
Ying Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6626521/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flexible high-performance carbon nanotube integrated circuits. Nature Nanotechnology, 2011, 6, 156-161.	15.6	652
2	Aerosol-Synthesized SWCNT Networks with Tunable Conductivity and Transparency by a Dry Transfer Technique. Nano Letters, 2010, 10, 4349-4355.	4.5	384
3	Simple and rapid synthesis of α-Fe2O3 nanowires under ambient conditions. Nano Research, 2009, 2, 373-379.	5.8	208
4	Carbon nanotube-based hybrid hole-transporting material and selective contact for high efficiency perovskite solar cells. Energy and Environmental Science, 2016, 9, 461-466.	15.6	185
5	Bulk Synthesis of Large Diameter Semiconducting Single-Walled Carbon Nanotubes by Oxygen-Assisted Floating Catalyst Chemical Vapor Deposition. Journal of the American Chemical Society, 2011, 133, 5232-5235.	6.6	134
6	Tailoring the diameter of single-walled carbon nanotubes for optical applications. Nano Research, 2011, 4, 807-815.	5.8	76
7	Floating catalyst CVD synthesis of single walled carbon nanotubes from ethylene for high performance transparent electrodes. Nanoscale, 2018, 10, 9752-9759.	2.8	73
8	Analysis of the Size Distribution of Single-Walled Carbon Nanotubes Using Optical Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2010, 1, 1143-1148.	2.1	62
9	Hybrid carbon source for single-walled carbon nanotube synthesis by aerosol CVD method. Carbon, 2014, 78, 130-136.	5.4	58
10	Growth of single-walled carbon nanotubes with controlled diameters and lengths by an aerosol method. Carbon, 2011, 49, 4636-4643.	5.4	55
11	Nitrogen-Doped Single-Walled Carbon Nanotube Thin Films Exhibiting Anomalous Sheet Resistances. Chemistry of Materials, 2011, 23, 2201-2208.	3.2	43
12	Controlled Synthesis of Single-Walled Carbon Nanotubes in an Aerosol Reactor. Journal of Physical Chemistry C, 2011, 115, 7309-7318.	1.5	40
13	Combined Raman Spectroscopy and Transmission Electron Microscopy Studies of a NanoBud Structure. Journal of the American Chemical Society, 2008, 130, 7188-7189.	6.6	39
14	Three primary color emissions from single multilayered nanocrystals. Nanoscale, 2018, 10, 9673-9678.	2.8	39
15	Mechanistic investigation of ZnO nanowire growth. Applied Physics Letters, 2009, 95, 183114.	1.5	38
16	High color purity red emission of Y2Ti2O7:Yb3+, Er3+ under 1550 and 980nm excitation. Journal of Luminescence, 2017, 182, 183-188.	1.5	36
17	Validity of Measuring Metallic and Semiconducting Single-Walled Carbon Nanotube Fractions by Quantitative Raman Spectroscopy. Analytical Chemistry, 2018, 90, 2517-2525.	3.2	34
18	Promising lanthanide-doped BiVO ₄ phosphors for highly efficient upconversion luminescence and temperature sensing. Dalton Transactions, 2021, 50, 960-969.	1.6	29

