
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6628781/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Research in Microbiology, 2010, 161, 372-382.	1.0	389
2	<i>In Vitro</i> Models for Studying Secondary Plant Metabolite Digestion and Bioaccessibility. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 413-436.	5.9	260
3	The Impact of Food Bioactives on Health. , 2015, , .		208
4	Assessment of probiotic properties in lactic acid bacteria isolated from wine. Food Microbiology, 2014, 44, 220-225.	2.1	196
5	Effect of grape polyphenols on lactic acid bacteria and bifidobacteria growth: Resistance and metabolism. Food Microbiology, 2011, 28, 1345-1352.	2.1	195
6	Adhesion abilities of dairy Lactobacillus plantarum strains showing an aggregation phenotype. Food Research International, 2014, 57, 44-50.	2.9	173
7	Identification, Detection, and Enumeration of Human Bifidobacterium Species by PCR Targeting the Transaldolase Gene. Applied and Environmental Microbiology, 2002, 68, 2420-2427.	1.4	166
8	Bioconversion of anthocyanin glycosides by Bifidobacteria and Lactobacillus. Food Research International, 2009, 42, 1453-1461.	2.9	160
9	Diet and microbiota linked in health and disease. Food and Function, 2018, 9, 688-704.	2.1	148
10	Biochemical and Microbiological Characteristics of Artisanal Hard Goat's Cheese. Journal of Dairy Science, 1990, 73, 1150-1157.	1.4	138
11	Selective enumeration and identification of mixed cultures of Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, L. acidophilus, L. paracasei subsp. paracasei and Bifidobacterium lactis in fermented milk. International Dairy Journal, 2007, 17, 1107-1114.	1.5	128
12	Development of a fermented goat's milk containing probiotic bacteria. International Dairy Journal, 2003, 13, 827-833.	1.5	127
13	Galactooligosaccharides derived from lactose and lactulose: Influence of structure on Lactobacillus, Streptococcus and Bifidobacterium growth. International Journal of Food Microbiology, 2011, 149, 81-87.	2.1	115
14	Biochemical and molecular characterization of α-ketoisovalerate decarboxylase, an enzyme involved in the formation of aldehydes from amino acids byLactococcus lactis. FEMS Microbiology Letters, 2004, 238, 367-374.	0.7	104
15	Caseinomacropeptide and whey protein concentrate enhance Bifidobacterium lactis growth in milk. Food Chemistry, 2004, 86, 263-267.	4.2	99
16	Biochemical and molecular characterization of ?-ketoisovalerate decarboxylase, an enzyme involved in the formation of aldehydes from amino acids by. FEMS Microbiology Letters, 2004, 238, 367-374.	0.7	94
17	Perspectives of theÂpotential implications of wine polyphenols on human oral and gut microbiota. Trends in Food Science and Technology, 2010, 21, 332-344.	7.8	90
18	Probiotic strains: survival under simulated gastrointestinal conditions, in vitro adhesion to Caco-2 cells and effect on cytokine secretion. European Food Research and Technology, 2008, 227, 1475-1484.	1.6	86

#	Article	IF	CITATIONS
19	Development of human colonic microbiota in the computer-controlled dynamic SIMulator of the GastroIntestinal tract SIMGI. LWT - Food Science and Technology, 2015, 61, 283-289.	2.5	85
20	Yeasts in foods and beverages: InÂvitro characterisation of probiotic traits. LWT - Food Science and Technology, 2015, 64, 1156-1162.	2.5	83
21	Physiological and biochemical characterization of the two α-l-rhamnosidases of Lactobacillus plantarum NCC245. Microbiology (United Kingdom), 2009, 155, 2739-2749.	0.7	81
22	Antimicrobial activity of lactic acid bacteria isolated from goat's milk and artisanal cheeses: characteristics of a bacteriocin produced by <i>Lactobacillus curvatus</i> IFPL105. Journal of Applied Bacteriology, 1996, 81, 35-41.	1.1	76
