Andrea Gianotti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6629219/publications.pdf

Version: 2024-02-01

64 papers

2,849 citations

30 h-index 52 g-index

64 all docs

64
docs citations

64 times ranked 3437 citing authors

#	Article	IF	CITATIONS
1	Roasting and frying modulate the phenolic profile of dark purple eggplant and differently change the colon microbiota and phenolic metabolites after in vitro digestion and fermentation in a gut model. Food Research International, 2022, 160, 111702.	2.9	6
2	Effect of formulations and fermentation processes on volatile organic compounds and prebiotic potential of gluten-free bread fortified by spirulina (<i>Arthrospira platensis</i>). Food and Function, 2021, 12, 10226-10238.	2.1	13
3	Volatilome changes during probiotic fermentation of combined soy and rice drinks. Food and Function, 2021, 12, 3159-3169.	2.1	17
4	Colonic In Vitro Model Assessment of the Prebiotic Potential of Bread Fortified with Polyphenols Rich Olive Fiber. Nutrients, 2021, 13, 787.	1.7	17
5	Plant Volatiles of Lettuce and Chicory Cultivated in Aquaponics Are Associated to Their Microbial Community. Microorganisms, 2021, 9, 580.	1.6	5
6	Antioxidant and Angiotensin I-Converting Enzyme (ACE) Inhibitory Peptides Obtained from Alcalase Protein Hydrolysate Fractions of Hemp (<i>Cannabis sativa</i> L.) Bran. Journal of Agricultural and Food Chemistry, 2021, 69, 9220-9228.	2.4	31
7	Prebiotic potential and bioactive volatiles of hemp byproduct fermented by lactobacilli. LWT - Food Science and Technology, 2021, 151, 112201.	2.5	18
8	Multiunit In Vitro Colon Model for the Evaluation of Prebiotic Potential of a Fiber Plus D-Limonene Food Supplement. Foods, 2021, 10, 2371.	1.9	13
9	The Exploitation of a Hempseed Byproduct to Produce Flavorings and Healthy Food Ingredients by a Fermentation Process. Microorganisms, 2021, 9, 2418.	1.6	5
10	Olive oil by-product as functional ingredient in bakery products. Influence of processing and evaluation of biological effects. Food Research International, 2020, 131, 108940.	2.9	38
11	Comparing the Effectiveness of Three Different Biorefinery Processes at Recovering Bioactive Products from Hemp (Cannabis sativa L.) Byproduct. Food and Bioprocess Technology, 2020, 13, 2156-2171.	2.6	10
12	Yeast-Free Doughs by Zymomonas mobilis: Evaluation of Technological and Fermentation Performances by Using a Metabolomic Approach. Microorganisms, 2020, 8, 792.	1.6	16
13	Functional, nutritional, antioxidant, sensory properties and comparative peptidomic profile of faba bean (Vicia faba, L.) seed protein hydrolysates and fortified apple juice. Food Chemistry, 2020, 330, 127120.	4.2	67
14	Intestinal fermentation <i>in vitro</i> models to study food-induced gut microbiota shift: an updated review. FEMS Microbiology Letters, 2020, 367, .	0.7	43
15	Gluten free sourdough bread enriched with cricket flour for protein fortification: Antioxidant improvement and Volatilome characterization. Food Chemistry, 2020, 333, 127410.	4.2	62
16	Microbial Fermentation of Industrial Rice-Starch Byproduct as Valuable Source of Peptide Fractions with Health-Related Activity. Microorganisms, 2020, 8, 986.	1.6	12
17	Prebiotic potential of hemp blended drinks fermented by probiotics. Food Research International, 2020, 131, 109029.	2.9	56
18	Shift of Volatile Organic Compounds (VOCs) in Gluten-Free Hemp-Enriched Sourdough Bread: A Metabolomic Approach. Nutrients, 2020, 12, 1050.	1.7	28

