Benita S Katzenellenbogen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6629062/publications.pdf

Version: 2024-02-01

223 papers	20,244 citations	⁸²⁰⁸ 78 h-index	14386 132 g-index
233	233	233	16545
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Targeting Metabolic Adaptations in the Breast Cancer–Liver Metastatic Niche Using Dietary Approaches to Improve Endocrine Therapy Efficacy. Molecular Cancer Research, 2022, 20, 923-937.	1.5	11
2	FOXM1 regulates glycolysis and energy production in multiple myeloma. Oncogene, 2022, 41, 3899-3911.	2.6	16
3	Contrasting activities of estrogen receptor beta isoforms in triple negative breast cancer. Breast Cancer Research and Treatment, 2021, 185, 281-292.	1.1	25
4	Defining the Energetic Basis for a Conformational Switch Mediating Ligand-Independent Activation of Mutant Estrogen Receptors in Breast Cancer. Molecular Cancer Research, 2021, 19, 1559-1570.	1.5	6
5	Dual-mechanism estrogen receptor inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16
6	Estrogen receptor gets a grip on RNA. Cell, 2021, 184, 5086-5088.	13.5	1
7	Pathway Preferential Estrogens Prevent Hepatosteatosis Due to Ovariectomy and High-Fat Diets. Nutrients, 2021, 13, 3334.	1.7	5
8	Transcription Regulation and Genome Rewiring Governing Sensitivity and Resistance to FOXM1 Inhibition in Breast Cancer. Cancers, 2021, 13, 6282.	1.7	7
9	Suppression of Tumor Growth, Metastasis, and Signaling Pathways by Reducing FOXM1 Activity in Triple Negative Breast Cancer. Cancers, 2020, 12, 2677.	1.7	17
10	The tissue-specific effects of different 17β-estradiol doses reveal the key sensitizing role of AF1 domain in ERα activity. Molecular and Cellular Endocrinology, 2020, 505, 110741.	1.6	10
11	Combined Targeting of Estrogen Receptor Alpha and Exportin 1 in Metastatic Breast Cancers. Cancers, 2020, 12, 2397.	1.7	10
12	Suppression of breast cancer metastasis and extension of survival by a new antiestrogen in a preclinical model driven by mutant estrogen receptors. Breast Cancer Research and Treatment, 2020, 181, 297-307.	1.1	8
13	Suppression of FOXM1 activities and breast cancer growth in vitro and in vivo by a new class of compounds. Npj Breast Cancer, 2019, 5, 45.	2.3	54
14	Structural underpinnings of oestrogen receptor mutations in endocrine therapy resistance. Nature Reviews Cancer, 2018, 18, 377-388.	12.8	148
15	Respective role of membrane and nuclear estrogen receptor (ER) α in the mandible of growing mice: Implications for ERα modulation. Journal of Bone and Mineral Research, 2018, 33, 1520-1531.	3.1	9
16	Non-estrogenic Xanthohumol Derivatives Mitigate Insulin Resistance and Cognitive Impairment in High-Fat Diet-induced Obese Mice. Scientific Reports, 2018, 8, 613.	1.6	53
17	Antagonists for Constitutively Active Mutant Estrogen Receptors: Insights into the Roles of Antiestrogen-Core and Side-Chain. ACS Chemical Biology, 2018, 13, 3374-3384.	1.6	8
18	Selective Nonnuclear Estrogen Receptor Activation Decreases Stroke Severity and Promotes Functional Recovery in Female Mice. Endocrinology, 2018, 159, 3848-3859.	1.4	25

#	Article	IF	CITATIONS
19	New Class of Selective Estrogen Receptor Degraders (SERDs): Expanding the Toolbox of PROTAC Degrons. ACS Medicinal Chemistry Letters, 2018, 9, 803-808.	1.3	47
20	Predominant Role of Nuclear Versus Membrane Estrogen Receptor α in Arterial Protection: Implications for Estrogen Receptor α Modulation in Cardiovascular Prevention/Safety. Journal of the American Heart Association, 2018, 7, .	1.6	45
21	MMTV-PyMT and Derived Met-1 Mouse Mammary Tumor Cells as Models for Studying the Role of the Androgen Receptor in Triple-Negative Breast Cancer Progression. Hormones and Cancer, 2017, 8, 69-77.	4.9	45
22	Non-nuclear estrogen receptor alpha activation in endothelium reduces cardiac ischemia-reperfusion injury in mice. Journal of Molecular and Cellular Cardiology, 2017, 107, 41-51.	0.9	63
23	Estrogen Receptor-β Modulation of the ERα-p53 Loop Regulating Gene Expression, Proliferation, and Apoptosis in Breast Cancer. Hormones and Cancer, 2017, 8, 230-242.	4.9	39
24	Structurally Novel Antiestrogens Elicit Differential Responses from Constitutively Active Mutant Estrogen Receptors in Breast Cancer Cells and Tumors. Cancer Research, 2017, 77, 5602-5613.	0.4	48
25	Adamantyl Antiestrogens with Novel Side Chains Reveal a Spectrum of Activities in Suppressing Estrogen Receptor Mediated Activities in Breast Cancer Cells. Journal of Medicinal Chemistry, 2017, 60, 6321-6336.	2.9	27
26	Full antagonism of the estrogen receptor without a prototypical ligand side chain. Nature Chemical Biology, 2017, 13, 111-118.	3.9	48
27	Comprehensive assessment of estrogen receptor beta antibodies in cancer cell line models and tissue reveals critical limitations in reagent specificity. Molecular and Cellular Endocrinology, 2017, 440, 138-150.	1.6	91
28	Estrogen receptor alpha somatic mutations Y537S and D538G confer breast cancer endocrine resistance by stabilizing the activating function-2 binding conformation. ELife, 2016, 5, .	2.8	212