23	Comparative in vitro fermentations of cranberry and grape seed polyphenols with colonic microbiota. Food Chemistry, 2015, 183, 273-282.	4.2	72
24	Lactobacillus acidophilus La-5 increases lactacin B production when it senses live target bacteria. International Journal of Food Microbiology, 2009, 132, 109-116.	2.1	71
25	Simultaneous detection and enumeration of viable lactic acid bacteria and bifidobacteria in fermented milk by using propidium monoazide and real-time PCR. International Dairy Journal, 2009, 19, 405-409.	1.5	71
26	Effect of Flavan-3-ols on the Adhesion of Potential Probiotic Lactobacilli to Intestinal Cells. Journal of Agricultural and Food Chemistry, 2012, 60, 9082-9088.	2.4	71
27	Antibacterial activity of wine phenolic compounds and oenological extracts against potential respiratory pathogens. Letters in Applied Microbiology, 2012, 54, 557-563.	1.0	68
28	Occurrence and persistence of Listeria spp. in the environment of ewe and cow's milk cheese dairies in Portugal unveiled by an integrated analysis of identification, typing and spatial–temporal mapping along production cycle. International Journal of Food Microbiology, 2007, 116, 52-63.	2.1	67
29	Conversion of methionine to methional byLactococcus lactis. FEMS Microbiology Letters, 2001, 204, 189-195.	0.7	62
30	Hydrolysis of Oligofructoses by the Recombinant β-Fructofuranosidase from Bifidobacterium lactis. Systematic and Applied Microbiology, 2004, 27, 279-285.	1.2	57
31	Requirement of Autolytic Activity for Bacteriocin-Induced Lysis. Applied and Environmental Microbiology, 2000, 66, 3174-3179.	1.4	56
32	Enhancement of 2-methylbutanal formation in cheese by using a fluorescently tagged Lacticin 3147 producing Lactococcus lactis strain. International Journal of Food Microbiology, 2004, 93, 335-347.	2.1	55
33	Capability of Lactobacillus plantarum IFPL935 To Catabolize Flavan-3-ol Compounds and Complex Phenolic Extracts. Journal of Agricultural and Food Chemistry, 2012, 60, 7142-7151.	2.4	55
34	Lactobacillus caseiandLactobacillus plantaruminitiate catabolism of methionine by transamination. Journal of Applied Microbiology, 2001, 90, 971-978.	1.4	54
35	Effect of milk protein glycation and gastrointestinal digestion on the growth of bifidobacteria and lactic acid bacteria. International Journal of Food Microbiology, 2012, 153, 420-427.	2.1	54
36	Enzymatic Ability of Bifidobacterium animalis subsp. lactis To Hydrolyze Milk Proteins: Identification and Characterization of Endopeptidase O. Applied and Environmental Microbiology, 2005, 71, 8460-8465.	1.4	52

#	Article	IF	CITATIONS
37	Characterization of lactococci and lactobacilli isolated from semihard goats' cheese. Journal of Dairy Research, 1991, 58, 137-145.	0.7	48
38	Isolation and characterization of an intracellular esterase fromLactobacillus caseisubsp.caseiIFPL731. Journal of Applied Microbiology, 1999, 86, 653-659.	1.4	45
39	Exploiting the potential of bacteria in the cheese ecosystem. International Dairy Journal, 2005, 15, 831-844.	1.5	45
40	Control of late blowing in cheese by adding lacticin 3147-producing Lactococcus lactis IFPL 3593 to the starter. International Dairy Journal, 2010, 20, 18-24.	1.5	45
41	Cloning and characterization of the abortive infection genetic determinant abiD isolated from pBF61 of Lactococcus lactis subsp. lactis KR5. Applied and Environmental Microbiology, 1995, 61, 2023-2026.	1.4	45
42	Use of a bacteriocin-producing transconjugant as starter in acceleration of cheese ripening. International Journal of Food Microbiology, 2001, 70, 79-88.	2.1	44
43	Selective fermentation of potential prebiotic lactose-derived oligosaccharides by probiotic bacteria. International Dairy Journal, 2014, 38, 11-15.	1.5	44
