Miriam A Shelef

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6626565/publications.pdf Version: 2024-02-01

MIDIAM & SHELFE

#	Article	IF	CITATIONS
1	Peptidylarginine Deiminase 2 in Murine Antiviral and Autoimmune Antibody Responses. Journal of Immunology Research, 2022, 2022, 1-12.	0.9	0
2	Rheumatoid Factor and Anti–Modified Protein Antibody Reactivities Converge on IgG Epitopes. Arthritis and Rheumatology, 2022, 74, 984-991.	2.9	5
3	Rheumatoid arthritis: Methods for two murine models. Methods in Cell Biology, 2022, 168, 125-137.	0.5	Ο
4	Multiplexed COVID-19 antibody quantification from human sera using label-free nanoplasmonic biosensors. Biomedical Optics Express, 2022, 13, 2130.	1.5	10
5	Anti-membrane Antibodies Persist at Least One Year and Discriminate Between Past Coronavirus Disease 2019 Infection and Vaccination. Journal of Infectious Diseases, 2022, 226, 1897-1902.	1.9	9
6	MixTwice: large-scale hypothesis testing for peptide arrays by variance mixing. Bioinformatics, 2021, 37, 2637-2643.	1.8	6
7	The landscape of antibody binding in SARS-CoV-2 infection. PLoS Biology, 2021, 19, e3001265.	2.6	58
8	Specific COVID-19 Symptoms Correlate with High Antibody Levels against SARS-CoV-2. ImmunoHorizons, 2021, 5, 466-476.	0.8	23
9	PADI4 Polymorphisms Confer Risk of Anti-CCP-Positive Rheumatoid Arthritis in Synergy With HLA-DRB1*04 and Smoking. Frontiers in Immunology, 2021, 12, 707690.	2.2	10
10	Disordered Antigens and Epitope Overlap Between Anti–Citrullinated Protein Antibodies and Rheumatoid Factor in Rheumatoid Arthritis. Arthritis and Rheumatology, 2020, 72, 262-272.	2.9	18
11	The role of neutrophil extracellular traps and TLR signaling in skeletal muscle ischemia reperfusion injury. FASEB Journal, 2020, 34, 15753-15770.	0.2	21
12	Citrullination regulates wound responses and tissue regeneration in zebrafish. Journal of Cell Biology, 2020, 219, .	2.3	9
13	Reduced Anti-Histone Antibodies and Increased Risk of Rheumatoid Arthritis Associated with a Single Nucleotide Polymorphism in PADI4 in North Americans. International Journal of Molecular Sciences, 2019, 20, 3093.	1.8	13
14	Reduced IgG titers against pertussis in rheumatoid arthritis: Evidence for a citrulline-biased immune response and medication effects. PLoS ONE, 2019, 14, e0217221.	1.1	14
15	Insight into Neutrophil Extracellular Traps through Systematic Evaluation of Citrullination and Peptidylarginine Deiminases. Journal of Immunology Research, 2019, 2019, 1-11.	0.9	50
16	New Relationships for Old Autoantibodies in Rheumatoid Arthritis. Arthritis and Rheumatology, 2019, 71, 1396-1399.	2.9	11
17	Reciprocal regulation of Th2 and Th17 cells by PAD2-mediated citrullination. JCI Insight, 2019, 4, .	2.3	32
18	DNA Area and NETosis Analysis (DANA): a High-Throughput Method to Quantify Neutrophil Extracellular Traps in Fluorescent Microscope Images. Biological Procedures Online, 2018, 20, 7.	1.4	50

MIRIAM A SHELEF

#	Article	IF	CITATIONS
19	Relative efficiencies of peptidylarginine deiminase 2 and 4 in generating target sites for anti-citrullinated protein antibodies in fibrinogen, alpha-enolase and histone H3. PLoS ONE, 2018, 13, e0203214.	1.1	27
20	Peptidylarginine deiminase 2 is required for tumor necrosis factor alpha-induced citrullination and arthritis, but not neutrophil extracellular trap formation. Journal of Autoimmunity, 2017, 80, 39-47.	3.0	87
21	Citrullination of NF-κB p65 promotes its nuclear localization and TLR-induced expression of IL-1β and TNFα. Science Immunology, 2017, 2, .	5.6	80
22	Tumor necrosis factor alpha, citrullination, and peptidylarginine deiminase 4 in lung and joint inflammation. Arthritis Research and Therapy, 2016, 18, 173.	1.6	30
23	Reply. Arthritis and Rheumatology, 2014, 66, 2644-2645.	2.9	4
24	Peptidylarginine Deiminase 4 Contributes to Tumor Necrosis Factor α–Induced Inflammatory Arthritis. Arthritis and Rheumatology, 2014, 66, 1482-1491.	2.9	49
25	Neutrophil migration: moving from zebrafish models to human autoimmunity. Immunological Reviews, 2013, 256, 269-281.	2.8	43
26	Citrullination of fibronectin modulates synovial fibroblast behavior. Arthritis Research and Therapy, 2012, 14, R240.	1.6	40
27	Regulation of Class-Switch Recombination and Plasma Cell Differentiation by Phosphatidylinositol 3-Kinase Signaling. Immunity, 2006, 25, 545-557.	6.6	219
28	Transcriptional repressor Blimp-1 regulates T cell homeostasis and function. Nature Immunology, 2006, 7, 457-465.	7.0	348
29	Regulation of plasma-cell development. Nature Reviews Immunology, 2005, 5, 230-242.	10.6	724
30	Blimp-1 is required for maintenance of long-lived plasma cells in the bone marrow. Journal of Experimental Medicine, 2005, 202, 1471-1476.	4.2	202
31	Regulatory events in early and late B-cell differentiation. Molecular Immunology, 2005, 42, 749-761.	1.0	54
32	Plasma cell differentiation and multiple myeloma. Current Opinion in Immunology, 2004, 16, 226-234.	2.4	76
33	XBP1, Downstream of Blimp-1, Expands the Secretory Apparatus and Other Organelles, and Increases Protein Synthesis in Plasma Cell Differentiation. Immunity, 2004, 21, 81-93.	6.6	901
34	Blimp-1 Is Required for the Formation of Immunoglobulin Secreting Plasma Cells and Pre-Plasma Memory B Cells. Immunity, 2003, 19, 607-620.	6.6	740