29	Dietary licorice root supplementation reduces dietâ€induced weight gain, lipid deposition, and hepatic steatosis in ovariectomized mice without stimulating reproductive tissues and mammary gland. Molecular Nutrition and Food Research, 2016, 60, 369-380.	1.5	51
30	Design of pathway preferential estrogens that provide beneficial metabolic and vascular effects without stimulating reproductive tissues. Science Signaling, 2016, 9, ra53.	1.6	81
31	Estrogen receptor-α and aryl hydrocarbon receptor involvement in the actions of botanical estrogens in target cells. Molecular and Cellular Endocrinology, 2016, 437, 190-200.	1.6	22
32	Nonnuclear Estrogen Receptor Activation Improves Hepatic Steatosis in Female Mice. Endocrinology, 2016, 157, 3731-3741.	1.4	30
33	Endocrine treatment in breast cancer: Cure, resistance and beyond. Cancer Treatment Reviews, 2016, 50, 68-81.	3.4	114
34	Multiple Beneficial Roles of Repressor of Estrogen Receptor Activity (REA) in Suppressing the Progression of Endometriosis. Endocrinology, 2016, 157, 900-912.	1.4	15
35	The anticancer potential of steroidal saponin, dioscin, isolated from wild yam (Dioscorea villosa) root extract in invasive human breast cancer cell line MDA-MB-231 inÂvitro. Archives of Biochemistry and Biophysics, 2016, 591, 98-110.	1.4	52
36	Differential utilization of nuclear and extranuclear receptor signaling pathways in the actions of estrogens, SERMs, and a tissue-selective estrogen complex (TSEC). Journal of Steroid Biochemistry and Molecular Biology, 2016, 158, 198-206.	1.2	10

#	Article	IF	CITATIONS
37	Licorice root components in dietary supplements are selective estrogen receptor modulators with a spectrum of estrogenic and anti-estrogenic activities. Steroids, 2016, 105, 42-49.	0.8	48
38	<i>Science Signaling</i> podcast for 24 May 2016: Designer estrogens. Science Signaling, 2016, 9, pc12.	1.6	0
39	Highly Selective Salicylketoxime-Based Estrogen Receptor β Agonists Display Antiproliferative Activities in a Glioma Model. Journal of Medicinal Chemistry, 2015, 58, 1184-1194.	2.9	22
40	Dual suppression of estrogenic and inflammatory activities for targeting of endometriosis. Science Translational Medicine, 2015, 7, 271ra9.	5.8	120
41	Ligand Accessibility and Bioactivity of a Hormone–Dendrimer Conjugate Depend on pH and pH History. Journal of the American Chemical Society, 2015, 137, 10326-10335.	6.6	13
42	Protective Hematopoietic Effect of Estrogens in a Mouse Model of Thrombosis: Respective Roles of Nuclear Versus Membrane Estrogen Receptor α. Endocrinology, 2015, 156, 4293-4301.	1.4	8
43	The Activation Function-1 of Estrogen Receptor Alpha Prevents Arterial Neointima Development Through a Direct Effect on Smooth Muscle Cells. Circulation Research, 2015, 117, 770-778.	2.0	50
44	Highly Sensitive Quantitative Imaging for Monitoring Single Cancer Cell Growth Kinetics and Drug Response. PLoS ONE, 2014, 9, e89000.	1.1	52
45	The forkhead transcription factor FOXM1 promotes endocrine resistance and invasiveness in estrogen receptor-positive breast cancer by expansion of stem-like cancer cells. Breast Cancer Research, 2014, 16, 436.	2.2	102
46	Estrogen-Induced CCN1 Is Critical for Establishment of Endometriosis-Like Lesions in Mice. Molecular Endocrinology, 2014, 28, 1934-1947.	3.7	13
47	Novel Roles for ERK5 and Cofilin as Critical Mediators Linking ERα-Driven Transcription, Actin Reorganization, and Invasiveness in Breast Cancer. Molecular Cancer Research, 2014, 12, 714-727.	1.5	54
48	Estrogen receptor-mediated transcription involves the activation of multiple kinase pathways in neuroblastoma cells. Journal of Steroid Biochemistry and Molecular Biology, 2014, 139, 45-53.	1.2	34
49	The uterine and vascular actions of estetrol delineate a distinctive profile of estrogen receptor α modulation, uncoupling nuclear and membrane activation. EMBO Molecular Medicine, 2014, 6, 1328-1346.	3.3	96
50	Transcriptomic Analysis Identifies Gene Networks Regulated by Estrogen Receptor α (ERα) and ERβ that Control Distinct Effects of Different Botanical Estrogens. Nuclear Receptor Signaling, 2014, 12, nrs.12001.	1.0	59
51	Integration of Molecular Profiling and Chemical Imaging to Elucidate Fibroblast-Microenvironment Impact on Cancer Cell Phenotype and Endocrine Resistance in Breast Cancer. PLoS ONE, 2014, 9, e96878.	1.1	36
52	Integrative genomics of gene and metabolic regulation by estrogen receptors α and β, and their coregulators. Molecular Systems Biology, 2013, 9, 676.	3.2	81
53	A MicroRNA196a2* and TP63 Circuit Regulated by Estrogen Receptor-α and ERK2 that Controls Breast Cancer Proliferation and Invasiveness Properties. Hormones and Cancer, 2013, 4, 78-91.	4.9	26
54	14-3-3ζ as a predictor of early time to recurrence and distant metastasis in hormone receptor-positive and -negative breast cancers. Breast Cancer Research and Treatment, 2013, 137, 689-696.	1.1	21

#	Article	IF	CITATIONS
55	Non-Nuclear–Initiated Actions of the Estrogen Receptor Protect Cortical Bone Mass. Molecular Endocrinology, 2013, 27, 649-656.	3.7	50
56	The Coregulator, Repressor of Estrogen Receptor Activity (REA), Is a Crucial Regulator of the Timing and Magnitude of Uterine Decidualization. Endocrinology, 2013, 154, 1349-1360.	1.4	15
