Daniele Martella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6627988/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structured light enables biomimetic swimming and versatile locomotion of photoresponsive softÂmicrorobots. Nature Materials, 2016, 15, 647-653.	27.5	757
2	Lightâ€Fueled Microscopic Walkers. Advanced Materials, 2015, 27, 3883-3887.	21.0	355
3	Highâ€Resolution 3D Direct Laser Writing for Liquidâ€Crystalline Elastomer Microstructures. Advanced Materials, 2014, 26, 2319-2322.	21.0	165
4	Photonic Microhand with Autonomous Action. Advanced Materials, 2017, 29, 1704047.	21.0	122
5	Optically Driven Soft Micro Robotics. Advanced Optical Materials, 2018, 6, 1800207.	7.3	111
6	Lightâ€Powered Microrobots: Challenges and Opportunities for Hard and Soft Responsive Microswimmers. Advanced Intelligent Systems, 2021, 3, 2000256.	6.1	64
7	Selfâ€Regulating Capabilities in Photonic Robotics. Advanced Materials Technologies, 2019, 4, 1800571.	5.8	57
8	Alignment engineering in liquid crystalline elastomers: Free-form microstructures with multiple functionalities. Applied Physics Letters, 2015, 106, .	3.3	56
9	Self-Assembled Nanocrystals of Polycyclic Aromatic Hydrocarbons Show Photostable Single-Photon Emission. ACS Nano, 2018, 12, 4295-4303.	14.6	54
10	Three-Dimensional Photonic Circuits in Rigid and Soft Polymers Tunable by Light. ACS Photonics, 2018, 5, 3222-3230.	6.6	53
11	Light activated non-reciprocal motion in liquid crystalline networks by designed microactuator architecture. RSC Advances, 2017, 7, 19940-19947.	3.6	51
12	Structured Optical Materials Controlled by Light. Advanced Optical Materials, 2018, 6, 1800167.	7.3	50
13	Liquid Crystalline Networks toward Regenerative Medicine and Tissue Repair. Small, 2017, 13, 1702677.	10.0	46
14	Beam steering by liquid crystal elastomer fibres. Soft Matter, 2017, 13, 8590-8596.	2.7	45
15	Advances in Cell Scaffolds for Tissue Engineering: The Value of Liquid Crystalline Elastomers. Chemistry - A European Journal, 2018, 24, 12206-12220.	3.3	44
16	Development of Light-Responsive Liquid Crystalline Elastomers to Assist Cardiac Contraction. Circulation Research, 2019, 124, e44-e54.	4.5	44
17	3D Printed Photoresponsive Materials for Photonics. Advanced Optical Materials, 2019, 7, 1900156.	7.3	41
18	Polarization-dependent deformation in light responsive polymers doped by dichroic dyes. Soft Matter, 2019, 15, 1312-1318.	2.7	38