44	Lactobacillus plantarum IFPL935 impacts colonic metabolism in a simulator of the human gut microbiota during feeding with red wine polyphenols. Applied Microbiology and Biotechnology, 2014, 98, 6805-6815.	1.7	44
45	Evaluation of a specific starter for the production of semi-hard goat's milk cheese. Dairy Science and Technology, 1992, 72, 437-448.	0.9	44
46	Phylogenetic profile of gut microbiota in healthy adults after moderate intake of red wine. Molecular Nutrition and Food Research, 2017, 61, 1600620.	1.5	43
47	The effect of supplementing goats milk with whey protein concentrate on textural properties of set-type yoghurt. International Journal of Food Science and Technology, 2006, 41, 87-92.	1.3	42
48	Methionine Metabolism: Major Pathways and Enzymes Involved and Strategies for Control and Diversification of Volatile Sulfur Compounds in Cheese. Critical Reviews in Food Science and Nutrition, 2013, 53, 366-385.	5.4	42
49	Probiotics, prebiotics, and synbiotics added to dairy products: Uses and applications to manage type 2 diabetes. Food Research International, 2021, 142, 110208.	2.9	40
50	Peptidase and proteinase activity ofLactococcus lactis, Lactobacillus casei andLactobacillus plantarum. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1993, 196, 351-355.	0.7	38
51	Lactobacillus plantarum IFPL935 Favors the Initial Metabolism of Red Wine Polyphenols When Added to a Colonic Microbiota. Journal of Agricultural and Food Chemistry, 2013, 61, 10163-10172.	2.4	38
52	Fluorescent protein vectors for promoter analysis in lactic acid bacteria and Escherichia coli. Applied Microbiology and Biotechnology, 2012, 96, 171-181.	1.7	37
53	Emerging prebiotics obtained from lemon and sugar beet byproducts: Evaluation of their in vitro fermentability by probiotic bacteria. LWT - Food Science and Technology, 2019, 109, 17-25.	2.5	37
54	Inhibition of uropathogens by lactic acid bacteria isolated from dairy foods and cow's intestine in western Nigeria. Archives of Microbiology, 2009, 191, 639-648.	1.0	36

#	Article	IF	CITATIONS
55	Enhancement of Proteolysis by aLactococcus lactisBacteriocin Producer in a Cheese Model System. Journal of Agricultural and Food Chemistry, 1998, 46, 3863-3867.	2.4	35
56	Enzymatic ability of Lactobacillus casei subsp. casei IFPL731 for flavour development in cheese. International Dairy Journal, 2001, 11, 577-585.	1.5	35
57	YtjE from Lactococcus lactis IL1403 Is a C-S Lyase with α,γ-Elimination Activity toward Methionine. Applied and Environmental Microbiology, 2006, 72, 4878-4884.	1.4	35
58	Pepsin egg white hydrolysate modulates gut microbiota in Zucker obese rats. Food and Function, 2017, 8, 437-443.	2.1	35
59	Effect of a hygienized rennet paste and a defined strain starter on proteolysis, texture and sensory properties of semi-hard goat cheese. Food Chemistry, 2007, 102, 917-924.	4.2	33
60	Real-Time Detection of Riboflavin Production by Lactobacillus plantarum Strains and Tracking of Their Gastrointestinal Survival and Functionality in vitro and in vivo Using mCherry Labeling. Frontiers in Microbiology, 2019, 10, 1748.	1.5	32
61	Competition mechanisms of lactic acid bacteria and bifidobacteria: Fermentative metabolism and colonization. LWT - Food Science and Technology, 2014, 55, 680-684.	2.5	31
62	Cooperation between wild lactococcal strains for cheese aroma formation. Food Chemistry, 2006, 94, 240-246.	4.2	30
63	Taxonomic Characterization and Short-Chain Fatty Acids Production of the Obese Microbiota. Frontiers in Cellular and Infection Microbiology, 2021, 11, 598093.	1.8	30