57	Mechanisms enforcing the estrogen receptor β selectivity of botanical estrogens. FASEB Journal, 2013, 27, 4406-4418.	0.2	92
58	Aryl Hydrocarbon Receptor Modulation of Estrogen Receptor α-Mediated Gene Regulation by a Multimeric Chromatin Complex Involving the Two Receptors and the Coregulator RIP140. Toxicological Sciences, 2012, 125, 401-411.	1.4	33
59	Phosphorylation by p38 Mitogen-Activated Protein Kinase Promotes Estrogen Receptor <i>α</i> Turnover and Functional Activity via the SCF ^{Skp2} Proteasomal Complex. Molecular and Cellular Biology, 2012, 32, 1928-1943.	1.1	57
60	Reversal of endocrine resistance in breast cancer: interrelationships among 14-3-3ζ, FOXM1, and a gene signature associated with mitosis. Breast Cancer Research, 2011, 13, R70.	2.2	70
61	Estrogen receptor β ligands: Recent advances and biomedical applications. Medicinal Research Reviews, 2011, 31, 364-442.	5.0	133
62	The Estrogen-Regulated Transcription Factor PITX1 Coordinates Gene-Specific Regulation by Estrogen Receptor-Alpha in Breast Cancer Cells. Molecular Endocrinology, 2011, 25, 1699-1709.	3.7	26
63	Genomic Collaboration of Estrogen Receptor α and Extracellular Signal-Regulated Kinase 2 in Regulating Gene and Proliferation Programs. Molecular and Cellular Biology, 2011, 31, 226-236.	1.1	107
64	Extranuclear estrogen receptor-α stimulates NeuroD1 binding to the insulin promoter and favors insulin synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13057-13062.	3.3	122
65	Genome-Wide Dynamics of Chromatin Binding of Estrogen Receptors α and β: Mutual Restriction and Competitive Site Selection. Molecular Endocrinology, 2010, 24, 47-59.	3.7	117
66	Genome-Wide Analysis of Estrogen Receptor α DNA Binding and Tethering Mechanisms Identifies Runx1 as a Novel Tethering Factor in Receptor-Mediated Transcriptional Activation. Molecular and Cellular Biology, 2010, 30, 3943-3955.	1.1	183
67	Characterization of the Pharmacophore Properties of Novel Selective Estrogen Receptor Downregulators (SERDs). Journal of Medicinal Chemistry, 2010, 53, 3320-3329.	2.9	49
68	Activation of ERα is necessary for estradiol's anorexigenic effect in female rats. Hormones and Behavior, 2010, 58, 872-877.	1.0	50
69	Non-nuclear estrogen receptor \hat{I}_{\pm} signaling promotes cardiovascular protection but not uterine or breast cancer growth in mice. Journal of Clinical Investigation, 2010, 120, 2319-2330.	3.9	217
70	Estrogen Receptor Alpha Represses Transcription of Early Target Genes via p300 and CtBP1. Molecular and Cellular Biology, 2009, 29, 1749-1759.	1.1	59
71	Bibenzyl- and stilbene-core compounds with non-polar linker atom substituents as selective ligands for estrogen receptor beta. European Journal of Medicinal Chemistry, 2009, 44, 3412-3424.	2.6	27
72	Post-transcriptional regulation of chemokine receptor CXCR4 by estrogen in HER2 overexpressing, estrogen receptor-positive breast cancer cells. Breast Cancer Research and Treatment, 2009, 117, 243-251.	1.1	33

#	Article	IF	CITATIONS
73	Phenethyl pyridines with non-polar internal substitutents as selective ligands for estrogen receptor beta. European Journal of Medicinal Chemistry, 2009, 44, 3560-3570.	2.6	6
74	Analogs of methyl-piperidinopyrazole (MPP): Antiestrogens with estrogen receptor α selective activity. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 108-110.	1.0	46
75	NFκB selectivity of estrogen receptor ligands revealed by comparative crystallographic analyses. Nature Chemical Biology, 2008, 4, 241-247.	3.9	149
76	The roles of membrane estrogen receptor subtypes in modulating dopamine transporters in PCâ€12 cells. Journal of Neurochemistry, 2008, 106, 1525-1533.	2.1	66
77	A Human Estrogen Receptor (ER)α Mutation with Differential Responsiveness to Nonsteroidal Ligands: Novel Approaches for Studying Mechanism of ER Action. Molecular Endocrinology, 2008, 22, 1552-1564.	3.7	12
78	Differential estradiol and selective estrogen receptor modulator (SERM) regulation of Keratin 13 gene expression and its underlying mechanism in breast cancer cells. Molecular and Cellular Endocrinology, 2008, 296, 1-9.	1.6	23
79	Monoaryl-Substituted Salicylaldoximes as Ligands for Estrogen Receptor \hat{l}^2 . Journal of Medicinal Chemistry, 2008, 51, 1344-1351.	2.9	26
80	Estrogen Receptor Regulation of Carbonic Anhydrase XII through a Distal Enhancer in Breast Cancer. Cancer Research, 2008, 68, 3505-3515.	0.4	137
81	A Repressive Role for Prohibitin in Estrogen Signaling. Molecular Endocrinology, 2008, 22, 344-360.	3.7	115
82	Nuclear and Extranuclear Pathway Inputs in the Regulation of Global Gene Expression by Estrogen Receptors. Molecular Endocrinology, 2008, 22, 2116-2127.	3.7	157
83	Estrogen Receptors \hat{I}_{\pm} and \hat{I}^2 as Determinants of Gene Expression: Influence of Ligand, Dose, and Chromatin Binding. Molecular Endocrinology, 2008, 22, 1032-1043.	3.7	159
84	Estrogen-Regulated Gene Networks in Human Breast Cancer Cells: Involvement of E2F1 in the Regulation of Cell Proliferation. Molecular Endocrinology, 2007, 21, 2112-2123.	3.7	112
85	Whole-Genome Cartography of Estrogen Receptor α Binding Sites. PLoS Genetics, 2007, 3, e87.	1.5	400
