Daniele Martella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6627988/publications.pdf

Version: 2024-02-01

50 papers

2,507 citations

257450 24 h-index 254184 43 g-index

51 all docs

51 docs citations

51 times ranked

2579 citing authors

#	Article	IF	CITATIONS
1	Photoresponsive Polymerâ€Based Biomimetic Contractile Units as Building Block for Artificial Muscles. Macromolecular Materials and Engineering, 2022, 307, .	3.6	5
2	Lightâ€Powered Microrobots: Challenges and Opportunities for Hard and Soft Responsive Microswimmers. Advanced Intelligent Systems, 2021, 3, 2000256.	6.1	64
3	Dithiols as Liquid Crystalline Building Blocks for Smart Polymers via Thiol–yne Click Chemistry. ACS Applied Polymer Materials, 2021, 3, 1602-1609.	4.4	7
4	Lightâ€Powered Microrobots: Challenges and Opportunities for Hard and Soft Responsive Microswimmers. Advanced Intelligent Systems, 2021, 3, 2170041.	6.1	6
5	Twoâ€Photon Laser Writing of Soft Responsive Polymers via Temperatureâ€Controlled Polymerization. Laser and Photonics Reviews, 2021, 15, 2100090.	8.7	12
6	Cell instructive Liquid Crystalline Networks for myotube formation. IScience, 2021, 24, 103077.	4.1	8
7	Photonic artificial muscles: from micro robots to tissue engineering. Faraday Discussions, 2020, 223, 216-232.	3.2	19
8	Color Modulation in <i>Morpho</i> Butterfly Wings Using Liquid Crystalline Elastomers. Advanced Intelligent Systems, 2020, 2, 2000035.	6.1	13
9	Selfâ€Regulating Capabilities in Photonic Robotics. Advanced Materials Technologies, 2019, 4, 1800571.	5.8	57
10	Optical Investigation of Action Potential and Calcium Handling Maturation of hiPSC-Cardiomyocytes on Biomimetic Substrates. International Journal of Molecular Sciences, 2019, 20, 3799.	4.1	27
11	Modulation of Optical Properties in Liquid Crystalline Networks across Different Length Scales. Journal of Physical Chemistry C, 2019, 123, 26522-26527.	3.1	8
12	Opposite Self-Folding Behavior of Polymeric Photoresponsive Actuators Enabled by a Molecular Approach. Polymers, 2019, 11, 1644.	4.5	8
13	Polarization-dependent deformation in light responsive polymers doped by dichroic dyes. Soft Matter, 2019, 15, 1312-1318.	2.7	38
14	Multichannel remote polarization control enabled by nanostructured liquid crystalline networks. Applied Physics Letters, 2019, 114, .	3.3	13
15	3D Printed Photoresponsive Materials for Photonics. Advanced Optical Materials, 2019, 7, 1900156.	7.3	41
16	Liquid Crystals: Liquid Crystal-Induced Myoblast Alignment (Adv. Healthcare Mater. 3/2019). Advanced Healthcare Materials, 2019, 8, 1970009.	7.6	7
17	Design of Biocompatible Liquid Cristal Elastomers Reproducing the Mechanical Properties of Human Cardiac Muscle. Biophysical Journal, 2019, 116, 264a.	0.5	О
18	Development of Light-Responsive Liquid Crystalline Elastomers to Assist Cardiac Contraction. Circulation Research, 2019, 124, e44-e54.	4.5	44