64	Diversity of amino acid converting enzymes in wild lactic acid bacteria. Enzyme and Microbial Technology, 2006, 38, 88-93.	1.6	29
65	Biological and molecular characterization of a two-peptide lantibiotic produced by Lactococcus lactis IFPL105. Journal of Applied Microbiology, 2000, 89, 249-260.	1.4	27
66	Heterologous Production of Methionine-γ-Lyase from <i>Brevibacterium linens</i> in <i>Lactococcus lactis</i> and Formation of Volatile Sulfur Compounds. Applied and Environmental Microbiology, 2009, 75, 2326-2332.	1.4	27
67	Key enzymes involved in methionine catabolism by cheese lactic acid bacteria. International Journal of Food Microbiology, 2009, 135, 223-230.	2.1	27
68	Effect of Different Membrane Separation Technologies (Ultrafiltration and Microfiltration) on the Texture and Microstructure of Semihard Low-Fat Cheeses. Journal of Agricultural and Food Chemistry, 1999, 47, 558-565.	2.4	25
69	Autolysis of Lactococcus lactis ssp. lactis and Lactobacillus casei ssp. casei. Cell lysis induced by a crude bacteriocin. International Journal of Food Microbiology, 1997, 38, 125-131.	2.1	24
70	Determination of l-lactic acid in yoghurt by a bienzyme amperometric graphite?Teflon composite biosensor. European Food Research and Technology, 2004, 219, 557-560.	1.6	24
71	Construction and validation of a mCherry protein vector for promoter analysis in Lactobacillus acidophilus. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 247-253.	1.4	24
72	Prebiotic galactooligosaccharides production from lactose and lactulose by <i>Lactobacillus delbrueckii</i> subsp. <i>bulgaricus</i> CRL450. Food and Function, 2020, 11, 5875-5886.	2.1	23

#	Article	IF	CITATIONS
73	Proteolytic activity of lactobacilli in a model goats' milk curd system. Letters in Applied Microbiology, 1996, 23, 375-378.	1.0	22
74	Effect of milk fat replacement by polyunsaturated fatty acids on the microbiological, rheological and sensorial properties of fermented milks. Journal of the Science of Food and Agriculture, 2004, 84, 1599-1605.	1.7	21
75	Interactions between gut microbiota, food and the obese host. Trends in Food Science and Technology, 2013, 34, 44-53.	7.8	21
76	Production of Conjugated Linoleic and Conjugated <i>α</i> -Linolenic Acid in a Reconstituted Skim Milk-Based Medium by Bifidobacterial Strains Isolated from Human Breast Milk. BioMed Research International, 2014, 2014, 1-6.	0.9	21
77	Lyso-Gb3 modulates the gut microbiota and decreases butyrate production. Scientific Reports, 2019, 9, 12010.	1.6	21
78	Synthesis of prebiotic galactooligosaccharides from lactose and lactulose by dairy propionibacteria. Food Microbiology, 2019, 77, 93-105.	2.1	21
79	Salt Balance in Ewe's and Goat's Milk during Storage at Chilling and Freezing Temperatures. Journal of Agricultural and Food Chemistry, 1997, 45, 82-88.	2.4	20
80	Microbioma humano en la salud y la enfermedad. Revista Clinica Espanola, 2021, 221, 233-240.	0.2	19
81	Volatile sulphur compounds-forming abilities of lactic acid bacteria: C-S lyase activities. International Journal of Food Microbiology, 2011, 148, 121-127.	2.1	18
82	Expression in Lactococcus lactis of functional genes related to amino acid catabolism and cheese aroma formation is influenced by branched chain amino acids. International Journal of Food Microbiology, 2012, 159, 207-213.	2.1	18
83	Inactivation of the <i>panE</i> Gene in Lactococcus lactis Enhances Formation of Cheese Aroma Compounds. Applied and Environmental Microbiology, 2013, 79, 3503-3506.	1.4	18
84	Accelerated ripening of reduced fat semi-hard cheese from a mixture of cow's, goat's and ewe's ultrafiltrated milk by using a Lac- Prt- strain of lactococci. Dairy Science and Technology, 1996, 76, 513-522.	0.9	18