DANIELE MARTELLA

#	Article	IF	CITATIONS
19	The first thiol–yne click chemistry approach for the preparation of liquid crystalline elastomers. Journal of Materials Chemistry C, 2015, 3, 9003-9010.	5.5	37
20	Photoresist Design for Elastomeric Light Tunable Photonic Devices. Materials, 2016, 9, 525.	2.9	36
21	Liquid Crystalâ€Induced Myoblast Alignment. Advanced Healthcare Materials, 2019, 8, e1801489.	7.6	36
22	Total Synthesis of (â^')-Uniflorine A. Journal of Natural Products, 2009, 72, 2058-2060.	3.0	32
23	Synthesis and Glycosidase Inhibition Studies of 5â€Methylâ€Substituted Tetrahydroxyindolizidines and â€pyrrolizidines Related to Natural Hyacinthacines B. European Journal of Organic Chemistry, 2013, 2013, 4047-4056.	2.4	31
24	Cycloadditions of Sugarâ€Derived ÂNitrones Targeting Polyhydroxylated Indolizidines. European Journal of Organic Chemistry, 2016, 2016, 1588-1598.	2.4	27
25	Optical Investigation of Action Potential and Calcium Handling Maturation of hiPSC-Cardiomyocytes on Biomimetic Substrates. International Journal of Molecular Sciences, 2019, 20, 3799.	4.1	27
26	Photonic artificial muscles: from micro robots to tissue engineering. Faraday Discussions, 2020, 223, 216-232.	3.2	19
27	Multichannel remote polarization control enabled by nanostructured liquid crystalline networks. Applied Physics Letters, 2019, 114, .	3.3	13
28	Color Modulation in <i>Morpho</i> Butterfly Wings Using Liquid Crystalline Elastomers. Advanced Intelligent Systems, 2020, 2, 2000035.	6.1	13
29	Twoâ€Photon Laser Writing of Soft Responsive Polymers via Temperatureâ€Controlled Polymerization. Laser and Photonics Reviews, 2021, 15, 2100090.	8.7	12
30	Influence of block copolymer feature size on reactive ion etching pattern transfer into silicon. Nanotechnology, 2017, 28, 404001.	2.6	8
31	Modulation of Optical Properties in Liquid Crystalline Networks across Different Length Scales. Journal of Physical Chemistry C, 2019, 123, 26522-26527.	3.1	8
32	Opposite Self-Folding Behavior of Polymeric Photoresponsive Actuators Enabled by a Molecular Approach. Polymers, 2019, 11, 1644.	4.5	8
33	Cell instructive Liquid Crystalline Networks for myotube formation. IScience, 2021, 24, 103077.	4.1	8
34	Liquid Crystals: Liquid Crystal-Induced Myoblast Alignment (Adv. Healthcare Mater. 3/2019). Advanced Healthcare Materials, 2019, 8, 1970009.	7.6	7
35	Dithiols as Liquid Crystalline Building Blocks for Smart Polymers via Thiol–yne Click Chemistry. ACS Applied Polymer Materials, 2021, 3, 1602-1609.	4.4	7
36	Lightâ€₽owered Microrobots: Challenges and Opportunities for Hard and Soft Responsive Microswimmers. Advanced Intelligent Systems, 2021, 3, 2170041.	6.1	6

DANIELE MARTELLA

#	Article	IF	CITATIONS
37	Photoresponsive Polymerâ€Based Biomimetic Contractile Units as Building Block for Artificial Muscles. Macromolecular Materials and Engineering, 2022, 307, .	3.6	5
38	Locomotion of light-driven soft microrobots through a hydrogel via local melting. , 2017, , .		3
39	Towards liquid crystalline elastomer optically tunable photonic microstructures. Proceedings of SPIE, 2016, , .	0.8	2
40	Soft continuous microrobots with multiple intrinsic degrees of freedom. , 2016, , .		2
41	Artificial Muscle: Lightâ€Fueled Microscopic Walkers (Adv. Mater. 26/2015). Advanced Materials, 2015, 27, 3842-3842.	21.0	1
42	Towards photo-induced swimming: actuation of liquid crystalline elastomer in water. Proceedings of SPIE, 2016, , .	0.8	1
43	Microrobotics: Photonic Microhand with Autonomous Action (Adv. Mater. 42/2017). Advanced Materials, 2017, 29, .	21.0	1
44	Beam Steering: Structured Optical Materials Controlled by Light (Advanced Optical Materials 15/2018). Advanced Optical Materials, 2018, 6, 1870059.	7.3	1
45	Photonic arms, legs, and skin. , 2017, , .		1
46	Free-form Light Actuators — Fabrication and Control of Actuation in Microscopic Scale. Journal of Visualized Experiments, 2016, , .	0.3	0
47	Tissue Engineering: Liquid Crystalline Networks toward Regenerative Medicine and Tissue Repair (Small 46/2017). Small, 2017, 13, .	10.0	0
48	Frontispiece: Advances in Cell Scaffolds for Tissue Engineering: The Value of Liquid Crystalline Elastomers. Chemistry - A European Journal, 2018, 24, .	3.3	0
49	Design of Biocompatible Liquid Cristal Elastomers Reproducing the Mechanical Properties of Human Cardiac Muscle. Biophysical Journal, 2019, 116, 264a.	0.5	0
50	Light-fueled polymeric machines: multiple actions at the microscale. , 2018, , .		0