#	Article	IF	Citations
19	Shift of Aromatic Profile in Probiotic Hemp Drink Formulations: A Metabolomic Approach. Microorganisms, 2019, 7, 509.	1.6	18
20	Changes in carotenoids, phenolic acids and antioxidant capacity in bread wheat doughs fermented with different lactic acid bacteria strains. Food Chemistry, 2019, 292, 211-216.	4.2	64
21	In Vivo Effects of Einkorn Wheat (Triticum monococcum) Bread on the Intestinal Microbiota, Metabolome, and on the Glycemic and Insulinemic Response in the Pig Model. Nutrients, 2019, 11, 16.	1.7	17
22	Metabolomic approach to study the impact of flour type and fermentation process on volatile profile of bakery products. Food Research International, 2019, 119, 510-516.	2.9	34
23	In vitro bioaccessibility and bioavailability of iron from breads fortified with microencapsulated iron. LWT - Food Science and Technology, 2019, 99, 431-437.	2.5	36
24	Development of a rapid PCR protocol to detect Vibrio parahaemolyticus in clams. Journal of Food Science and Technology, 2018, 55, 749-759.	1.4	12
25	Effect of sourdough fermentation and baking process severity on bioactive fiber compounds in immature and ripe wheat flour bread. LWT - Food Science and Technology, 2018, 89, 322-328.	2.5	15
26	Sourdough Fermentation Favorably Influences Selenium Biotransformation and the Biological Effects of Flatbread. Nutrients, 2018, 10, 1898.	1.7	18
27	Olive oil industry by-products. Effects of a polyphenol-rich extract on the metabolome and response to inflammation in cultured intestinal cell. Food Research International, 2018, 113, 392-400.	2.9	47
28	LC-ESI-QTOF-MS identification of novel antioxidant peptides obtained by enzymatic and microbial hydrolysis of vegetable proteins. Food Chemistry, 2017, 228, 186-196.	4.2	82
29	Bioavailability of Microencapsulated Iron from Fortified Bread Assessed Using Piglet Model. Nutrients, 2017, 9, 272.	1.7	12
30	Integrated Evaluation of the Potential Health Benefits of Einkorn-Based Breads. Nutrients, 2017, 9, 1232.	1.7	38
31	Effect of sourdough fermentation and baking process severity on dietary fibre and phenolic compounds of immature wheat flour bread. LWT - Food Science and Technology, 2017, 83, 26-32.	2.5	36
32	Improving the functional and sensorial profile of cereal-based fermented foods by selecting Lactobacillus plantarum strains via a metabolomics approach. Food Research International, 2016, 89, 1095-1105.	2.9	67
33	Bioactive peptides from vegetable food matrices: Research trends and novel biotechnologies for synthesis and recovery. Journal of Functional Foods, 2016, 27, 549-569.	1.6	178
34	The response of foodborne pathogens to osmotic and desiccation stresses in the food chain. International Journal of Food Microbiology, 2016, 221, 37-53.	2.1	157
35	Antioxidative and anti-inflammatory effect of in vitro digested cookies baked using different types of flours and fermentation methods. Food Research International, 2016, 88, 256-262.	2.9	30
36	Diversity of food-borne <i>Bacillus</i> volatile compounds and influence on fungal growth. Journal of Applied Microbiology, 2015, 119, 487-499.	1.4	100