#	Article	IF	CITATIONS
19	Liquid Crystalâ€Induced Myoblast Alignment. Advanced Healthcare Materials, 2019, 8, e1801489.	7.6	36
20	Self-Assembled Nanocrystals of Polycyclic Aromatic Hydrocarbons Show Photostable Single-Photon Emission. ACS Nano, 2018, 12, 4295-4303.	14.6	54
21	Frontispiece: Advances in Cell Scaffolds for Tissue Engineering: The Value of Liquid Crystalline Elastomers. Chemistry - A European Journal, 2018, 24, .	3.3	0
22	Optically Driven Soft Micro Robotics. Advanced Optical Materials, 2018, 6, 1800207.	7.3	111
23	Three-Dimensional Photonic Circuits in Rigid and Soft Polymers Tunable by Light. ACS Photonics, 2018, 5, 3222-3230.	6.6	53
24	Advances in Cell Scaffolds for Tissue Engineering: The Value of Liquid Crystalline Elastomers. Chemistry - A European Journal, 2018, 24, 12206-12220.	3.3	44
25	Structured Optical Materials Controlled by Light. Advanced Optical Materials, 2018, 6, 1800167.	7.3	50
26	Beam Steering: Structured Optical Materials Controlled by Light (Advanced Optical Materials 15/2018). Advanced Optical Materials, 2018, 6, 1870059.	7.3	1
27	Light-fueled polymeric machines: multiple actions at the microscale. , $2018, , .$		0
28	Light activated non-reciprocal motion in liquid crystalline networks by designed microactuator architecture. RSC Advances, 2017, 7, 19940-19947.	3.6	51
29	Photonic Microhand with Autonomous Action. Advanced Materials, 2017, 29, 1704047.	21.0	122
30	Liquid Crystalline Networks toward Regenerative Medicine and Tissue Repair. Small, 2017, 13, 1702677.	10.0	46
31	Beam steering by liquid crystal elastomer fibres. Soft Matter, 2017, 13, 8590-8596.	2.7	45
32	Influence of block copolymer feature size on reactive ion etching pattern transfer into silicon. Nanotechnology, 2017, 28, 404001.	2.6	8
33	Tissue Engineering: Liquid Crystalline Networks toward Regenerative Medicine and Tissue Repair (Small 46/2017). Small, 2017, 13, .	10.0	0
34	Microrobotics: Photonic Microhand with Autonomous Action (Adv. Mater. 42/2017). Advanced Materials, 2017, 29, .	21.0	1
35	Locomotion of light-driven soft microrobots through a hydrogel via local melting. , 2017, , .		3
36	Photonic arms, legs, and skin. , 2017, , .		1

#	Article	IF	CITATIONS
37	Photoresist Design for Elastomeric Light Tunable Photonic Devices. Materials, 2016, 9, 525.	2.9	36
38	Towards photo-induced swimming: actuation of liquid crystalline elastomer in water. Proceedings of SPIE, $2016, $, .	0.8	1
39	Towards liquid crystalline elastomer optically tunable photonic microstructures. Proceedings of SPIE, 2016, , .	0.8	2
40	Soft continuous microrobots with multiple intrinsic degrees of freedom. , 2016, , .		2
41	Free-form Light Actuators — Fabrication and Control of Actuation in Microscopic Scale. Journal of Visualized Experiments, 2016, , .	0.3	0
42	Cycloadditions of Sugarâ€Derived ÂNitrones Targeting Polyhydroxylated Indolizidines. European Journal of Organic Chemistry, 2016, 2016, 1588-1598.	2.4	27
43	Structured light enables biomimetic swimming and versatile locomotion of photoresponsive softÂmicrorobots. Nature Materials, 2016, 15, 647-653.	27.5	757
44	Lightâ€Fueled Microscopic Walkers. Advanced Materials, 2015, 27, 3883-3887.	21.0	355
45	Artificial Muscle: Lightâ€Fueled Microscopic Walkers (Adv. Mater. 26/2015). Advanced Materials, 2015, 27, 3842-3842.	21.0	1
46	The first thiol–yne click chemistry approach for the preparation of liquid crystalline elastomers. Journal of Materials Chemistry C, 2015, 3, 9003-9010.	5.5	37
47	Alignment engineering in liquid crystalline elastomers: Free-form microstructures with multiple functionalities. Applied Physics Letters, 2015, 106, .	3.3	56
48	Highâ€Resolution 3D Direct Laser Writing for Liquidâ€Crystalline Elastomer Microstructures. Advanced Materials, 2014, 26, 2319-2322.	21.0	165
49	Synthesis and Glycosidase Inhibition Studies of 5â€Methylâ€Substituted Tetrahydroxyindolizidines and â€pyrrolizidines Related to Natural Hyacinthacines B. European Journal of Organic Chemistry, 2013, 2013, 4047-4056.	2.4	31
50	Total Synthesis of (â^')-Uniflorine A. Journal of Natural Products, 2009, 72, 2058-2060.	3.0	32