Huarong Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6626972/publications.pdf Version: 2024-02-01

Ημαρονό Ταν

#	Article	IF	CITATIONS
1	Molecular Regulation of Antibiotic Biosynthesis in Streptomyces. Microbiology and Molecular Biology Reviews, 2013, 77, 112-143.	6.6	611
2	"Pseudo―γ-Butyrolactone Receptors Respond to Antibiotic Signals to Coordinate Antibiotic Biosynthesis. Journal of Biological Chemistry, 2010, 285, 27440-27448.	3.4	142
3	Specialised metabolites regulating antibiotic biosynthesis in <i>Streptomyces</i> spp FEMS Microbiology Reviews, 2016, 40, 554-573.	8.6	137
4	Nucleoside antibiotics: biosynthesis, regulation, and biotechnology. Trends in Microbiology, 2015, 23, 110-119.	7.7	100
5	A γâ€butyrolactoneâ€sensing activator/repressor, <scp>JadR3</scp> , controls a regulatory miniâ€network for jadomycin biosynthesis. Molecular Microbiology, 2014, 94, 490-505.	2.5	82
6	Genome engineering and direct cloning of antibiotic gene clusters via phage ϕBT1 integrase-mediated site-specific recombination in Streptomyces. Scientific Reports, 2015, 5, 8740.	3.3	62
7	Activation and mechanism of a cryptic oviedomycin gene cluster via the disruption of a global regulatory gene, adpA, in Streptomyces ansochromogenes. Journal of Biological Chemistry, 2017, 292, 19708-19720.	3.4	62
8	Improvement of gougerotin and nikkomycin production by engineering their biosynthetic gene clusters. Applied Microbiology and Biotechnology, 2013, 97, 6383-6396.	3.6	50
9	polR, a pathway-specific transcriptional regulatory gene, positively controls polyoxin biosynthesis in Streptomyces cacaoi subsp. asoensis. Microbiology (United Kingdom), 2009, 155, 1819-1831.	1.8	45
10	<scp>JadR</scp> *â€mediated feedâ€forward regulation of cofactor supply in jadomycin biosynthesis. Molecular Microbiology, 2013, 90, 884-897.	2.5	42
11	Cloning, Sequencing, and Function of sanF : A Gene Involved in Nikkomycin Biosynthesis of Streptomyces ansochromogenes. Current Microbiology, 2000, 41, 312-316.	2.2	37
12	Hybrid antibiotics with the nikkomycin nucleoside and polyoxin peptidyl moieties. Metabolic Engineering, 2011, 13, 336-344.	7.0	37
13	Phenotypic and Genotypic Characterization of Lactic Acid Bacteria Isolated from Some Nigerian Traditional Fermented Foods. Food Biotechnology, 2012, 26, 124-142.	1.5	35
14	Activation and enhancement of Fredericamycin A production in deepsea-derived Streptomyces somaliensis SCSIO ZH66 by using ribosome engineering and response surface methodology. Microbial Cell Factories, 2015, 14, 64.	4.0	35
15	Importance and regulation of inositol biosynthesis during growth and differentiation of <i>Streptomyces</i> . Molecular Microbiology, 2012, 83, 1178-1194.	2.5	33
16	Identification of a butenolide signaling system that regulates nikkomycin biosynthesis in Streptomyces. Journal of Biological Chemistry, 2018, 293, 20029-20040.	3.4	33
17	The role of a purine-specific nucleoside hydrolase in spore germination of Bacillus thuringiensis. Microbiology (United Kingdom), 2008, 154, 1333-1340.	1.8	31
18	SanG, a transcriptional activator, controls nikkomycin biosynthesis through binding to the sanN–sanO intergenic region in Streptomyces ansochromogenes. Microbiology (United Kingdom), 2010, 156, 828-837.	1.8	29

