Kishanjit Kumar Khatua

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6627116/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Boundary Shear Stress Distributions in Compound Channels Having Narrowing and Enlarging Floodplains. Water Science and Technology Library, 2022, , 127-141.	0.2	1
2	Experimental and numerical analysis of velocity distribution in a compound meandering channel with double layered rigid vegetated flood plains. Flow Measurement and Instrumentation, 2022, 83, 102111.	1.0	6
3	How dynamic is the Brahmaputra? Understanding the process–form–vegetation interactions for hierarchies of energy dissipation. Ecohydrology, 2022, 15, .	1.1	9
4	Lateral dissemination of depth-averaged velocity, boundary shear stress and stage-discharge curves for compound channels. ISH Journal of Hydraulic Engineering, 2021, 27, 253-266.	1.1	11
5	Turbulence characteristics in a rough open channel under unsteady flow conditions. ISH Journal of Hydraulic Engineering, 2021, 27, 354-365.	1.1	9
6	Prediction of discharge in converging and diverging compound channel by gene expression programming. ISH Journal of Hydraulic Engineering, 2021, 27, 385-395.	1.1	22
7	Lateral distribution of depth average velocity & boundary shear stress in a gravel bed open channel flow. ISH Journal of Hydraulic Engineering, 2021, 27, 23-37.	1.1	10
8	Flow resistance in straight gravel bed inbank flow with analytical solution for velocity and boundary shear distribution. ISH Journal of Hydraulic Engineering, 2021, 27, 9-22.	1.1	9
9	Prediction of Flow Resistance in an Open Channel over Movable Beds Using Artificial Neural Network. Journal of Hydrologic Engineering - ASCE, 2021, 26, .	0.8	5
10	Analytical solution for depth-averaged velocity and boundary shear in a compound channel. Water Management, 2021, 174, 143-158.	0.4	7
11	Discharge estimation in converging and diverging compound open channels by using adaptive neuro-fuzzy inference system. Canadian Journal of Civil Engineering, 2020, 47, 1327-1344.	0.7	13
12	Momentum transfer coefficients at the adjoining interfaces of a compound channel. Flow Measurement and Instrumentation, 2020, 75, 101792.	1.0	6
13	Boundary shear distribution in a compound channel with differential roughness. Water Management, 2020, 173, 274-292.	0.4	6
14	Unsteady open-channel flows over rough bed with and without emergent rigid vegetation: A laboratory experiment. , 2020, , 1527-1535.		2
15	Flow distribution in a compound channel using an artificial neural network. Sustainable Water Resources Management, 2019, 5, 1847-1858.	1.0	12
16	Discharge Estimation at the Apex of Compound Meandering Channels. Water Resources Management, 2019, 33, 3469-3483.	1.9	6
17	Models for kinetic energy and momentum correction coefficients for non-prismatic compound channels using regression and gene expression programming. SN Applied Sciences, 2019, 1, 1.	1.5	9
18	Discharge prediction in asymmetric compound channels. Journal of Hydro-Environment Research, 2019, 23, 25-39.	1.0	8

KISHANJIT KUMAR KHATUA

#	Article	IF	CITATIONS
19	Discharge prediction in meandering compound channels. International Journal of Water, 2019, 13, 209.	0.1	1
20	Discharge estimation in wide meandering compound channels. ISH Journal of Hydraulic Engineering, 2019, , 1-15.	1.1	1
21	An analytical method for over bank flow modeling. ISH Journal of Hydraulic Engineering, 2019, 25, 214-222.	1.1	1
22	Water surface profile computation for compound channel having diverging floodplains. ISH Journal of Hydraulic Engineering, 2019, 25, 336-349.	1.1	8
23	Flow resistance in gravel bed open channel flows case: intense transport condition. ISH Journal of Hydraulic Engineering, 2019, 25, 298-309.	1.1	14
24	Discharge prediction in meandering compound channels. International Journal of Water, 2019, 13, 209.	0.1	0
25	Numerical Method to Compute Water Surface Profile for Converging Compound Channel. Arabian Journal for Science and Engineering, 2018, 43, 5349-5364.	1.7	11
26	Boundary Shear Stress Distribution in Straight Compound Channel Flow Using Artificial Neural Network. Journal of Hydrologic Engineering - ASCE, 2018, 23, .	0.8	18
27	Prediction of apparent shear stress in an asymmetric compound channel. ISH Journal of Hydraulic Engineering, 2018, , 1-11.	1.1	3
28	Gene expression programming to predict Manning's n in meandering flows. Canadian Journal of Civil Engineering, 2018, 45, 304-313.	0.7	18
29	Depth-Averaged Velocity Distribution for Symmetric and Asymmetric Compound Channels. Lecture Notes in Electrical Engineering, 2018, , 281-292.	0.3	1
30	Flow distribution in an unsymmetrical compound channel. ISH Journal of Hydraulic Engineering, 2018, 24, 16-24.	1.1	2
31	Assessment of Roughness Coefficient for Meandering Compound Channels. KSCE Journal of Civil Engineering, 2018, 22, 2010-2022.	0.9	10
32	Numerical modeling of converging compound channel flow. ISH Journal of Hydraulic Engineering, 2018, 24, 285-297.	1.1	16
33	Loss of Energy in the Converging Compound Open Channels. Arabian Journal for Science and Engineering, 2018, 43, 5119-5127.	1.7	7
34	Depth-averaged velocity and bed shear stress in unsteady open channel flow over rough bed. E3S Web of Conferences, 2018, 40, 05071.	0.2	3
35	Flow distribution in diverging compound channels using improved independent subsection method. E3S Web of Conferences, 2018, 40, 05068.	0.2	7
36	Prediction of depth-averaged velocity in an open channel flow. Applied Water Science, 2018, 8, 1.	2.8	11

