Luciano C A Pimenta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/662703/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regional consensus in discrete-time multi-agent systems subject to time-varying delays and saturating actuators. International Journal of Control, 2023, 96, 1457-1469.	1.2	3
2	Constructive Time-Varying Vector Fields for Robot Navigation. IEEE Transactions on Robotics, 2022, 38, 852-867.	7.3	15
3	Autonomous Navigation System for a Delivery Drone. Journal of Control, Automation and Electrical Systems, 2022, 33, 141-155.	1.2	24
4	Safe coordination of robots in cyclic paths. ISA Transactions, 2021, 109, 126-140.	3.1	3
5	Consensus in multi-agent systems subject to input saturation and time-varying delays. International Journal of Systems Science, 2021, 52, 1479-1498.	3.7	10
6	Matheuristics for Multi-UAV Routing and Recharge Station Location for Complete Area Coverage. Sensors, 2021, 21, 1705.	2.1	11
7	Collision-free vector field guidance and MPC for a fixed-wing UAV. , 2021, , .		5
8	Pose consensus based on dual quaternion algebra with application to decentralized formation control of mobile manipulators. Journal of the Franklin Institute, 2020, 357, 142-178.	1.9	21
9	Robust quadcopter control with artificial vector fields. , 2020, , .		9
10	Segregation of Heterogeneous Swarms of Robots in Curves. , 2020, , .		3
11	Spatial segregative behaviors in robotic swarms using differential potentials. Swarm Intelligence, 2020, 14, 259-284.	1.3	5
12	Distributed formationâ€containment control with Eulerâ€Lagrange systems subject to input saturation and communication delays. International Journal of Robust and Nonlinear Control, 2020, 30, 2999-3022.	2.1	11
13	Distributed Parameterized Predictive Control for Multi-robot Curve Tracking. IFAC-PapersOnLine, 2020, 53, 3144-3149.	0.5	1
14	Abstraction based approach for segregation in heterogeneous robotic swarms. Robotics and Autonomous Systems, 2019, 122, 103295.	3.0	7
15	Decentralized Radial Segregation in Heterogeneous Swarms of Robots. , 2019, , .		2
16	NMPC Strategy for a Quadrotor UAV in a 3D Unknown Environment. , 2019, , .		10
17	Robust Guidance Strategy for Target Circulation by Controlled UAV. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54, 1415-1431.	2.6	25
18	Consensus on intervals of communication delay. International Journal of Automation and Computing, 2018, 15, 13-24.	4.5	5

LUCIANO C A PIMENTA

#	Article	IF	CITATIONS
19	Robust Fixed-Wing UAV Guidance with Circulating Artificial Vector Fields. , 2018, , .		18
20	Multi-robot Deployment using Topological Maps. Journal of Intelligent and Robotic Systems: Theory and Applications, 2017, 86, 641-661.	2.0	16
21	Coupling Design for Consensus in Switching Topologies with Time-Varying Delays. Advances in Delays and Dynamics, 2017, , 185-199.	0.4	Ο
22	Distributed multi-robot coordination for dynamic perimeter surveillance in uncertain environments. , 2017, , .		17
23	Design of coupling strengths for consensus with time-varying delays. , 2017, , .		Ο
24	Adapting to sensing and actuation variations in multi-robot coverage. International Journal of Robotics Research, 2017, 36, 337-354.	5.8	46
25	Dynamic perimeter surveillance with a team of robots. , 2016, , .		13
26	Sampling Based Path Planning and Vector Fields for Curve Tracking by UAVs. , 2016, , .		2
27	Consensus with guaranteed convergence rate of high-order integrator agents in the presence of time-varying delays. International Journal of Systems Science, 2016, 47, 2475-2486.	3.7	10
28	Multi-objective approach for robot motion planning in search tasks. Applied Intelligence, 2016, 45, 305-321.	3.3	39
29	Conditions for Consensus of Multi-Agent Systems With Time-Delays and Uncertain Switching Topology. IEEE Transactions on Industrial Electronics, 2016, 63, 1258-1267.	5.2	98
30	Distributed Safe Deployment of Networked Robots. Springer Tracts in Advanced Robotics, 2016, , 65-77.	0.3	6
31	Multi-UAV Routing for Area Coverage and Remote Sensing with Minimum Time. Sensors, 2015, 15, 27783-27803.	2.1	227
32	Segregating multiple groups of heterogeneous units in robot swarms using abstractions. , 2015, , .		6
33	Consensus on Time-Delay Intervals in Networks of High-Order Integrator Agentsâ^—â^—This research was partially supported by the CNPq, CAPES, and FAPEMIG IFAC-PapersOnLine, 2015, 48, 153-158.	0.5	6
34	Adapting to performance variations in multi-robot coverage. , 2015, , .		22
35	Consensus with convergence rate in directed networks with multiple non-differentiable input delays. , 2014, , .		5
36	Segregation of multiple heterogeneous units in a robotic swarm. , 2014, , .		19