HUARONG TAN

#	Article	IF	CITATIONS
19	Coordinative Modulation of Chlorothricin Biosynthesis by Binding of the Glycosylated Intermediates and End Product to a Responsive Regulator ChIF1. Journal of Biological Chemistry, 2016, 291, 5406-5417.	3.4	29
20	Identification of novel mureidomycin analogues via rational activation of a cryptic gene cluster in Streptomyces roseosporus NRRL 15998. Scientific Reports, 2015, 5, 14111.	3.3	27
21	Cloning, Heterologous Expression, and Characterization of the Gene Cluster Required for Gougerotin Biosynthesis. Chemistry and Biology, 2013, 20, 34-44.	6.0	26
22	Identification of novel tylosin analogues generated by a wblA disruption mutant of Streptomyces ansochromogenes. Microbial Cell Factories, 2015, 14, 173.	4.0	25
23	Biosynthesis and molecular regulation of secondary metabolites in microorganisms. Science China Life Sciences, 2017, 60, 935-938.	4.9	25
24	Combined gene cluster engineering and precursor feeding to improve gougerotin production in Streptomyces graminearus. Applied Microbiology and Biotechnology, 2013, 97, 10469-10477.	3.6	23
25	Enhancement of neomycin production by engineering the entire biosynthetic gene cluster and feeding key precursors in Streptomyces fradiae CGMCC 4.576. Applied Microbiology and Biotechnology, 2019, 103, 2263-2275.	3.6	21
26	Important role of a LAL regulator StaR in the staurosporine biosynthesis and high-production of Streptomyces fradiae CGMCC 4.576. Science China Life Sciences, 2019, 62, 1638-1654.	4.9	19
27	Biosynthesis and regulation of secondary metabolites in microorganisms. Science China Life Sciences, 2013, 56, 581-583.	4.9	18
28	Biosynthesis and combinatorial biosynthesis of antifungal nucleoside antibiotics. Science China Life Sciences, 2017, 60, 939-947.	4.9	17
29	A novel Streptomyces gene, samR , with different effects on differentiation of Streptomyces ansochromogenes and Streptomyces coelicolor. Archives of Microbiology, 2002, 177, 274-278.	2.2	16
30	Enhancement of salinomycin production by ribosome engineering in Streptomyces albus. Science China Life Sciences, 2019, 62, 276-279.	4.9	16
31	jadR* and jadR2 act synergistically to repress jadomycin biosynthesis. Science China Life Sciences, 2013, 56, 584-590.	4.9	15
32	Functional Properties of <i>Pediococcus</i> Species Isolated from Traditional Fermented Cereal Gruel and Milk in Nigeria. Food Biotechnology, 2013, 27, 14-38.	1.5	15
33	Neomycin biosynthesis is regulated positively by AfsA-g and NeoR in Streptomyces fradiae CGMCC 4.7387. Science China Life Sciences, 2017, 60, 980-991.	4.9	15
34	NosP-Regulated Nosiheptide Production Responds to Both Peptidyl and Small-Molecule Ligands Derived from the Precursor Peptide. Cell Chemical Biology, 2018, 25, 143-153.e4.	5.2	15
35	Two tandem promoters to increase gene expression in Lactococcus lactis. Biotechnology Letters, 2002, 24, 1669-1672.	2.2	13
36	Crystal structure and site-directed mutagenesis of a nitroalkane oxidase from Streptomyces ansochromogenes. Biochemical and Biophysical Research Communications, 2011, 405, 344-348.	2.1	13

