List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6629464/publications.pdf Version: 2024-02-01

Δ ΝΑΒ ΡΑΗΛ

1	Analysis and Mitigation of DRAM Faults in Sparse-DNN Accelerators. IEEE Design and Test, 2023, 40, 90-99.	1.1	0
2	ENROUTE: An Entropy Aware Routing Scheme for Information-Centric Networks (ICN). Wireless Personal Communications, 2022, 122, 1171-1195.	1.8	0
3	Exploring the Design of Energy-Efficient Intermittently Powered Systems Using Reconfigurable Ferroelectric Transistors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022, 30, 365-378.	2.1	4
4	Special Session: Effective In-field Testing of Deep Neural Network Hardware Accelerators. , 2022, , .		0
5	Improving Network Throughput by Hardware Realization of a Dynamic Content Caching Scheme for Information-Centric Networking (ICN). Wireless Personal Communications, 2021, 116, 2873-2898.	1.8	3
6	HIPER: Low Power, High Performance and Area-Efficient Hardware Accelerators for Hidden Periodicity Detection using Ramanujan Filter Banks. , 2021, , .		1
7	Design Considerations for Edge Neural Network Accelerators: An Industry Perspective. , 2021, , .		9
8	PreSyNC: Hardware realization of the Presynaptic Region of a Biologically Extensive Neuronal Circuitry. , 2021, , .		1
9	Toward Functional Safety of Systolic Array-Based Deep Learning Hardware Accelerators. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29, 485-498.	2.1	33
10	SyNC, a Computationally Extensive and Realistic Neural Net to Identify Relative Impacts of Synaptopathy Mechanisms on Glutamatergic Neurons and Their Networks in Autism and Complex Neurological Disorders. Frontiers in Cellular Neuroscience, 2021, 15, 674030.	1.8	1
11	Special Session: Approximate TinyML Systems: Full System Approximations for Extreme Energy-Efficiency in Intelligent Edge Devices. , 2021, , .		4
12	Embedding Approximate Nonlinear Model Predictive Control at Ultrahigh Speed and Extremely Low Power. IEEE Transactions on Control Systems Technology, 2020, 28, 1092-1099.	3.2	16
13	Energy-Efficient Edge Detection using Approximate Ramanujan Sums. , 2020, , .		3
14	Energy-Efficient IoT-Health Monitoring System using Approximate Computing. Internet of Things (Netherlands), 2020, 9, 100166.	4.9	50
15	Approximate Memory Compression. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28, 980-991.	2.1	11
16	Valley-Coupled-Spintronic Non-Volatile Memories With Compute-In-Memory Support. IEEE Nanotechnology Magazine, 2020, 19, 635-647.	1.1	7
17	Approximate inference systems (AxIS). , 2020, , .		10
18	IPS-CiM: Enhancing Energy Efficiency of Intermittently-Powered Systems with Compute-in-Memory. , 2020, , .		3

#	Article	IF	CITATIONS
19	Non-volatile Logic and Memory based on Reconfigurable Ferroelectric Transistors. , 2019, , .		4
20	Approximate Systems: Synergistically Approximating Sensing, Computing, Memory, and Communication Subsystems for Energy Efficiency. , 2019, , 349-368.		0
21	D-PUF. Transactions on Embedded Computing Systems, 2018, 17, 1-31.	2.1	25
22	Designing Energy-Efficient Intermittently Powered Systems Using Spin-Hall-Effect-Based Nonvolatile SRAM. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26, 294-307.	2.1	18
23	Approximating Beyond the Processor: Exploring Full-System Energy-Accuracy Tradeoffs in a Smart Camera System. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26, 2884-2897.	2.1	27
24	Memory-Based Combination PUFs for Device Authentication in Embedded Systems. IEEE Transactions on Multi-Scale Computing Systems, 2018, 4, 793-810.	2.5	18
25	Synergistic Approximation of Computation and Memory Subsystems for Error-Resilient Applications. IEEE Embedded Systems Letters, 2017, 9, 21-24.	1.3	8
26	Energy-Aware Memory Mapping for Hybrid FRAM-SRAM MCUs in Intermittently-Powered IoT Devices. Transactions on Embedded Computing Systems, 2017, 16, 1-23.	2.1	36
27	Towards Full-System Energy-Accuracy Tradeoffs. , 2017, , .		36
28	Quality Configurable Approximate DRAM. IEEE Transactions on Computers, 2017, 66, 1172-1187.	2.4	53
29	<scp>q</scp> LUT. Transactions on Embedded Computing Systems, 2017, 16, 1-23.	2.1	23
30	Ultrafast embedded explicit model predictive control for nonlinear systems. , 2017, , .		2
31	Energy-Efficient Reduce-and-Rank Using Input-Adaptive Approximations. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25, 462-475.	2.1	20
32	Approximate memory compression for energy-efficiency. , 2017, , .		21
33	D-PUF., 2016,,.		43
34	Sleep-Mode Voltage Scaling. Transactions on Embedded Computing Systems, 2016, 16, 1-25.	2.1	2
35	Input-Based Dynamic Reconfiguration of Approximate Arithmetic Units for Video Encoding. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24, 846-857.	2.1	64
36	Energy-Aware Memory Mapping for Hybrid FRAM-SRAM MCUs in IoT Edge Devices. , 2016, , .		25

