
Daniel Guldenring

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6629061/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Automation bias in medicine: The influence of automated diagnoses on interpreter accuracy and uncertainty when reading electrocardiograms. Journal of Electrocardiology, 2018, 51, S6-S11.	0.4	58
2	The effects of electrode misplacement on clinicians' interpretation of the standard 12-lead electrocardiogram. European Journal of Internal Medicine, 2012, 23, 610-615.	1.0	51
3	Assessing computerized eye tracking technology for gaining insight into expert interpretation of the 12-lead electrocardiogram: an objective quantitative approach. Journal of Electrocardiology, 2014, 47, 895-906.	0.4	51
4	PDF–ECG in clinical practice: A model for long–term preservation of digital 12–lead ECG data. Journal of Electrocardiology, 2017, 50, 776-780.	0.4	38
5	Data analysis of diagnostic accuracies in 12-lead electrocardiogram interpretation by junior medical fellows. Journal of Electrocardiology, 2015, 48, 988-994.	0.4	27
6	Methods for presenting and visualising electrocardiographic data: From temporal signals to spatial imaging. Journal of Electrocardiology, 2013, 46, 182-196.	0.4	26
7	A usability evaluation of medical software at an expert conference setting. Computer Methods and Programs in Biomedicine, 2014, 113, 383-395.	2.6	24
8	Effects of electrode placement errors in the EASI-derived 12-lead electrocardiogram. Journal of Electrocardiology, 2010, 43, 606-611.	0.4	20
9	Transformation of the Mason-Likar 12-lead electrocardiogram to the Frank vectorcardiogram. , 2012, 2012, 677-80.		19
10	The role of computerized diagnostic proposals in the interpretation of the 12-lead electrocardiogram by cardiology and non-cardiology fellows. International Journal of Medical Informatics, 2017, 101, 85-92.	1.6	19
11	A simulation tool for visualizing and studying the effects of electrode misplacement on the 12-lead electrocardiogram. Journal of Electrocardiology, 2011, 44, 439-444.	0.4	18
12	Detection of acute coronary occlusion in patients with acute coronary syndromes presenting with isolated ST-segment depression. European Heart Journal: Acute Cardiovascular Care, 2012, 1, 128-135.	0.4	16
13	Human factors analysis of the CardioQuick Patch®: A novel engineering solution to the problem of electrode misplacement during 12-lead electrocardiogram acquisition. Journal of Electrocardiology, 2016, 49, 911-918.	0.4	14
14	The derivation of the spatial QRS-T angle and the spatial ventricular gradient using the Mason–Likar 12-lead electrocardiogram. Journal of Electrocardiology, 2015, 48, 1045-1052.	0.4	11
15	Machine learning techniques for detecting electrode misplacement and interchanges when recording ECGs: A systematic review and meta-analysis. Journal of Electrocardiology, 2020, 62, 116-123.	0.4	9
16	Novel approach to documenting expert ECG interpretation using eye tracking technology: A historical and biographical representation of the late Dr Rory Childers in action. Journal of Electrocardiology, 2015, 48, 43-44.	0.4	8
17	Using computerised interactive response technology to assess electrocardiographers and for aggregating diagnoses. Journal of Electrocardiology, 2015, 48, 995-999.	0.4	6
18	Reliable Deep Learning–Based Detection of Misplaced Chest Electrodes During Electrocardiogram Recording: Algorithm Development and Validation. JMIR Medical Informatics, 2021, 9, e25347.	1.3	6

DANIEL GULDENRING

#	Article	IF	CITATIONS
19	Estimation performance of a reduced lead system during continuous 12-lead ECG ST-segment monitoring. Journal of Electrocardiology, 2012, 45, 604-608.	0.4	5
20	Embedding Self-Awareness into Objects of Daily Life The Smart Kettle. , 2010, , .		4
21	Data Driven Computer Simulation to Analyse an ECG Limb Lead System Used in Connected Health Environments. Methods of Information in Medicine, 2016, 55, 258-265.	0.7	4
22	Epicardial potentials computed from the body surface potential map using inverse electrocardiography and an individualised torso model improve sensitivity for acute myocardial infarction diagnosis. European Heart Journal: Acute Cardiovascular Care, 2017, 6, 728-735.	0.4	3
23	The Effects of 0.67 Hz High-pass Filtering on the Spatial QRS-T Angle. , 0, , .		3
24	Computing the spatial QRS-T angle using reduced electrocardiographic lead sets. Journal of Electrocardiology, 2016, 49, 794-799.	0.4	2
25	042 EPICARDIAL POTENTIALS DERIVED FROM THE BODY SURFACE POTENTIAL MAP USING INVERSE ELECTROCARDIOGRAPHY IMPROVE DIAGNOSIS OF ACUTE MYOCARDIAL INFARCTION: A PROSPECTIVE STUDY. Heart, 2013, 99, A31.1-A31.	1.2	0
26	On the derivation of the spatial QRS-T angle from Mason-Likar leads I, II, V2 and V5. , 2015, , .		0
27	Towards Explainable Artificial Intelligence and Explanation User Interfaces to Open the â€~Black Box' of Automated ECG Interpretation. Lecture Notes in Computer Science, 2021, , 96-108.	1.0	0
28	Overview of featurization techniques used in traditional versus emerging deep learning-based algorithms for automated interpretation of the 12-lead ECG. Journal of Electrocardiology, 2021, 69S, 7-11.	0.4	0
29	Estimating the Minimal Size of Training Datasets Required for the Development of Linear ECG-Lead Transformations , 2021,		0