & Environmental Science & Envi</i>	10.3	44
74	Online characterization of regulated and unregulated gaseous and particulate exhaust emissions from two-stroke mopeds: a chemometric approach. <i>Analytica Chimica Acta</i> , 2012 , 717, 28-38	6.6	36
73	Observations and Contributions of Real-Time Indoor Ammonia Concentrations during HOMEChem. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	34
72	Seasonal variation in aerosol composition and concentration upon transport from the outdoor to indoor environment. <i>Environmental Sciences: Processes and Impacts</i> , 2019 , 21, 528-547	4.3	27
71	A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 2189-2203	6.8	27
70	Human occupant contribution to secondary aerosol mass in the indoor environment. <i>Environmental Sciences: Processes and Impacts</i> , 2019 , 21, 1301-1312	4.3	26
69	Speciated online PM₁ from South Asian combustion sources [Part]: Fuel-based emission factors and size distributions. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 14653-7	14679	24
68	Ambient air quality in the Kathmandu Valley, Nepal, during the pre-monsoon: concentrations and sources of particulate matter and trace gases. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 2927-2951	6.8	23
67	Surface Emissions Modulate Indoor SVOC Concentrations through Volatility-Dependent Partitioning. <i>Environmental Science & Environmental Science & Envi</i>	10.3	22
66	Evolution of Asian aerosols during transpacific transport in INTEX-B		21

65	Analysis of local-scale background concentrations of methane and other gas-phase species in the Marcellus Shale. <i>Elementa</i> , 2017 , 5, 1	3.6	20
64	Chemically-resolved aerosol volatility measurements from two megacity field studies		19
63	Organic aerosol components observed in worldwide datasets from aerosol mass spectrometry		18
62	Application of modern online instrumentation for chemical analysis of gas and particulate phases of exhaust at the European Commission heavy-duty vehicle emission laboratory. <i>Analytical Chemistry</i> , 2011 , 83, 67-76	7.8	17
61	Spatial Variation of Aerosol Chemical Composition and Organic Components Identified by Positive Matrix Factorization in the Barcelona Region. <i>Environmental Science & Environmental Science & Environ</i>	- 3 6·3	16
60	Characterization of aerosol chemical composition by aerosol mass spectrometry in Central Europe: an overview		16
59	Real-time organic aerosol chemical speciation in the indoor environment using extractive electrospray ionization mass spectrometry. <i>Indoor Air</i> , 2021 , 31, 141-155	5.4	15
58	The importance of blowing snow to halogen-containing aerosol in coastal Antarctica: influence of source region versus wind speed. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 16689-16711	6.8	14
57	Biomass burning and urban air pollution over the Central Mexican Plateau		13
56	Dark Chemistry during Bleach Cleaning Enhances Oxidation of Organics and Secondary Organic Aerosol Production Indoors. <i>Environmental Science and Technology Letters</i> , 2020 , 7, 795-801	11	13
55	Chemical and Physical Characterization of 3D Printer Aerosol Emissions with and without a Filter Attachment. <i>Environmental Science & Environmental Sc</i>	10.3	12
54	Contribution of methane to aerosol carbon mass. <i>Atmospheric Environment</i> , 2016 , 141, 41-47	5.3	12
53	Secondary organic aerosols from anthropogenic volatile organic compounds contribute substantially to air pollution mortality. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 11201-11224	6.8	12
52	Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition		11
51	Potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol in the Mexico City region		10
50	Organic aerosol components derived from 25 AMS datasets across Europe using a newly developed ME-2 based source apportionment strategy		10
49	Investigation of the correlation between odd oxygen and secondary organic aerosol in Mexico City and Houston		9
48	Fast airborne aerosol size and chemistry measurements with the high resolution aerosol mass spectrometer during the MILAGRO Campaign		9

47	Indoor aerosol water content and phase state in U.S. residences: impacts of relative humidity, aerosol mass and composition, and mechanical system operation. <i>Environmental Sciences: Processes and Impacts</i> , 2020 , 22, 2031-2057	4.3	9
46	Quantification of cooking organic aerosol in the indoor environment using aerodyne aerosol mass spectrometers. <i>Aerosol Science and Technology</i> , 2021 , 55, 1099-1114	3.4	9
45	Recent developments in the mass spectrometry of atmospheric aerosols. <i>European Journal of Mass Spectrometry</i> , 2010 , 16, 389-95	1.1	8
44	Spatial and temporal scales of variability for indoor air constituents. <i>Communications Chemistry</i> , 2021 , 4,	6.3	8
43	Emissions of organic aerosol mass, black carbon, particle number, and regulated and unregulated gases from scooters and light and heavy duty vehicles with different fuels		7
42	Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere. <i>Communications Earth & Environment</i> , 2021 , 2,	6.1	7
41	Large Emissions of Low-Volatility Siloxanes during Residential Oven Use. <i>Environmental Science and Technology Letters</i> , 2021 , 8, 519-524	11	7
40	Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model		6
39	Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data		6
38	The 2005 Study of Organic Aerosols at Riverside (SOAR-1): instrumental intercomparisons and fine particle composition		6
37	Volatility and hygroscopicity of aging secondary organic aerosol in a smog chamber		6
36	Investigations of primary and secondary particulate matter of different wood combustion appliances with a high-resolution time-of-flight aerosol mass spectrometer		6
35	Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris		6
34	Loading-dependent elemental composition of pinene SOA particles		6
33	Impact of aftertreatment devices on primary emissions and secondary organic aerosol formation potential from in-use diesel vehicles: results from smog chamber experiments		5
32	Aqueous phase processing of secondary organic aerosols		5
31	Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) IPart 2: Analysis of the biomass burning contribution and the modern carbon fraction		5
30	Characterization of organic ambient aerosol during MIRAGE 2006 on three platforms		5

