
## Brett A Melbourne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6627218/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Nitrogen increases earlyâ€stage and slows lateâ€stage decomposition across diverse grasslands. Journal of Ecology, 2022, 110, 1376-1389.                                                                                                    | 1.9 | 12        |
| 2  | Initial abundance and stochasticity influence competitive outcome in communities. Journal of Animal Ecology, 2021, 90, 1691-1700.                                                                                                           | 1.3 | 6         |
| 3  | Harnessing the NEON data revolution to advance open environmental science with a diverse and<br>data apable community. Ecosphere, 2021, 12, .                                                                                               | 1.0 | 15        |
| 4  | Interspecific competition slows range expansion and shapes range boundaries. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26854-26860.                                                       | 3.3 | 36        |
| 5  | Ecoâ€evolutionary dynamics of range expansion. Ecology, 2020, 101, e03139.                                                                                                                                                                  | 1.5 | 79        |
| 6  | Global impacts of fertilization and herbivore removal on soil net nitrogen mineralization are modulated by local climate and soil properties. Global Change Biology, 2020, 26, 7173-7185.                                                   | 4.2 | 25        |
| 7  | Community context and dispersal stochasticity drive variation in spatial spread. Journal of Animal Ecology, 2020, 89, 2657-2664.                                                                                                            | 1.3 | 5         |
| 8  | Interspecific Chemical Competition Between Tribolium castaneum and Tribolium confusum<br>(Coleoptera: Tenebrionidae) Reduces Fecundity and Hastens Development Time. Annals of the<br>Entomological Society of America, 2020, 113, 216-222. | 1.3 | 7         |
| 9  | Accounting for environmental change in continuous-time stochastic population models. Theoretical Ecology, 2019, 12, 31-48.                                                                                                                  | 0.4 | 9         |
| 10 | Shrinking skinks: lizard body size declines in a long-term forest fragmentation experiment. Landscape<br>Ecology, 2019, 34, 1395-1409.                                                                                                      | 1.9 | 8         |
| 11 | Demographic stochasticity alters expected outcomes in experimental and simulated nonâ€neutral communities. Oikos, 2019, 128, 1704-1715.                                                                                                     | 1.2 | 4         |
| 12 | Success and failure of ecological management is highly variable in an experimental test. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23169-23173.                                           | 3.3 | 8         |
| 13 | Belowground Biomass Response to Nutrient Enrichment Depends on Light Limitation Across Globally<br>Distributed Grasslands. Ecosystems, 2019, 22, 1466-1477.                                                                                 | 1.6 | 34        |
| 14 | Stochastic processes drive rapid genomic divergence during experimental range expansions.<br>Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190231.                                                                  | 1.2 | 8         |
| 15 | When can competition and dispersal lead to checkerboard distributions?. Journal of Animal Ecology, 2019, 88, 269-276.                                                                                                                       | 1.3 | 21        |
| 16 | Spatial and temporal variability of fragmentation effects in a long term, eucalypt forest fragmentation experiment. Landscape Ecology, 2018, 33, 609-623.                                                                                   | 1.9 | 4         |
| 17 | Generalist predator's niche shifts reveal ecosystem changes in an experimentally fragmented<br>landscape. Ecography, 2018, 41, 1209-1219.                                                                                                   | 2.1 | 12        |
| 18 | Experimental investigation of alternative transmission functions: Quantitative evidence for the<br>importance of nonlinear transmission dynamics in host–parasite systems. Journal of Animal Ecology, 2018. 87. 703-715.                    | 1.3 | 12        |