HUARONG TAN

#	Article	IF	CITATIONS
37	Reconstruction of a hybrid nucleoside antibiotic gene cluster based on scarless modification of large DNA fragments. Science China Life Sciences, 2017, 60, 968-979.	4.9	13
38	Engineering nucleoside antibiotics toward the development of novel antimicrobial agents. Journal of Antibiotics, 2019, 72, 906-912.	2.0	12
39	Molecular mechanism of mureidomycin biosynthesis activated by introduction of an exogenous regulatory gene ssaA into Streptomyces roseosporus. Science China Life Sciences, 2021, 64, 1949-1963.	4.9	12
40	Assembly and features of secondary metabolite biosynthetic gene clusters in Streptomyces ansochromogenes. Science China Life Sciences, 2013, 56, 609-618.	4.9	11
41	Component Optimization of Neomycin Biosynthesis via the Reconstitution of a Combinatorial Mini-Gene-Cluster in <i>Streptomyces fradiae</i> . ACS Synthetic Biology, 2020, 9, 2493-2501.	3.8	11
42	SCO3129, a TetR family regulator, is responsible for osmotic stress in Streptomyces coelicolor. Synthetic and Systems Biotechnology, 2018, 3, 261-267.	3.7	10
43	Co-expression of a SARP Family Activator ChIF2 and a Type II Thioesterase ChIK Led to High Production of Chlorothricin in Streptomyces antibioticus DSM 40725. Frontiers in Bioengineering and Biotechnology, 2020, 8, 1013.	4.1	10
44	A widespread response of Gram-negative bacterial acyl-homoserine lactone receptors to Gram-positive Streptomyces γ-butyrolactone signaling molecules. Science China Life Sciences, 2021, 64, 1575-1589.	4.9	10
45	Reconstitution of a miniâ€gene cluster combined with ribosome engineering led to effective enhancement of salinomycin production in <i>Streptomyces albus</i> . Microbial Biotechnology, 2021, 14, 2356-2368.	4.2	8
46	Autoregulation of hpdR and its effect on CDA biosynthesis in Streptomyces coelicolor. Microbiology (United Kingdom), 2010, 156, 2641-2648.	1.8	7
47	Cloning, sequencing and function ofsanA, a gene involved in nikkomycin biosynthesis ofStreptomyces ansochromogenes. Science in China Series C: Life Sciences, 2000, 43, 30-38.	1.3	6
48	A butenolide signaling system synergized with biosynthetic gene modules led to effective activation and enhancement of silent oviedomycin production in Streptomyces. Metabolic Engineering, 2022, 72, 289-296.	7.0	6
49	Cloning, sequencing and function ofsanB, a gene related to nikkomycin biosynthesis ofStreptomyces ansochromogenes. Science Bulletin, 2000, 45, 2158-2162.	1.7	4
50	Activation of Cryptic Antibiotic Biosynthetic Gene Clusters Guided by RNA-seq Data from Both Streptomyces ansochromogenes and ΔwblA. Antibiotics, 2021, 10, 1097.	3.7	4
51	Three functional replication origins of the linear and artificially circularized plasmid SCP1 of Streptomyces coelicolor. Microbiology (United Kingdom), 2013, 159, 2127-2140.	1.8	2
52	Transcriptomic Analysis of Thermoanaerobacter tengcongensis Grown at Different Temperatures by RNA Sequencing. Journal of Genetics and Genomics, 2015, 42, 335-338.	3.9	2
53	A novel gene—samfR involved in early stage ofStreptomyces ansochromogenes differentiation. Science in China Series C: Life Sciences, 1999, 42, 570-576.	1.3	1
54	The function of a regulatory gene,scrX related to differentiation inStreptomyces coelicolor. Science in China Series C: Life Sciences, 2000, 43, 157-168.	1.3	1

HUARONG TAN

#	Article	IF	CITATIONS
55	In vivo transcription of two promoters, PTH4 and PTH270 involved in regulation ofStreptomyces differentiation. Science in China Series C: Life Sciences, 1997, 40, 246-250.	1.3	0
56	Structure and function ofsawB, a gene involved in differentiation ofStreptomyces ansochromogenes. Science in China Series C: Life Sciences, 2000, 43, 376-386.	1.3	0
57	Molecular regulation of development and differentiation inStreptomyces. Science Bulletin, 2001, 46, 177-178.	1.7	0