86	Structure-Guided Optimization of Estrogen Receptor Binding Affinity and Antagonist Potency of Pyrazolopyrimidines with Basic Side Chains. Journal of Medicinal Chemistry, 2007, 50, 399-403.	2.9	37
87	Elemental Isomerism: A Boron-Nitrogen Surrogate for a Carbon-Carbon Double Bond Increases the Chemical Diversity of Estrogen Receptor Ligands. Chemistry and Biology, 2007, 14, 659-669.	6.2	66
88	Estrogen Regulation of the Glucuronidation Enzyme UGT2B15 in Estrogen Receptor-Positive Breast Cancer Cells. Endocrinology, 2006, 147, 3843-3850.	1.4	63
89	Kinase-Specific Phosphorylation of the Estrogen Receptor Changes Receptor Interactions with Ligand, Deoxyribonucleic Acid, and Coregulators Associated with Alterations in Estrogen and Tamoxifen Activity. Molecular Endocrinology, 2006, 20, 3120-3132.	3.7	166
90	Estrogen Dendrimer Conjugates that Preferentially Activate Extranuclear, Nongenomic Versus Genomic Pathways of Estrogen Action. Molecular Endocrinology, 2006, 20, 491-502.	3.7	228

#	Article	IF	CITATIONS
91	Gene Expression Preferentially Regulated by Tamoxifen in Breast Cancer Cells and Correlations with Clinical Outcome. Cancer Research, 2006, 66, 7334-7340.	0.4	149
92	Impact of Estrogen Receptor β on Gene Networks Regulated by Estrogen Receptor α in Breast Cancer Cells. Endocrinology, 2006, 147, 4831-4842.	1.4	301
93	Estrogen-occupied Estrogen Receptor Represses Cyclin G2 Gene Expression and Recruits a Repressor Complex at the Cyclin G2 Promoter. Journal of Biological Chemistry, 2006, 281, 16272-16278.	1.6	106
94	Haploinsufficiency of the corepressor of estrogen receptor activity (REA) enhances estrogen receptor function in the mammary gland. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16716-16721.	3.3	42
95	Isocoumarins as estrogen receptor beta selective ligands: Isomers of isoflavone phytoestrogens and their metabolites. Bioorganic and Medicinal Chemistry, 2005, 13, 6529-6542.	1.4	62
96	Expression of steroid hormone receptors in BRCA1-associated ovarian carcinomas. Gynecologic Oncology, 2005, 97, 16-25.	0.6	8
97	Genetic Deletion of the Repressor of Estrogen Receptor Activity (REA) Enhances the Response to Estrogen in Target Tissues In Vivo. Molecular and Cellular Biology, 2005, 25, 1989-1999.	1.1	89
98	Estrogen down-regulation of the corepressor N-CoR: Mechanism and implications for estrogen derepression of N-CoR-regulated genes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13153-13157.	3.3	79
99	The Androgen Derivative 5α-Androstane-3β,17β-Diol Inhibits Prostate Cancer Cell Migration Through Activation of the Estrogen Receptor β Subtype. Cancer Research, 2005, 65, 5445-5453.	0.4	124
100	Distinctive Actions of Membrane-Targeted Versus Nuclear Localized Estrogen Receptors in Breast Cancer Cells. Molecular Endocrinology, 2005, 19, 1606-1617.	3.7	66
101	Cyclin D1 Antagonizes BRCA1 Repression of Estrogen Receptor α Activity. Cancer Research, 2005, 65, 6557-6567.	0.4	94
102	Synthesis and Evaluation of Estrogen Receptor Ligands with Bridged Oxabicyclic Cores Containing a Diarylethylene Motif:  Estrogen Antagonists of Unusual Structure. Journal of Medicinal Chemistry, 2005, 48, 7261-7274.	2.9	64
103	Indazole Estrogens: Highly Selective Ligands for the Estrogen Receptor β. Journal of Medicinal Chemistry, 2005, 48, 1132-1144.	2.9	190
104	Whole-Genome Cartography of Estrogen Receptorα Binding Sites. PLoS Genetics, 2005, preprint, e87.	1.5	1
105	Directed Evolution of Human Estrogen Receptor Variants with Significantly Enhanced Androgen Specificity and Affinity. Journal of Biological Chemistry, 2004, 279, 33855-33864.	1.6	45
106	Selective Estrogen Receptor Modulators. Cancer Research, 2004, 64, 1522-1533.	0.4	321
107	Therapeutic targeting in the estrogen receptor hormonal pathway. Seminars in Oncology, 2004, 31, 28-38.	0.8	94
108	Equol, a natural estrogenic metabolite from soy isoflavones. Bioorganic and Medicinal Chemistry, 2004, 12, 1559-1567.	1.4	377

#	Article	IF	CITATIONS
109	Pyrazolo[1,5-a]pyrimidines:  Estrogen Receptor Ligands Possessing Estrogen Receptor β Antagonist Activity. Journal of Medicinal Chemistry, 2004, 47, 5872-5893.	2.9	182
110	Allosteric Control of Ligand Selectivity between Estrogen Receptors α and β. Molecular Cell, 2004, 13, 317-327.	4.5	100
111	Selective Recognition of Distinct Classes of Coactivators by a Ligand-Inducible Activation Domain. Molecular Cell, 2004, 13, 725-738.	4.5	57
112	Estrogenic diazenes: heterocyclic non-steroidal estrogens of unusual structure with selectivity for estrogen receptor subtypes. Bioorganic and Medicinal Chemistry, 2003, 11, 629-657.	1.4	71
113	Bridged Bicyclic Cores Containing a 1,1-Diarylethylene Motif Are High-Affinity Subtype-Selective Ligands for the Estrogen Receptor. Journal of Medicinal Chemistry, 2003, 46, 1589-1602.	2.9	89
114	Novel Estrogen Receptor Ligands Based on an Anthranylaldoxime Structure:Â Role of the Phenol-Type Pseudocycle in the Binding Process. Journal of Medicinal Chemistry, 2003, 46, 4032-4042.	2.9	20
115	Activities of estrogen receptor alpha- and beta-selective ligands at diverse estrogen responsive gene sites mediating transactivation or transrepression. Molecular and Cellular Endocrinology, 2003, 206, 13-22.	1.6	288