85	Effects of milk fat replacement by PUFA enriched fats onn-3 fatty acids, conjugated dienes and volatile compounds of fermented milks. European Journal of Lipid Science and Technology, 2004, 106, 417-423.	1.0	17
86	Discrepancies between the phenotypic and genotypic characterization of Lactococcus lactis cheese isolates. Letters in Applied Microbiology, 2006, 43, 637-644.	1.0	17
87	Effect of lactulose-derived oligosaccharides on intestinal microbiota during the shift between media with different energy contents. Food Research International, 2016, 89, 302-308.	2.9	17
88	Effect of bacteriocin-induced cell damage on the branched-chain amino acid transamination byLactococcus lactis. FEMS Microbiology Letters, 2002, 217, 109-113.	0.7	16
89	Stability of saliva microbiota during moderate consumption of red wine. Archives of Oral Biology, 2015, 60, 1763-1768.	0.8	16
90	Cell membrane damage induced by lacticin 3147 enhances aldehyde formation in Lactococcus lactis IFPL730. International Journal of Food Microbiology, 2006, 109, 198-204.	2.1	15

#	Article	IF	CITATIONS
91	Antimicrobial activity of lacticin 3147 against oenological lactic acid bacteria. Combined effect with other antimicrobial agents. Food Control, 2013, 32, 477-483.	2.8	15
92	Consensus statements from the Workshop "Probiotics and Health: Scientific evidence". Nutricion Hospitalaria, 2010, 25, 700-4.	0.2	15
93	Formation of methional by Lactococcus lactis IFPL730 under cheese model conditions. European Food Research and Technology, 2002, 214, 58-62.	1.6	13
94	Complete Genome Sequence of Bifidobacterium breve CECT 7263, a Strain Isolated from Human Milk. Journal of Bacteriology, 2012, 194, 3762-3763.	1.0	13
95	Release and partial characterization of cell-envelope proteinases fromLactococcus lactis subsp.lactis IFPL 359 andLactobacillus casei subsp. casei IFPL 731 isolated from raw goat,s-milk cheese. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1995, 201, 87-90.	0.7	12
96	Genetic diversity of Oenoccoccus oeni isolated from wines treated with phenolic extracts as antimicrobial agents. Food Microbiology, 2013, 36, 267-274.	2.1	12
97	Expression of amino acid converting enzymes and production of volatile compounds by Lactococcus lactis IFPL953. International Dairy Journal, 2019, 96, 29-35.	1.5	12
98	Probiotic Yogurt for the Prevention of Antibiotic-associated Diarrhea in Adults. Journal of Clinical Gastroenterology, 2019, 53, 717-723.	1.1	12
99	Structural Features of Three Hetero-Galacturonans from Passiflora foetida Fruits and Their in Vitro Immunomodulatory Effects. Polymers, 2020, 12, 615.	2.0	12
100	Proteolysis and volatile components of reduced-fat cheeses made from ultrafiltered milk and different starters supplemented with lactobacilli and Lac-Prt-lactococci. Dairy Science and Technology, 1997, 77, 717-728.	0.9	12
101	Egg white peptide-based immunotherapy enhances vitamin A metabolism and induces RORγt+ regulatory T cells. Journal of Functional Foods, 2019, 52, 204-211.	1.6	11
102	Hydrolysis of β-casein (193-209) Fragment by Whole Cells and Fractions of Lactobacillus casei and Lactococcus lactis. Journal of Food Science, 1999, 64, 899-902.	1.5	10
103	The aminopeptidase C (PepC) from Lactobacillus helveticus CNRZ32. A comparative study of PepC from lactic acid bacteria. European Food Research and Technology, 2000, 212, 89-94.	1.6	10
104	Rapid detection of Lactococcus lactis isolates producing the lantibiotics nisin, lacticin 481 and lacticin 3147 using MALDI-TOF MS. Journal of Microbiological Methods, 2017, 139, 138-142.	0.7	10
105	Permeabilization and lysis induced by bacteriocins and its effect on aldehyde formation by Lactococcus lactis. Biotechnology Letters, 2006, 28, 1573-1580.	1.1	9