BRETT A MELBOURNE

| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Parsing propagule pressure: Number, not size, of introductions drives colonization success in a novel environment. Ecology and Evolution, 2018, 8, 8043-8054.                                                                       | 0.8  | 13        |
| 20 | Genetic and demographic founder effects have longâ€ŧerm fitness consequences for colonising populations. Ecology Letters, 2017, 20, 436-444.                                                                                        | 3.0  | 56        |
| 21 | Short―and longâ€ŧerm effects of habitat fragmentation differ but are predicted by response to the matrix. Ecology, 2017, 98, 807-819.                                                                                               | 1.5  | 27        |
| 22 | The power of evolutionary rescue is constrained by genetic load. Evolutionary Applications, 2017, 10, 731-741.                                                                                                                      | 1.5  | 26        |
| 23 | Estimating extinction risk with minimal data. Biological Conservation, 2017, 213, 194-202.                                                                                                                                          | 1.9  | 2         |
| 24 | Rapid adaptive evolution in novel environments acts as an architect of population range expansion.<br>Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13501-13506.                      | 3.3  | 121       |
| 25 | Rapid trait evolution drives increased speed and variance in experimental range expansions. Nature Communications, 2017, 8, 14303.                                                                                                  | 5.8  | 101       |
| 26 | Differential and delayed response of two ant species to habitat fragmentation via the introduction of a pine matrix. Ecological Entomology, 2016, 41, 554-561.                                                                      | 1.1  | 1         |
| 27 | Linking metacommunity paradigms to spatial coexistence mechanisms. Ecology, 2016, 97, 2436-2446.                                                                                                                                    | 1.5  | 77        |
| 28 | Differentiating between niche and neutral assembly in metacommunities using null models of $\hat{I}^2 \hat{a} \in d$ iversity. Oikos, 2016, 125, 778-789.                                                                           | 1.2  | 123       |
| 29 | The use of traits to interpret responses to large scale - edge effects: a study of epigaeic beetle<br>assemblages across a Eucalyptus forest and pine plantation edge. Landscape Ecology, 2016, 31, 1815-1831.                      | 1.9  | 8         |
| 30 | Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature, 2016, 529, 390-393.                                                                                                               | 13.7 | 564       |
| 31 | Decreases in average bacterial community rRNA operon copy number during succession. ISME Journal, 2016, 10, 1147-1156.                                                                                                              | 4.4  | 146       |
| 32 | Grassland productivity limited by multiple nutrients. Nature Plants, 2015, 1, 15080.                                                                                                                                                | 4.7  | 403       |
| 33 | Three types of rescue can avert extinction in a changing environment. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10557-10562.                                                      | 3.3  | 138       |
| 34 | Anthropogenic nitrogen deposition predicts local grassland primary production worldwide. Ecology, 2015, 96, 1459-1465.                                                                                                              | 1.5  | 143       |
| 35 | Habitat fragmentation and its lasting impact on Earth's ecosystems. Science Advances, 2015, 1, e1500052.                                                                                                                            | 4.7  | 2,541     |
| 36 | Reply to Wootton and Pfister: The search for general context should include synthesis with<br>laboratory model systems. Proceedings of the National Academy of Sciences of the United States of<br>America, 2015, 112, E5904-E5904. | 3.3  | 2         |

BRETT A MELBOURNE

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. Nature Communications, 2015, 6, 7710.                                                             | 5.8  | 143       |
| 38 | A continentâ€wide study reveals clear relationships between regional abiotic conditions and postâ€dispersal seed predation. Journal of Biogeography, 2015, 42, 662-670.                                             | 1.4  | 23        |
| 39 | An Evaluation of Two Hands-On Lab Styles for Plant Biodiversity in Undergraduate Biology. CBE Life<br>Sciences Education, 2014, 13, 493-503.                                                                        | 1.1  | 0         |
| 40 | Changes in plant species density in an experimentally fragmented forest landscape: Are the effects scale-dependent?. Austral Ecology, 2014, 39, 416-423.                                                            | 0.7  | 7         |
| 41 | Anthropogenicâ€based regionalâ€scale factors most consistently explain plotâ€level exotic diversity in<br>grasslands. Global Ecology and Biogeography, 2014, 23, 802-810.                                           | 2.7  | 32        |
| 42 | Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature, 2014, 508, 521-525.                                                                                                          | 13.7 | 409       |
| 43 | Making the right choice: testing the drivers of asymmetric infections within hosts and their consequences for pathology. Oikos, 2014, 123, 875-885.                                                                 | 1.2  | 9         |
| 44 | Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 2014, 508, 517-520.                                                                                                        | 13.7 | 669       |
| 45 | The roles of demography and genetics in the early stages of colonization. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141073.                                                             | 1.2  | 76        |
| 46 | Impact of pre-lab learning activities, a post-lab written report, and content reduction on<br>evolution-based learning in an undergraduate plant biodiversity lab. Evolution: Education and<br>Outreach, 2014, 7, . | 0.3  | 5         |
| 47 | Predicting invasion in grassland ecosystems: is exotic dominance the real embarrassment of richness?.<br>Global Change Biology, 2013, 19, 3677-3687.                                                                | 4.2  | 70        |
| 48 | Lifeâ€history constraints in grassland plant species: a growthâ€defence tradeâ€off is the norm. Ecology<br>Letters, 2013, 16, 513-521.                                                                              | 3.0  | 165       |
| 49 | Changes in assembly processes in soil bacterial communities following a wildfire disturbance. ISME<br>Journal, 2013, 7, 1102-1111.                                                                                  | 4.4  | 354       |
| 50 | Regional Contingencies in the Relationship between Aboveground Biomass and Litter in the World's<br>Grasslands. PLoS ONE, 2013, 8, e54988.                                                                          | 1.1  | 27        |
| 51 | Response to Comments on "Productivity Is a Poor Predictor of Plant Species Richness― Science, 2012,<br>335, 1441-1441.                                                                                              | 6.0  | 30        |
| 52 | Abundance of introduced species at home predicts abundance away in herbaceous communities.<br>Ecology Letters, 2011, 14, 274-281.                                                                                   | 3.0  | 88        |
| 53 | Productivity Is a Poor Predictor of Plant Species Richness. Science, 2011, 333, 1750-1753.                                                                                                                          | 6.0  | 463       |
| 54 | Statistical models for monitoring and predicting effects of climate change and invasion on the free-living insects and a spider from sub-Antarctic Heard Island. Polar Biology, 2011, 34, 119-125.                  | 0.5  | 18        |