116	Modulation of estrogen receptor activity by selective coregulators. Journal of Steroid Biochemistry and Molecular Biology, 2003, 85, 117-122.	1.2	39
117	Profiling of Estrogen Up- and Down-Regulated Gene Expression in Human Breast Cancer Cells: Insights into Gene Networks and Pathways Underlying Estrogenic Control of Proliferation and Cell Phenotype. Endocrinology, 2003, 144, 4562-4574.	1.4	866
118	Regulation of Nuclear Receptor Transcriptional Activity by a Novel DEAD Box RNA Helicase (DP97). Journal of Biological Chemistry, 2003, 278, 4628-4638.	1.6	55
119	Molecular Basis for the Subtype Discrimination of the Estrogen Receptor-β-Selective Ligand, Diarylpropionitrile. Molecular Endocrinology, 2003, 17, 247-258.	3.7	93
120	DNA Shuffling Method for Generating Estrogen Receptor α and β Chimeras in Yeast. BioTechniques, 2003, 34, 278-288.	0.8	8
121	Alteration of Large-Scale Chromatin Structure by Estrogen Receptor. Molecular and Cellular Biology, 2002, 22, 3437-3449.	1.1	94
122	Characterization of the Biological Roles of the Estrogen Receptors, ERα and ERβ, in Estrogen Target Tissuesin Vivothrough the Use of an ERα-Selective Ligand. Endocrinology, 2002, 143, 4172-4177.	1.4	330
123	Estrogen Receptor Inducibility of the Human Na+/H+Exchanger Regulatory Factor/Ezrin-Radixin-Moesin Binding Protein 50 (NHE-RF/EBP50) Gene Involving Multiple Half-Estrogen Response Elements. Molecular Endocrinology, 2002, 16, 1828-1839.	3.7	44
124	Molecular Cloning of Porcine Estrogen Receptor-β Complementary DNAs and Developmental Expression in Periimplantation Embryos1. Biology of Reproduction, 2002, 66, 760-769.	1.2	58
125	BIOMEDICINE: Enhanced: Defining the "S" in SERMs. Science, 2002, 295, 2380-2381.	6.0	184
126	Structural characterization of a subtype-selective ligand reveals a novel mode of estrogen receptor antagonism. Nature Structural Biology, 2002, 9, 359-64.	9.7	188

#	Article	IF	CITATIONS
127	Estrogen Receptor Isoform-Specific Induction of Progesterone Receptors in Human Osteoblasts. Journal of Bone and Mineral Research, 2002, 17, 580-592.	3.1	41
128	Localization of androgen and estrogen receptors in adult male mouse reproductive tract. Journal of Andrology, 2002, 23, 870-81.	2.0	216
129	Estrogen Receptor-β Potency-Selective Ligands:  Structureâ^'Activity Relationship Studies of Diarylpropionitriles and Their Acetylene and Polar Analogues. Journal of Medicinal Chemistry, 2001, 44, 4230-4251.	2.9	648
130	Human estrogen receptor beta-specific monoclonal antibodies: characterization and use in studies of estrogen receptor beta protein expression in reproductive tissues. Molecular and Cellular Endocrinology, 2001, 181, 139-150.	1.6	53
131	Involvement of cyclic AMP response element binding protein (CREB) and estrogen receptor phosphorylation in the synergistic activation of the estrogen receptor by estradiol and protein kinase activators. Journal of Steroid Biochemistry and Molecular Biology, 2001, 77, 193-203.	1.2	66
132	Activation of estrogen receptor Î ² is a prerequisite for estrogen-dependent upregulation of nitric oxide synthases in neonatal rat cardiac myocytes. FEBS Letters, 2001, 502, 103-108.	1.3	97
133	Furans with basic side chains: synthesis and biological evaluation of a novel series of antagonists with selectivity for the estrogen receptor alpha. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 2521-2524.	1.0	48
134	Triarylpyrazoles with basic side chains. Bioorganic and Medicinal Chemistry, 2001, 9, 151-161.	1.4	86
135	The estrogen receptor: a structure-based approach to the design of new specific hormone–receptor combinations. Chemistry and Biology, 2001, 8, 277-287.	6.2	39
136	Estrogen regulation of human osteoblast function is determined by the stage of differentiation and the estrogen receptor isoform. Journal of Cellular Biochemistry, 2001, 83, 448-462.	1.2	75
137	Synthesis and Biological Evaluation of a Novel Series of Furans:Â Ligands Selective for Estrogen Receptor α. Journal of Medicinal Chemistry, 2001, 44, 3838-3848.	2.9	246
138	Direct Acetylation of the Estrogen Receptor α Hinge Region by p300 Regulates Transactivation and Hormone Sensitivity. Journal of Biological Chemistry, 2001, 276, 18375-18383.	1.6	312
139	Synergistic Activation of the Serotonin-1A Receptor by Nuclear Factor-ήB and Estrogen. Molecular Endocrinology, 2001, 15, 543-552.	3.7	59
140	Structureâ€Function Relationships in Estrogen Receptors and the Characterization of Novel Selective Estrogen Receptor Modulators with Unique Pharmacological Profiles. Annals of the New York Academy of Sciences, 2001, 949, 6-15.	1.8	49
141	Acyclic amides as estrogen receptor ligands: Synthesis, binding, activity and receptor interaction. Bioorganic and Medicinal Chemistry, 2000, 8, 1293-1316.	1.4	55
142	Pyrazole Ligands: Structureâ^'Affinity/Activity Relationships and Estrogen Receptor-α-Selective Agonists. Journal of Medicinal Chemistry, 2000, 43, 4934-4947.	2.9	724
143	Estrogen Receptor-KRAB Chimeras Are Potent Ligand-dependent Repressors of Estrogen-regulated Gene Expression. Journal of Biological Chemistry, 2000, 275, 13493-13501.	1.6	18