#	Article	IF	CITATIONS
37	An analytical solution for flow estimation of a meandering compound channel. E3S Web of Conferences, 2018, 40, 06043.	0.2	0
38	Analytical solution of non-uniform flow in compound channel. E3S Web of Conferences, 2018, 40, 06041.	0.2	2
39	Flow Prediction of Boundary Shear Stress and Depth Average Velocity of a Compound Channel with Narrowing Floodplain. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 2018, 42, 415-425.	1.0	0
40	Variation of Velocity Distribution in Rough Meandering Channels. Advances in Civil Engineering, 2018, 2018, 1-12.	0.4	13
41	Reply to the discussion by Kumar on "Gene expression programming to predict Manning's n in meandering flows― Canadian Journal of Civil Engineering, 2018, 45, 704-704.	0.7	0
42	Flow Resistance in a Compound Channel with Diverging and Converging Floodplains. Journal of Hydraulic Engineering, 2018, 144, .	0.7	23
43	Application of Lateral Distribution Method and Modified Lateral Distribution Method to the Compound Channel Having Converging Floodplains. Lecture Notes in Electrical Engineering, 2018, , 293-303.	0.3	Ο
44	Evaluation of water quality with application of Bayes' rule and entropy weight method. European Journal of Environmental and Civil Engineering, 2017, 21, 730-752.	1.0	85
45	Water Surface Profile Computation for Compound Channels with Narrow Flood Plains. Arabian Journal for Science and Engineering, 2017, 42, 941-955.	1.7	7
46	Evaluation of interacting length in prediction of over bank flow. ISH Journal of Hydraulic Engineering, 2017, 23, 187-194.	1.1	3
47	Numerical solution of depth-averaged velocity and boundary shear stress distribution in converging compound channels. Arabian Journal for Science and Engineering, 2017, 42, 1305-1319.	1.7	8
48	Depth-Averaged Velocity and Boundary Shear Stress Prediction in Asymmetric Compound Channels. Arabian Journal for Science and Engineering, 2017, 42, 3849-3862.	1.7	9
49	Stage-Discharge Prediction for Converging Compound Channels with Narrow Floodplains. Journal of Irrigation and Drainage Engineering - ASCE, 2017, 143, .	0.6	8
50	Discharge assessment in an asymmetric compound channel by zero shear interface method. ISH Journal of Hydraulic Engineering, 2017, 23, 126-134.	1.1	3
51	Boundary Shear Stress Distribution for a Two-Stage Asymmetric Compound Channel. Arabian Journal for Science and Engineering, 2017, 42, 1077-1091.	1.7	2
52	Prediction of Depth-Averaged Velocity and Boundary Shear Stress Distribution in a Single-Stage Channel by Lateral Distribution Method. Lecture Notes in Electrical Engineering, 2017, , 397-407.	0.3	0
53	Variation of Local Friction Factor in an Open Channel Flow. Indian Journal of Science and Technology, 2016, 9, .	0.5	5
54	A numerical solution for depth-averaged velocity distribution in an open channel flow. ISH Journal of Hydraulic Engineering, 2016, 22, 262-271.	1.1	7