3

#	Article	IF	Citations
37	Physico-chemical and metabolomic characterization of KAMUT® Khorasan and durum wheat fermented dough. Food Chemistry, 2015, 187, 451-459.	4.2	25
38	Quality evaluation by physical tests of a traditional Italian flat bread Piadina during storage and shelf-life improvement with sourdough and enzymes. European Food Research and Technology, 2015, 240, 1081-1089.	1.6	20
39	Effects of flour storage and heat generated during milling on starch, dietary fibre and polyphenols in stoneground flours from two durumâ€type wheats. International Journal of Food Science and Technology, 2014, 49, 2230-2236.	1.3	21
40	Role of Kamut® brand khorasan wheat in the counteraction of non-celiac wheat sensitivity and oxidative damage. Food Research International, 2014, 63, 218-226.	2.9	28
41	Exploitation of starch industry liquid by-product to produce bioactive peptides from rice hydrolyzed proteins. Food Chemistry, 2014, 155, 199-206.	4.2	67
42	Impact of Kamut® Khorasan on gut microbiota and metabolome in healthy volunteers. Food Research International, 2014, 63, 227-232.	2.9	38
43	Optimisation of assay conditions for the determination of antioxidant capacity and polyphenols in cereal food components. Journal of Food Composition and Analysis, 2013, 30, 94-101.	1.9	62
44	Physiology and Biochemistry of Sourdough Yeasts. , 2013, , 155-181.		5
45	High-Pressure Homogenization to Modify Yeast Performance for Sparkling Wine Production According to Traditional Methods. American Journal of Enology and Viticulture, 2013, 64, 258-267.	0.9	17
46	Counteraction of oxidative damage in the rat liver by an ancient grain (Kamut brand khorasan wheat). Nutrition, 2012, 28, 436-441.	1.1	33
47	Effect of Starch Addition to Fluid Dough During the Bread Making Process. , 2011, , 375-384.		0
48	Role of cereal type and processing in whole grain in vivo protection from oxidative stress. Frontiers in Bioscience - Landmark, 2011, 16, 1609.	3.0	40
49	Fermentation as a Tool to Improve Healthy Properties of Bread. , 2011, , 385-393.		1
50	Effect of acidic conditions on fatty acid composition and membrane fluidity of Escherichia coli strains isolated from Crescenza cheese. Annals of Microbiology, 2009, 59, 603-610.	1.1	18
51	Influence of starch addition and dough microstructure on fermentation aroma production by yeasts and lactobacilli. Food Chemistry, 2008, 108, 1217-1225.	4.2	36
52	Involvement of cell fatty acid composition and lipid metabolism in adhesion mechanism of Listeria monocytogenes. International Journal of Food Microbiology, 2008, 123, 9-17.	2.1	30
53	Generation of aroma compounds in sourdough: Effects of stress exposure and lactobacilli–yeasts interactions. Food Microbiology, 2007, 24, 139-148.	2.1	73
54	Use of Yarrowia lipolytica strains for the treatment of olive mill wastewater. Bioresource Technology, 2005, 96, 317-322.	4.8	154

#	Article	IF	CITATIONS
55	A survey on yeast microbiota associated with an Italian traditional sweet-leavened baked good fermentation. Food Research International, 2004, 37, 469-476.	2.9	50
56	Use of natural aroma compounds to improve shelf-life and safety of minimally processed fruits. Trends in Food Science and Technology, 2004, 15, 201-208.	7.8	316
57	Application of Hexanal, (E)-2-Hexenal, and Hexyl Acetate To Improve the Safety of Fresh-Sliced Apples. Journal of Agricultural and Food Chemistry, 2003, 51, 2958-2963.	2.4	104
58	Sucrose–salt combined effects on mass transfer kinetics and product acceptability. Study on apple osmotic treatments. Journal of Food Engineering, 2001, 49, 163-173.	2.7	92
59	Microbial aspects on short-time osmotic treatment of kiwifruit. Journal of Food Engineering, 2001, 49, 265-270.	2.7	28
60	Effect of High Pressure Homogenization on Microbial and Chemico-Physical Characteristics of Goat Cheeses. Journal of Dairy Science, 1999, 82, 851-862.	1.4	84
61	Modelling of the activity of selected starters during sourdough fermentation. Food Microbiology, 1997, 14, 327-337.	2.1	23
62	Shelf-life modelling for fresh-cut vegetables. Postharvest Biology and Technology, 1996, 9, 195-207.	2.9	57
63	Dynamic Stresses of Lactic Acid Bacteria Associated to Fermentation Processes. , 0, , .		9
64	Looking for peptides from rice starch processing by-product: Bioreactor production, anti-tyrosinase and anti-inflammatory activity, and in silico putative taste assessment. Frontiers in Plant Science, 0, 13,	1.7	O

5