144	Analysis of Estrogen Receptor Interaction with a Repressor of Estrogen Receptor Activity (REA) and the Regulation of Estrogen Receptor Transcriptional Activity by REA. Journal of Biological Chemistry, 2000, 275, 35848-35856.	1.6	123

#	Article	IF	CITATIONS
145	Regulation of keratin 19 gene expression by estrogen in human breast cancer cells and identification of the estrogen responsive gene region. Molecular and Cellular Endocrinology, 2000, 164, 225-237.	1.6	51
146	Molecular mechanisms of estrogen action: selective ligands and receptor pharmacology. Journal of Steroid Biochemistry and Molecular Biology, 2000, 74, 279-285.	1.2	257
147	Estrogen receptor transcription and transactivation Estrogen receptor alpha and estrogen receptor beta: regulation by selective estrogen receptor modulators and importance in breast cancer. Breast Cancer Research, 2000, 2, 335-44.	2.2	236
148	Estrogenic Effects of Extracts from Cabbage, Fermented Cabbage, and Acidified Brussels Sprouts on Growth and Gene Expression of Estrogen-Dependent Human Breast Cancer (MCF-7) Cells. Journal of Agricultural and Food Chemistry, 2000, 48, 4628-4634.	2.4	34
149	Prothymosin Alpha Selectively Enhances Estrogen Receptor Transcriptional Activity by Interacting with a Repressor of Estrogen Receptor Activity. Molecular and Cellular Biology, 2000, 20, 6224-6232.	1.1	6
150	Adenovirus-Mediated Delivery of a Dominant Negative Estrogen Receptor Gene Abrogates Estrogen-Stimulated Gene Expression and Breast Cancer Cell Proliferation. Molecular Endocrinology, 1999, 13, 969-980.	3.7	63
151	Estrogen Receptor Regulation of the Na+/H+ Exchanger Regulatory Factor*. Endocrinology, 1999, 140, 2976-2982.	1.4	102
152	Coactivator Peptides Have a Differential Stabilizing Effect on the Binding of Estrogens and Antiestrogens with the Estrogen Receptor. Molecular Endocrinology, 1999, 13, 1912-1923.	3.7	123
153	Novel Ligands that Function as Selective Estrogens or Antiestrogens for Estrogen Receptor-α or Estrogen Receptor-β*. Endocrinology, 1999, 140, 800-804.	1.4	305
154	Caveolin-1 Potentiates Estrogen Receptor α (ERα) Signaling. Journal of Biological Chemistry, 1999, 274, 33551-33556.	1.6	136
155	Analysis of Estrogen Response Element Binding by Genetically Selected Steroid Receptor DNA Binding Domain Mutants Exhibiting Altered Specificity and Enhanced Affinity. Journal of Biological Chemistry, 1999, 274, 23591-23598.	1.6	22
156	The Estrogen Receptor Enhances AP-1 Activity by Two Distinct Mechanisms with Different Requirements for Receptor Transactivation Functions. Molecular Endocrinology, 1999, 13, 1672-1685.	3.7	343
157	Expression of human estrogen receptor using an efficient adenoviral gene delivery system is able to restore hormone-dependent features to estrogen receptor-negative breast carcinoma cells. Molecular and Cellular Endocrinology, 1999, 149, 93-105.	1.6	45
158	Estrogen Receptor Subtype-Selective Ligands:  Asymmetric Synthesis and Biological Evaluation of cis- and trans-5,11-Dialkyl- 5,6,11,12-tetrahydrochrysenes. Journal of Medicinal Chemistry, 1999, 42, 2456-2468.	2.9	150
159	Determinants of Ligand Specificity of Estrogen Receptor-α: Estrogen versus Androgen Discrimination. Journal of Biological Chemistry, 1998, 273, 693-699.	1.6	67
160	Estrogen Receptor Activation Function 1 Works by Binding p160 Coactivator Proteins. Molecular Endocrinology, 1998, 12, 1605-1618.	3.7	338
161	Transcriptional Regulation of the Human Quinone Reductase Gene by Antiestrogen-liganded Estrogen Receptor-α and Estrogen Receptor-β. Journal of Biological Chemistry, 1998, 273, 25443-25449.	1.6	112
162	Mechanistic Aspects of Estrogen Receptor Activation Probed with Constitutively Active Estrogen Receptors: Correlations with DNA and Coregulator Interactions and Receptor Conformational Changes. Molecular Endocrinology, 1997, 11, 1375-1386.	3.7	83

#	Article	IF	CITATIONS
163	Editorial: A New Actor in the Estrogen Receptor Drama—Enter ER-β. Endocrinology, 1997, 138, 861-862.	1.4	134
164	Identification of a Novel Transferable cis Element in the Promoter of an Estrogen-Responsive Gene that Modulates Sensitivity to Hormone and Antihormone. Molecular Endocrinology, 1997, 11, 330-341.	3.7	19
165	Different Residues of the Human Estrogen Receptor Are Involved in the Recognition of Structurally Diverse Estrogens and Antiestrogens. Journal of Biological Chemistry, 1997, 272, 5069-5075.	1.6	67
166	17α-(Haloacetamidoalkyl)estradiols Alkylate the Human Estrogen Receptor at Cysteine Residues 417 and 530â€. Biochemistry, 1997, 36, 5861-5867.	1.2	24
167	Altered Ligand Binding Properties and Enhanced Stability of a Constitutively Active Estrogen Receptor:Â Evidence That an Open Pocket Conformation Is Required for Ligand Interactionâ€. Biochemistry, 1997, 36, 14897-14905.	1.2	203
168	Determinants for the repression of estrogen receptor transcriptional activity by ligand-occupied progestin receptors. Journal of Steroid Biochemistry and Molecular Biology, 1997, 63, 175-188.	1.2	32
169	Antiestrogens: Mechanisms of action and resistance in breast cancer. Breast Cancer Research and Treatment, 1997, 44, 23-38.	1.1	157