 ${\it Energy-Aware\ Memory\ Mapping\ for\ Hybrid\ FRAM-SRAM\ MCUs\ in\ IoT\ Edge\ Devices.\ ,\ 2016,\ ,\ .}$ 36

3

#	Article	IF	CITATIONS
37	Energy-efficient system design for IoT devices. , 2016, , .		64
38	Quality Configurable Reduce-and-Rank for Energy Efficient Approximate Computing. , 2015, , .		19
39	Q <scp>uick</scp> R <scp>ecall</scp> . ACM Journal on Emerging Technologies in Computing Systems, 2015, 12, 1-19.	1.8	56
40	Quality-aware data allocation in approximate DRAM. , 2015, , .		27
41	VIDalizer: An energy efficient video streamer. , 2015, , .		1
42	Hypnos. , 2014, , .		15
43	Powering the internet of things. , 2014, , .		150
44	QUICKRECALL: A Low Overhead HW/SW Approach for Enabling Computations across Power Cycles in Transiently Powered Computers. , 2014, , .		141
45	ASLAN: Synthesis of approximate sequential circuits. , 2014, , .		22
46	A Power Efficient Video Encoder Using Reconfigurable Approximate Arithmetic Units. , 2014, , .		15
47	ASLAN: Synthesis of approximate sequential circuits. , 2014, , .		18
48	HelloMsgC: A Practical Implementation of Hello Message Protocol in Wireless Sensor Network. Procedia Technology, 2013, 10, 546-553.	1.1	0
49	A fuzzy based trustworthy route selection method using LSRP in wireless sensor networks (FTRSP). , 2012, , .		4
50	Fuzzy Logic Election of Node for Routing in WSNs. , 2012, , .		6
51	An optimal sensor deployment scheme to ensure multi level coverage and connectivity in wireless sensor networks. , 2012, , .		8
52	A Novel Indirect Trust Based Link State Routing Scheme Using a Robust Route Trust Method for Wireless Sensor Networks. , 2012, , .		3
53	An efficient sleep protocol for lifetime enhancement in multi covered and multi connected WSNs. , 2012, , .		1
54	A Real Time Multivariate Robust Regression Based Flood Prediction Model Using Polynomial Approximation for Wireless Sensor Network Based Flood Forecasting Systems. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2012, , 432-441.	0.2	2

#	Article	IF	CITATIONS
55	Geometric mean based trust management system for WSNs (GMTMS). , 2011, , .		16
56	Trust integrated link state routing protocol for Wireless Sensor Networks (TILSRP). , 2011, , .		12
57	A Direct Trust dependent Link State Routing Protocol Using Route Trusts for WSNs (DTLSRP). Wireless Sensor Network, 2011, 03, 125-134.	0.3	20
58	A Low Complexity Multivariate Regression Based Flood Forecasting Model Using an Optimized WSN Deployment Scheme. Advanced Materials Research, 0, 403-408, 3484-3494.	0.3	0