3

LUCIANO C A PIMENTA

#	Article	IF	CITATIONS
37	Consensus for double-integrator dynamics with velocity constraints. International Journal of Control, Automation and Systems, 2014, 12, 930-938.	1.6	24
38	Decentralized Coordination of Constrained Fixed-wing Unmanned Aerial Vehicles: Circular Orbits. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 1247-1253.	0.4	3
39	On the Coordination of Constrained Fixed-Wing Unmanned Aerial Vehicles. Journal of Control, Automation and Electrical Systems, 2013, 24, 585-600.	1.2	5
40	Decentralized controllers for perimeter surveillance with teams of aerial robots. Advanced Robotics, 2013, 27, 697-709.	1.1	27
41	Swarm Coordination Based on Smoothed Particle Hydrodynamics Technique. IEEE Transactions on Robotics, 2013, 29, 383-399.	7.3	76
42	Coordination of multiple fixed-wing UAVs traversing intersecting periodic paths. , 2013, , .		5
43	Coverage of curves in 3D with swarms of nonholonomic aerial robots. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 10367-10372.	0.4	9
44	Application of Remote Sensing Optical Properties of Ship Wakes at Sea Area out of Dalian Harbor. , 2010, , .		0
45	Circulation of curves using vector fields: Actual robot experiments in 2D and 3D workspaces. , 2010, , .		8
46	Vector Fields for Robot Navigation Along Time-Varying Curves in \$n\$-Dimensions. IEEE Transactions on Robotics, 2010, 26, 647-659.	7.3	136
47	Artificial vector fields for robot convergence and circulation of time-varying curves in n-dimensional spaces. , 2009, , .		11
48	Robot Navigation in Multi-terrain Outdoor Environments. International Journal of Robotics Research, 2009, 28, 685-700.	5.8	23
49	Simultaneous Coverage and Tracking (SCAT) of Moving Targets with Robot Networks. Springer Tracts in Advanced Robotics, 2009, , 85-99.	0.3	66
50	Control of swarms based on Hydrodynamic models. , 2008, , .		43
51	Sensing and coverage for a network of heterogeneous robots. , 2008, , .		192
52	Robot Navigation in Multi-terrain Outdoor Environments. Springer Tracts in Advanced Robotics, 2008, , 331-342.	0.3	3
53	Smoothed particle electromagnetics with boundary absorbing condition using perfectly matched layers. , 2008, , .		1
54	Fully continuous vector fields for mobile robot navigation on sequences of discrete triangular regions. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	6

LUCIANO C A PIMENTA

#	Article	IF	CITATIONS
55	A preliminary comparison of tree encoding schemes for evolutionary algorithms. , 2007, , .		14
56	Fluids in Electrostatic Fields: An Analogy for Multirobot Control. IEEE Transactions on Magnetics, 2007, 43, 1765-1768.	1.2	34
57	Robot navigation based on electrostatic field computation. IEEE Transactions on Magnetics, 2006, 42, 1459-1462.	1.2	24
58	On Computing Complex Navigation Functions. , 0, , .		7
59	Fluids, Particles, and Multiple Robots in Electrostatic Fields. , 0, , .		0