170	Response-specific antiestrogen resistance in a newly characterized MCF-7 human breast cancer cell line resulting from long-term exposure to trans-hydroxytamoxifen. Journal of Steroid Biochemistry and Molecular Biology, 1996, 59, 121-134.	1.2	57
171	Identification of Amino Acids in the Hormone Binding Domain of the Human Estrogen Receptor Important in Estrogen Binding. Journal of Biological Chemistry, 1996, 271, 20053-20059.	1.6	99
172	Nuclear hormone receptors: ligand-activated regulators of transcription and diverse cell responses. Chemistry and Biology, 1996, 3, 529-536.	6.2	137
173	Estrogen Receptors: Bioactivities and Interactions with Cell Signaling Pathways1. Biology of Reproduction, 1996, 54, 287-293.	1.2	331
174	Different Regions in Activation Function-1 of the Human Estrogen Receptor Required for Antiestrogen- and Estradiol-dependent Transcription Activation. Journal of Biological Chemistry, 1996, 271, 24172-24178.	1.6	173
175	Analysis of Mechanisms That Determine Dominant Negative Estrogen Receptor Effectiveness. Journal of Biological Chemistry, 1995, 270, 31163-31171.	1.6	68
176	Antiestrogens: Mechanisms and actions in target cells. Journal of Steroid Biochemistry and Molecular Biology, 1995, 53, 387-393.	1.2	99
177	Bivalent ligands as probes of estrogen receptor action. Journal of Steroid Biochemistry and Molecular Biology, 1994, 49, 139-152.	1.2	25
178	Estrogen receptors: Ligand discrimination and antiestrogen action. Breast Cancer Research and Treatment, 1993, 27, 17-26.	1.1	25
179	Hormone binding and transcription activation by estrogen receptors: Analyses using mammalian and yeast systems. Journal of Steroid Biochemistry and Molecular Biology, 1993, 47, 39-48.	1.2	68
180	An assessment of the role of domain F and pest sequences in estrogen receptor half-life and bioactivity. Journal of Steroid Biochemistry and Molecular Biology, 1993, 46, 663-672.	1.2	48

#	Article	IF	CITATIONS
181	Differential DNA-binding abilites of estrogen receptor occupied with two classes of antiestrogens: studies using human estrogen receptor overexpressed in mammalian cells. Nucleic Acids Research, 1991, 19, 6595-6602.	6.5	121
182	Differential Regulation of Gene Expression by Estrogen in Estrogen Growth-Independent and -Dependent MCF-7 Human Breast Cancer Cell Sublines. Molecular Endocrinology, 1991, 5, 1323-1330.	3.7	52
183	Cross-Linking of Estrogen Receptor to Chromatin in Intact MCF-7 Human Breast Cancer Cells: Optimization and Effect of Ligand. Molecular Endocrinology, 1990, 4, 1647-1654.	3.7	45
184	Regulation of Estrogen Receptor Messenger Ribonucleic Acid and Protein Levels in Human Breast Cancer Cell Lines by Sex Steroid Hormones, Their Antagonists, and Growth Factors. Molecular Endocrinology, 1989, 3, 295-304.	3.7	243
185	Plasminogen activators in human breast cancer cell lines: Hormonal regulation and properties. The Journal of Steroid Biochemistry, 1988, 30, 79-88.	1.3	13
186	Comparative analysis of estrogen receptors covalently labeled with an estrogen and an antiestrogen in several estrogen target cells as studied by limited proteolysis. The Journal of Steroid Biochemistry, 1988, 29, 559-569.	1.3	13
187	Lipophilic impurities, not phenolsulfonphthalein, account for the estrogenic activity in commercial preparations of phenol red. The Journal of Steroid Biochemistry, 1988, 31, 287-293.	1.3	111
188	An Evaluation of the Interactions of Antiestrogens with Pituitary and Striatal Dopamine Receptors. Journal of Receptors and Signal Transduction, 1987, 7, 695-712.	1.2	10
189	Estrogenic affinity labels: synthesis, irreversible receptor binding, and bioactivity of aziridine-substituted hexestrol derivatives. Journal of Medicinal Chemistry, 1987, 30, 829-838.	2.9	30
190	Antiprogestin-receptor complexes: Differences in the interaction of the antiprogestin RU38,486 and the progestin R5020 with the progesterone receptor of human breast cancer cells. Biochemical and Biophysical Research Communications, 1986, 135, 90-97.	1.0	33
191	Nitrosourea and nitrosocarbamate derivatives of the antiestrogen tamoxifen as potential estrogen receptor-mediated cytotoxic agents in human breast cancer cells. Breast Cancer Research and Treatment, 1986, 7, 77-90.	1.1	12
192	Antiestrogen action in breast cancer cells: Modulation of proliferation and protein synthesis, and interaction with estrogen receptors and additional antiestrogen binding sites. Breast Cancer Research and Treatment, 1985, 5, 231-243.	1.1	107
193	Biological activities of tamoxifen aziridine, an antiestrogen-based affinity label for the estrogen receptor, in vivo and in vitro. The Journal of Steroid Biochemistry, 1985, 23, 875-881.	1.3	9
194	Facile geometric isomerization of phenolic non-steroidal estrogens and antiestrogens: Limitations to the interpretation of experiments characterizing the activity of individual isomers. The Journal of Steroid Biochemistry, 1985, 22, 589-596.	1.3	85
195	Relationships among uterine growth, ornithine decarboxylase activity and polyamine levels: studies with estradiol and antiestrogens. Molecular and Cellular Endocrinology, 1984, 38, 31-38.	1.6	21