KISHANJIT KUMAR KHATUA

#	Article	IF	CITATIONS
55	Boundary shear stress distribution for a converging compound channel. ISH Journal of Hydraulic Engineering, 2016, 22, 212-219.	1.1	13
56	Sinuosity Dependency on Stage Discharge in Meandering Channels. Journal of Irrigation and Drainage Engineering - ASCE, 2016, 142, .	0.6	19
57	Prediction of depth averaged velocity and boundary shear distribution of a compound channel based on the mixing layer theory. Flow Measurement and Instrumentation, 2016, 50, 147-157.	1.0	27
58	Prediction of mixing layer in symmetric and asymmetric compound channels. , 2016, , .		3
59	Apparent shear in an asymmetric compound channel. , 2016, , .		15
60	Prediction of energy loss in compound channels having enlarging floodplains. , 2016, , .		4
61	Apparent shear stress analysis in meandering compound channels. , 2016, , .		Ο
62	Inference of Water Quality Index Using ANFIA and PCA. Aquatic Procedia, 2015, 4, 1099-1106.	0.9	43
63	Prediction of Velocity Distribution in Straight Channel with Rigid Vegetation. Aquatic Procedia, 2015, 4, 819-825.	0.9	11
64	Analysis of different roughness coefficients' variation in an open channel with vegetation. , 2015, , .		1
65	Water Surface Profile Computation in Nonprismatic Compound Channels. Aquatic Procedia, 2015, 4, 1500-1507.	0.9	2
66	Flow Modeling in Symmetrically Narrowing Flood Plains. Aquatic Procedia, 2015, 4, 826-833.	0.9	6
67	Boundary Shear Stress Analysis in Meandering Channels at the Bend Apex. Aquatic Procedia, 2015, 4, 812-818.	0.9	3
68	Distribution of Depth-Averaged Velocity along a Highly Sinuous Channel. Aquatic Procedia, 2015, 4, 805-811.	0.9	5
69	Application of adaptive neuro-fuzzy inference system for the estimation of roughness coefficient of a meandering open-channel flow. International Journal of Sustainable Development and Planning, 2015, 10, 87-99.	0.3	1
70	Prediction of flow resistance in a compound open channel. Journal of Hydroinformatics, 2014, 16, 19-32.	1.1	6
71	Modelling boundary shear stress in highly sinuous meandering channels. ISH Journal of Hydraulic Engineering, 2014, 20, 161-168.	1.1	6
72	Prediction of roughness coefficient of a meandering open channel flow using Neuro-Fuzzy Inference System. Measurement: Journal of the International Measurement Confederation, 2014, 51, 112-123.	2.5	19

KISHANJIT KUMAR KHATUA

#	Article	IF	CITATIONS
73	Flow prediction in two stage wide compound channels. ISH Journal of Hydraulic Engineering, 2014, 20, 151-160.	1.1	5
74	Modelling the depth-averaged velocity in trapezoidal meandering channels. ISH Journal of Hydraulic Engineering, 2014, 20, 111-118.	1.1	4
75	Estimation of discharge and its distribution in compound channels. Journal of Hydrodynamics, 2014, 26, 144-154.	1.3	45
76	Composite roughness for rough compound channels. , 2014, , 649-656.		2
77	Energy and momentum coefficients for wide compound channels. WIT Transactions on Ecology and the Environment, 2013, , .	0.0	4
78	Distribution of boundary shear in compound channel with rough floodplains. WIT Transactions on Ecology and the Environment, 2013, , .	0.0	3
79	Selection of interface for discharge prediction in a compound channel flow. International Journal of Sustainable Development and Planning, 2013, 8, 214-230.	0.3	2
80	Precipitation-runoff simulation for a Himalayan River Basin, India using artificial neural network algorithms. Sciences in Cold and Arid Regions, 2013, 5, 85.	0.1	1
81	Friction factor of a meandering open channel flow. , 2013, , .		2
82	Stage-Discharge Prediction for Straight and Smooth Compound Channels with Wide Floodplains. Journal of Hydraulic Engineering, 2012, 138, 93-99.	0.7	74
83	Prediction of entrance length for low Reynolds number flow in pipe using neuro-fuzzy inference system. Expert Systems With Applications, 2012, 39, 4545-4557.	4.4	9
84	Stage–discharge prediction for meandering channels. International Journal of Computational Methods and Experimental Measurements, 2012, 1, 80-92.	0.1	3
85	A neural network approach for prediction of discharge in straight compound open channel flow. Flow Measurement and Instrumentation, 2011, 22, 438-446.	1.0	57
86	Meandering effect for evaluation of roughness coefficients in open channel flow. WIT Transactions on Ecology and the Environment, 2011, , .	0.0	11
87	Apparent shear stress and boundary shear distribution in a compound channel flow. WIT Transactions on Modelling and Simulation, 2011, , .	0.0	0
88	APPARENT SHEAR STRESS IN A COMPOUND CHANNEL. ISH Journal of Hydraulic Engineering, 2010, 16, 1-14.	1.1	3
89	FLOW DISTRIBUTION IN MEANDERING COMPOUND CHANNEL. ISH Journal of Hydraulic Engineering, 2009, 15, 11-26.	1.1	9
90	BOUNDARY SHEAR STRESS DISTRIBUTION IN COMPOUND OPEN CHANNEL FLOW. ISH Journal of Hydraulic Engineering, 2007, 13, 39-54.	1.1	40