BRETT A MELBOURNE

| #  | Article                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Using traits of species to understand responses to land use change: Birds and livestock grazing in the<br>Australian arid zone. Biological Conservation, 2010, 143, 78-85. | 1.9  | 41        |
| 56 | Highly Variable Spread Rates in Replicated Biological Invasions: Fundamental Limits to Predictability.<br>Science, 2009, 325, 1536-1539.                                   | 6.0  | 170       |
| 57 | Extinction risk depends strongly on factors contributing to stochasticity. Nature, 2008, 454, 100-103.                                                                     | 13.7 | 443       |
| 58 | Species' traits predict the effects of disturbance and productivity on diversity. Ecology Letters, 2008, 11, 348-356.                                                      | 3.0  | 141       |
| 59 | The status of two exotic terrestrial Crustacea on sub-Antarctic Macquarie Island. Polar Record, 2008, 44, 15-23.                                                           | 0.4  | 12        |
| 60 | Invasion in a heterogeneous world: resistance, coexistence or hostile takeover?. Ecology Letters, 2007, 10, 77-94.                                                         | 3.0  | 343       |
| 61 | The tails of two geckos tell the story of dispersal in a fragmented landscape. Molecular Ecology, 2007, 16, 3289-3291.                                                     | 2.0  | 4         |
| 62 | THE SCALE TRANSITION: SCALING UP POPULATION DYNAMICS WITH FIELD DATA. Ecology, 2006, 87, 1478-1488.                                                                        | 1.5  | 64        |
| 63 | Scaling up population dynamics: integrating theory and data. Oecologia, 2005, 145, 178-186.                                                                                | 0.9  | 53        |
| 64 | SPATIAL HETEROGENEITY EXPLAINS THE SCALE DEPENDENCE OF THE NATIVE–EXOTIC DIVERSITY RELATIONSHIP. Ecology, 2005, 86, 1602-1610.                                             | 1.5  | 375       |
| 65 | The spatial spread of invasions: new developments in theory and evidence. Ecology Letters, 2004, 8, 91-101.                                                                | 3.0  | 727       |
| 66 | Species Survival in Fragmented Landscapes: Where to From Here?. Biodiversity and Conservation, 2004, 13, 275-284.                                                          | 1.2  | 29        |
| 67 | A Low-Cost Sensor for Measuring Spatiotemporal Variation of Light Intensity on the Streambed.<br>Journal of the North American Benthological Society, 2003, 22, 143-151.   | 3.0  | 7         |
| 68 | EFFECTS OF WITHIN- AND BETWEEN-PATCH PROCESSES ON COMMUNITY DYNAMICS IN A FRAGMENTATION EXPERIMENT. Ecology, 2001, 82, 1830-1846.                                          | 1.5  | 82        |
| 69 | EFFECTS OF WITHIN- AND BETWEEN-PATCH PROCESSES ON COMMUNITY DYNAMICS IN A FRAGMENTATION EXPERIMENT. , 2001, 82, 1830.                                                      |      | 12        |
| 70 | Bias in the effect of habitat structure on pitfall traps: An experimental evaluation. Austral Ecology,<br>1999, 24, 228-239.                                               | 0.7  | 191       |
| 71 | Statistical models of invertebrate distribution on Macquarie Island: a tool to assess climate change and local human impacts. Polar Biology, 1999, 21, 240-250.            | 0.5  | 25        |
| 72 | The invertebrates of sub-Antarctic Bishop Island. Polar Biology, 1997, 17, 455-458.                                                                                        | 0.5  | 13        |

5