196	Biology and receptor interactions of estriol and estriol derivatives in vitro and in vivo. The Journal of Steroid Biochemistry, 1984, 20, 1033-1037.	1.3	48
197	Dissociated regulation of growth and ornithine decarâ [~] ylase activity by estrogen in the rat uterus. Biochemical and Biophysical Research Communications, 1984, 122, 1186-1193.	1.0	20
198	Modulation of Progestin Binding Activity in Cultured Human Breast Carcinoma Cells: The Effect of Serum Type and Concentration. Journal of Receptors and Signal Transduction, 1983, 3, 599-621.	1.2	8

#	Article	IF	CITATIONS
199	The intranuclear distribution of rat uterine estrogen receptors determined after nuclease treatment and chromatin fractionation. Molecular and Cellular Endocrinology, 1982, 26, 201-216.	1.6	8
200	Tamoxifen antiestrogens. A comparison of the activity, pharmacokinetics, and metabolic activation of the cis and trans isomers of tamoxifen. The Journal of Steroid Biochemistry, 1982, 16, 1-13.	1.3	164
201	Antiestrogen basicity-activity relationships: a comparison of the estrogen receptor binding and antiuterotrophic potencies of several analogs of (Z)-1,2-diphenyl-1-[4-[2-(dimethylamino)ethoxy]phenyl]-1-butene (Tamoxifen, Nolvadex) having altered basicity, lournal of Medicinal Chemistry, 1982, 25, 167-171.	2.9	118
202	Considerations in the design and evaluation of cytotoxic estrogens. Breast Cancer Research and Treatment, 1982, 2, 347-353.	1.1	22
203	Mechanisms of estrogen and antiestrogen action in mammary cancer. The Journal of Steroid Biochemistry, 1981, 15, 219-229.	1.3	7
204	Biological Potency and Uterine Estrogen Receptor Interactions of the Metabolites of the Antiestrogens CI628 and U23,469*. Endocrinology, 1981, 108, 164-172.	1.4	39
205	Human Endometrial Cells in Primary Tissue Culture: Modulation of the Progesterone Receptor Level by Natural and Synthetic Estrogens in Vitro*. Journal of Clinical Endocrinology and Metabolism, 1981, 52, 699-708.	1.8	91
206	Estrogen receptors of human endometrium: characterization of nuclear and cytoplasmic forms and comparisons with rat uterine receptors. The Journal of Steroid Biochemistry, 1980, 13, 113-122.	1.3	18
207	Effects of the Sex Steroid Hormones and Vitamin D3 on Calcium-Binding Proteins in the Chick Shell Gland1. Biology of Reproduction, 1979, 21, 1153-1162.	1.2	34
208	Antiestrogens and antiestrogen metabolites: preparation of tritium-labeled (.+)-cis-3-[p-(1,2,3,4-tetrahydro-6-methoxy-2-phenyl-1-naphthyl)phenoxy]-1,2-propanediol and characterization and synthesis of a biologically important metabolite. Journal of Medicinal Chemistry, 1979, 22, 1509-1517.	2.9	33
209	Androgen-uterine interactions: An assessment of androgen interaction with the testosterone- and estrogen-receptor systems and stimulation of uterine growth and progesterone-receptor synthesis. Molecular and Cellular Endocrinology, 1979, 15, 91-108.	1.6	74
210	Localization of estrogen receptors in uterine cells. Experimental Cell Research, 1979, 123, 177-189.	1.2	32
211	Stilbestrols and stilbestrol derivatives: Estrogenic potency and temporal relationships between estrogen receptor binding and uterine growth. Molecular and Cellular Endocrinology, 1978, 10, 103-113.	1.6	27
212	Human Endometrial Cells in Primary Tissue Culture: Estrogen Interactions and Modulation of Cell Proliferation*. Journal of Clinical Endocrinology and Metabolism, 1978, 47, 333-344.	1.8	57
213	Progesterone antagonism of estradiol-stimulated uterine â€~induced protein' synthesis. Molecular and Cellular Endocrinology, 1977, 8, 105-120.	1.6	45
214	Progesterone modulation of estrogen-stimulated uterine biosynthetic events and estrogen receptor levels. Molecular and Cellular Endocrinology, 1977, 8, 121-134.	1.6	71
215	[38] Methods for assessing estrogen effects on new uterine protein synthesis In Vitro. Methods in Enzymology, 1975, 36, 444-455.	0.4	3
216	DISTRIBUTION OF THE OESTROGEN-INDUCED PROTEIN AND OF TOTAL PROTEIN BETWEEN ENDOMETRIAL AND MYOMETRIAL FRACTIONS OF THE IMMATURE AND MATURE RAT UTERUS. Journal of Endocrinology, 1974, 63, 439-449.	1.2	41

#	Article	IF	CITATIONS
217	Ontogeny of uterine responsiveness to estrogen during early development in the rat. Molecular and Cellular Endocrinology, 1974, 2, 31-42.	1.6	58
218	General esterases of silkmoth moulting fluid: Preliminary characterization. Journal of Insect Physiology, 1971, 17, 1139-1151.	0.9	27
219	Inactive proteinases in silkmoth moulting gel. Journal of Insect Physiology, 1971, 17, 823-832.	0.9	26
220	Proteinases of silkmoth moulting fluid: Physical and catalytic properties. Journal of Insect Physiology, 1971, 17, 775-800.	0.9	35
221	Some properties of silkmoth moulting gel and moulting fluid. Journal of Insect Physiology, 1970, 16, 2241-2256.	0.9	47
222	Novel Ligands that Function as Selective Estrogens or Antiestrogens for Estrogen Receptor-Î \pm or Estrogen Receptor-Î 2 , 0, .		107
223	Mechanistic Aspects of Estrogen Receptor Activation Probed with Constitutively Active Estrogen Receptors: Correlations with DNA and Coregulator Interactions and Receptor Conformational Changes. , 0, .		27