Ting Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/662958/publications.pdf Version: 2024-02-01

ΤΙΝΟ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Perovskite Solar Cells with ZnO Electronâ€Transporting Materials. Advanced Materials, 2018, 30, 1703737.	11.1	319
2	Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO 2 layer. Nano Energy, 2017, 31, 462-468.	8.2	244
3	Mini Review on Flexible and Wearable Electronics for Monitoring Human Health Information. Nanoscale Research Letters, 2019, 14, 263.	3.1	172
4	Interface engineering of high efficiency perovskite solar cells based on ZnO nanorods using atomic layer deposition. Nano Research, 2017, 10, 1092-1103.	5.8	134
5	Mesoporous PbI2 assisted growth of large perovskite grains for efficient perovskite solar cells based on ZnO nanorods. Journal of Power Sources, 2017, 342, 990-997.	4.0	105
6	Solvent annealing of Pbl ₂ for the high-quality crystallization of perovskite films for solar cells with efficiencies exceeding 18%. Nanoscale, 2016, 8, 19654-19661.	2.8	82
7	Enhanced electronic transport in Fe ³⁺ -doped TiO ₂ for high efficiency perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 10754-10760.	2.7	80
8	SnO ₂ â€Based Perovskite Solar Cells: Configuration Design and Performance Improvement. Solar Rrl, 2019, 3, 1800292.	3.1	80
9	Low-temperature processed inorganic perovskites for flexible detectors with a broadband photoresponse. Nanoscale, 2019, 11, 2871-2877.	2.8	74
10	Enhanced efficiency and environmental stability of planar perovskite solar cells by suppressing photocatalytic decomposition. Journal of Materials Chemistry A, 2017, 5, 17368-17378.	5.2	72
11	High Speed and Stable Solutionâ€Processed Triple Cation Perovskite Photodetectors. Advanced Optical Materials, 2018, 6, 1701341.	3.6	69
12	Steering the crystallization of perovskites for high-performance solar cells in ambient air. Journal of Materials Chemistry A, 2019, 7, 12166-12175.	5.2	65
13	Enhanced performance of ZnO nanoparticle decorated all-inorganic CsPbBr ₃ quantum dot photodetectors. Journal of Materials Chemistry A, 2019, 7, 6134-6142.	5.2	64
14	Band alignment of Pb–Sn mixed triple cation perovskites for inverted solar cells with negligible hysteresis. Journal of Materials Chemistry A, 2019, 7, 9154-9162.	5.2	54
15	Flexible optoelectronic devices based on metal halide perovskites. Nano Research, 2020, 13, 1997-2018.	5.8	52
16	Mediator–Antisolvent Strategy to Stabilize All-Inorganic CsPbI ₃ for Perovskite Solar Cells with Efficiency Exceeding 16%. ACS Energy Letters, 2020, 5, 1619-1627.	8.8	46
17	Targeted Distribution of Passivator for Polycrystalline Perovskite Light-Emitting Diodes with High Efficiency. ACS Energy Letters, 2021, 6, 4187-4194.	8.8	41
18	High-Performance Paper-Based Capacitive Flexible Pressure Sensor and Its Application in Human-Related Measurement. Nanoscale Research Letters, 2019, 14, 183.	3.1	40

Ting Zhang

#	Article	IF	CITATIONS
19	Optimization of anti-solvent engineering toward high performance perovskite solar cells. Journal of Materials Research, 2019, 34, 2416-2424.	1.2	32
20	Solution-Processed Inorganic Perovskite Flexible Photodetectors with High Performance. Nanoscale Research Letters, 2019, 14, 284.	3.1	21
21	Improved crystallinity of perovskite via molecularly tailored surface modification of SnO2. Journal of Power Sources, 2019, 441, 227161.	4.0	20
22	Humidity-insensitive fabrication of efficient perovskite solar cells in ambient air. Journal of Power Sources, 2019, 412, 359-365.	4.0	19
23	Vacancies substitution induced interfacial dipole formation and defect passivation for highly stable perovskite solar cells. Chemical Engineering Journal, 2020, 396, 125010.	6.6	19
24	Optical and Electronic Properties of Femtosecond Laser-Induced Sulfur-Hyperdoped Silicon N+/P Photodiodes. Nanoscale Research Letters, 2017, 12, 522.	3.1	18
25	Suppressed Decomposition of Perovskite Film on ZnO Via a Selfâ€Assembly Monolayer of Methoxysilane. Solar Rrl, 2018, 2, 1800240.	3.1	18
26	Enhanced THz EIT resonance based on the coupled electric field dropping effect within the undulated meta-surface. Nanophotonics, 2019, 8, 1071-1078.	2.9	18
27	On-Chip THz Dynamic Manipulation Based on Tunable Spoof Surface Plasmon Polaritons. IEEE Electron Device Letters, 2019, 40, 1844-1847.	2.2	18
28	Flexible, UV-responsive perovskite photodetectors with low driving voltage. Journal of Materials Science, 2019, 54, 11556-11563.	1.7	17
29	Corrosive Behavior of Silver Electrode in Inverted Perovskite Solar Cells Based on Cu:NiO _x . IEEE Journal of Photovoltaics, 2019, 9, 1081-1085.	1.5	17
30	Self-Powered All-Inorganic Perovskite Photodetectors with Fast Response Speed. Nanoscale Research Letters, 2021, 16, 6.	3.1	17
31	Enhanced Crystallinity of Triple-Cation Perovskite Film via Doping NH4SCN. Nanoscale Research Letters, 2019, 14, 304.	3.1	14
32	Regulating crystallization dynamics and crystal orientation of methylammonium tin iodide enables high-efficiency lead-free perovskite solar cells. Nanoscale, 2022, 14, 1219-1225.	2.8	14
33	Physisorption of Oxygen in SnO ₂ Nanoparticles for Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2019, 9, 200-206.	1.5	12
34	Enhanced Electrons Extraction of Lithium-Doped SnO\$_{2}\$ Nanoparticles for Efficient Planar Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2019, 9, 1273-1279.	1.5	10
35	To Reveal Grain Boundary Induced Thermal Instability of Perovskite Semiconductor Thin Films for Photovoltaic Devices. IEEE Journal of Photovoltaics, 2019, 9, 207-213.	1.5	10
36	Controllable Two-dimensional Perovskite Crystallization via Water Additive for High-performance Solar Cells. Nanoscale Research Letters, 2020, 15, 108.	3.1	9

Ting Zhang

#	Article	IF	CITATIONS
37	Efficient THz On-Chip Absorption Based on Destructive Interference Between Complementary Meta-Atom Pairs. IEEE Electron Device Letters, 2019, 40, 1013-1016.	2.2	8
38	Zwitterion-Assisted Crystal Growth of 2D Perovskites with Unfavorable Phase Suppression for High-Performance Solar Cells. ACS Applied Materials & amp; Interfaces, 2022, 14, 814-825.	4.0	7
39	Compact microstrip bandpass filter using dual closed-loop stepped impedance resonator. International Journal of Microwave and Wireless Technologies, 2018, 10, 405-411.	1.5	6
40	Ultraâ€low phase noise oscillator employing mixed electric and magnetic coupling resonator. Microwave and Optical Technology Letters, 2020, 62, 1914-1919.	0.9	5
41	Strategies to Fabricate Flexible SnO2 Based Perovskite Solar Cells Using Pre-Crystallized SnO2. Journal of Physics: Conference Series, 2019, 1346, 012036.	0.3	0