29	Indoor black carbon and brown carbon concentrations from cooking and outdoor penetration: insights from the HOMEChem study. <i>Environmental Sciences: Processes and Impacts</i> , 2021 , 23, 1476-1487 ⁴⁻³	5
28	Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of particulate matter from wood and dung cooking fires, garbage and crop residue burning, brick kilns, and other sources 2017 ,	4
27	Relating hygroscopicity and composition of organic aerosol particulate matter	4
26	Investigation of the sources and processing of organic aerosol over the Central Mexican Plateau from aircraft measurements during MILAGRO	4
25	Source apportionment of size and time resolved trace elements and organic aerosols from an urban courtyard site in Switzerland	4
24	Aerosol optical properties relevant to regional remote sensing of CCN activity and links to their organic mass fraction: airborne observations over Central Mexico and the US West Coast during MILAGRO/IN	те∕х-в
23	Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) [Part 1: Fine particle composition and organic source apportionment	4
22	OH clock determination by proton transfer reaction mass spectrometry at an environmental chamber 2011 ,	3
21	Impact of Mexico City emissions on regional air quality from MOZART-4 simulations	3
20	Measured and modelled cloud condensation nuclei concentration at the high alpine site Jungfraujoch	3
19	Emissions from biomass burning in the Yucatan	3
18	Wintertime Air Quality in Lumbini, Nepal: Sources of Fine Particle Organic Carbon. <i>ACS Earth and Space Chemistry</i> , 2021 , 5, 226-238	3
17	Anthropogenic Secondary Organic Aerosols Contribute Substantially to Air Pollution Mortality	2
16	Measurement of the ambient organic aerosol volatility distribution: application during the Finokalia Aerosol Measurement Experiment (FAME-2008)	2
15	Measured and predicted aerosol light scattering enhancement factors at the high alpine site Jungfraujoch	2
14	Observations of heterogeneous reactions between Asian pollution and mineral dust over the Eastern North Pacific during INTEX-B	2
13	Aged organic aerosol in the Eastern Mediterranean: the Finokalia aerosol measurement experiment-2008	2
12	Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of trace gases and light-absorbing carbon from wood and dung cooking fires, garbage and crop residue burning, brick kilns, and other sources 2016 ,	2

11	Modeling the Removal of Water-Soluble Trace Gases from Indoor Air via Air Conditioner Condensate. <i>Environmental Science & Environmental Science & Env</i>	10.3	2
10	Ambient air quality in the Kathmandu Valley, Nepal during the pre-monsoon: Concentrations and sources of particulate matter and trace gases 2019 ,		1
9	Primary and secondary organic aerosol origin by combined gas-particle phase source apportionment		1
8	Total Observed Organic Carbon (TOOC): A synthesis of North American observations		1
7	Evaluating simulated primary anthropogenic and biomass burning organic aerosols during MILAGRO: implications for assessing treatments of secondary organic aerosols		1
6	Spatial variation of chemical composition and sources of submicron aerosol in Zurich: factor analysis of mobile aerosol mass spectrometer data		1
5	Black carbon physical properties and mixing state in the European megacity Paris		1
4	Improving Predictions of Indoor Aerosol Concentrations of Outdoor Origin by Considering the Phase Change of Semivolatile Material Driven by Temperature and Mass-Loading Gradients. <i>Environmental Science & Environmental Envir</i>	10.3	1
3	Emerging investigator series: chemical and physical properties of organic mixtures on indoor surfaces during HOMEChem. <i>Environmental Sciences: Processes and Impacts</i> , 2021 , 23, 559-568	4.3	1
2	Urban Emissions of Nitrogen Oxides, Carbon Monoxide, and Methane Determined from Ground-Based Measurements in Philadelphia. <i>Environmental Science & Determined from Ground-Based Measurements in Philadelphia</i> . <i>Environmental Science & Determined from Ground-Based Measurements in Philadelphia</i> .	4 5 44	О
1	CFC-11 measurements in China, Nepal, Pakistan, Saudi Arabia and South Korea (1998\(\textbf{0}\)018): Urban, landfill fire and garbage burning sources. <i>Environmental Chemistry</i> , 2022 , 18, 370-392	3.2	