106	Modulation of Gilthead Sea Bream Gut Microbiota by a Bioactive Egg White Hydrolysate: Interactions Between Bacteria and Host Lipid Metabolism. Frontiers in Marine Science, 2021, 8, .	1.2	9
107	Salt Balance and Rennet Clotting Properties of Cow's, Ewe's, and Goat's Milks Preserved with Carbon Dioxide. Journal of Food Protection, 1998, 61, 66-72.	0.8	8
108	Regulation of α-Ketoisovalerate Decarboxylase Expression in <i>Lactococcus lactis</i> IFPL730. Journal of Molecular Microbiology and Biotechnology, 2009, 17, 96-100.	1.0	8

#	Article	IF	CITATIONS
109	The human microbiome in sickness and in health. Revista Clínica Espanõla, 2021, 221, 233-240.	0.3	8
110	Immunological Activity and Gut Microbiota Modulation of Pectin from Kiwano (Cucumis metuliferus) Peels. Foods, 2022, 11, 1632.	1.9	8
111	Fate of Methicillinâ€resistant <i>Staphylococcus aureus</i> (MRSA) under simulated acidic conditions of the human stomach. Food Science and Nutrition, 2020, 8, 4739-4745.	1.5	7
112	Unraveling the drivers and consequences of gut microbiota disruption in Fabry disease: the lyso-Gb3 link. Future Microbiology, 2020, 15, 227-231.	1.0	7
113	THE EFFECT OF CASEINOMACROPEPTIDE AND WHEY PROTEIN CONCENTRATE ON STREPTOCOCCUS MUTANS ADHESION TO POLYSTYRENE SURFACES AND CELL AGGREGATION. Journal of Food Quality, 2004, 27, 233-238.	1.4	6
114	Susceptibility and Tolerance of Human Gut Culturable Aerobic Microbiota to Wine Polyphenols. Microbial Drug Resistance, 2015, 21, 17-24.	0.9	6
115	Lactobacillus for Gastroenteritis in Children. New England Journal of Medicine, 2019, 380, e36.	13.9	6
116	The accelerating effect of aLactococcus lactis subsp.lactis lactose-utilization/proteinase-deficient strain on proteolysis and flavour development. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1996, 203, 77-81.	0.7	5
117	Modulation and metabolism of obesity-associated microbiota in a dynamic simulator of the human gut microbiota. LWT - Food Science and Technology, 2021, 141, 110921.	2.5	5
118	Affinity chromatography of proteinases using bacitracin immobilized to porous glass beads. Letters in Applied Microbiology, 1996, 22, 371-374.	1.0	4
119	Lacticin 3147 favours isoleucine transamination by Lactococcus lactis IFPL359 in a cheese-model system. Biotechnology Letters, 2003, 25, 599-602.	1.1	4
120	Effects on intestinal microbiota of probiotic fermented milk used for prevention of antibiotic-associated diarrhoea. European Food Research and Technology, 2012, 235, 1199-1206.	1.6	4
121	Process for Lowâ€fat Cheese from Ultrafiltered Milk. Journal of Food Science, 1998, 63, 665-667.	1.5	3
122	Lactococcin A overexpression in a Lactococcus lactis subsp. lactis transformant containing a Tn5 insertion in the lcnD gene. Applied Microbiology and Biotechnology, 1995, 44, 413-418.	1.7	2
123	International Symposium on Immunonutrition 2017, Madrid, 17th-19th July, 2017, 10th Anniversary: Abstracts. Annals of Nutrition and Metabolism, 2017, 71, 31-79.	1.0	1
124	Identification and characterization of glutamate dehydrogenase activity in wild Lactococcus lactis isolated from raw milk cheeses. European Food Research and Technology, 2018, 244, 603-609.	1.6	1
125	Peptide-based immunotherapy enhances vitamin A metabolism and induces RORÎ ³ t+ regulatory T cells. Journal of Allergy and Clinical Immunology, 2019, 143, AB245.	1.5	0
126	Laboratory Simulators of the Colon Microbiome. , 2019, , 61-67.		0

#	Article	IF	CITATIONS
127	Fermented Dairy Products. , 2019, , 35-55.		0
128	Lactococcin A overexpression in a Lactococcus lactis subsp. lactis transformant containing a Tn 5 insertion in the lcnD gene. Applied Microbiology and Biotechnology, 1995, 44, 413-418.	1.7	0