YING TIAN

#	Article	IF	CITATIONS
19	Long lifetime of Er3+: 4111/2 in low phonon-energy fluoro-chloride glasses for mid-infrared optical applications. Journal of Alloys and Compounds, 2018, 731, 418-422.	2.8	25
20	Research on the photoluminescence and up-conversion luminescence properties of Y2Mo4O15: Yb, Ho under 454 and 980 nm excitation. Materials Research Bulletin, 2018, 98, 328-334.	2.7	24
21	Temperature Dependent Raman Spectra of Carbon Nanobuds. Journal of Physical Chemistry C, 2010, 114, 13540-13545.	1.5	22
22	Tuning Geometry of SWCNTs by CO ₂ in Floating Catalyst CVD for Highâ€Performance Transparent Conductive Films. Advanced Materials Interfaces, 2018, 5, 1801209.	1.9	20
23	Influence of the diameter of single-walled carbon nanotube bundles on the optoelectronic performance of dry-deposited thin films. Beilstein Journal of Nanotechnology, 2012, 3, 692-702.	1.5	19
24	Tunable multicolor upconversion luminescence of Yb ³⁺ sensitized Na ₃ La(VO ₄) ₂ crystals. Journal of the American Ceramic Society, 2021, 104, 1415-1423.	1.9	18
25	Up-conversion luminescence of Er ₂ Mo ₄ O ₁₅ under 980 and 1550 nm excitation. RSC Advances, 2016, 6, 109278-109285.	1.7	17
26	Upconversion luminescence properties of Y 2 O 2 S:Er 3+ @Y 2 O 2 S:Yb 3+ ,Tm 3+ core-shell nanoparticles prepared via homogeneous co-precipitation. Optical Materials, 2017, 64, 58-63.	1.7	16
27	Enhancing upconversion luminescence and thermal sensing properties of Er/Yb coâ€doped oxysulfide coreâ€shell nanocrystals. Journal of the American Ceramic Society, 2021, 104, 985-994.	1.9	16
28	Improved SERS Intensity from Silver oated Black Silicon by Tuning Surface Plasmons. Advanced Materials Interfaces, 2014, 1, 1300008.	1.9	15
29	A reference material of single-walled carbon nanotubes: quantitative chirality assessment using optical absorption spectroscopy. RSC Advances, 2015, 5, 102974-102980.	1.7	15
30	High quality SWCNT synthesis in the presence of NH ₃ using a vertical flow aerosol reactor. Physica Status Solidi (B): Basic Research, 2009, 246, 2507-2510.	0.7	14
31	The local study of a nanoBud structure. Physica Status Solidi (B): Basic Research, 2008, 245, 2047-2050.	0.7	13
32	K ₃ LaTe ₂ O ₉ :Er: a novel green up-conversion luminescence material. RSC Advances, 2017, 7, 36374-36381.	1.7	12
33	Luminescence property tuning of Yb ³⁺ -Er ³⁺ doped oxysulfide using multiple-band co-excitation. RSC Advances, 2018, 8, 16557-16565.	1.7	10
34	Cutting floating single-walled carbon nanotubes with a â€~CO2 blade'. Carbon, 2019, 143, 481-486.	5.4	10
35	Upconversion luminescence and optical temperature sensing of Er3+-doped La2Mo2O9 phosphors under 980 and 1550Ånm excitation. Solid State Sciences, 2022, 132, 106966.	1.5	9
36	Morphology control and temperature sensing properties of microâ€rods NaLa(WO ₄) ₂ :Yb ³⁺ ,Er ³⁺ phosphors. Journal of the American Ceramic Society, 2021, 104, 263-272.	1.9	8

YING TIAN

#	Article	IF	CITATIONS
37	Simple method for simultaneously achieving red and green up-conversion luminescence. RSC Advances, 2017, 7, 50264-50268.	1.7	7
38	Fast and Ultraclean Approach for Measuring the Transport Properties of Carbon Nanotubes. Advanced Functional Materials, 2020, 30, 1907150.	7.8	7
39	Upconversion Luminescence Properties of Y2Mo4O15: Yb3+, Er3+ by Solid State Combustion Method. Journal of Nanoscience and Nanotechnology, 2016, 16, 4003-4007.	0.9	6
40	Single red up-conversion emission of Er 3+ , Tm 3+ co-doped NaYF 4 nano-particles under 1510 nm excitation. Materials Research Bulletin, 2018, 97, 379-384.	2.7	6
41	Full-color up-conversion emission from the molybdate of Yb1.98Ln0.02Mo4O15 (Ln=Er, Ho, Tm). Journal of Alloys and Compounds, 2020, 814, 152237.	2.8	6
42	Upconversion Luminescence Properties of Y2O3:Yb, Er and Y2O2S:Yb, Er Nanoparticles Prepared by Complex Precipitation. Journal of Nanomaterials, 2015, 2015, 1-7.	1.5	5
43	Single-Walled Carbon Nanotube Thin Film with High Semiconducting Purity by Aerosol Etching toward Thin-Film Transistors. ACS Applied Nano Materials, 2021, 4, 9673-9679.	2.4	5
44	Enhancing red luminescence by doping Yb ³⁺ into Er ³⁺ self-sensitized Gd ₂ O ₂ S upconverting nanoparticles under excitation at 1530 nm. Dalton Transactions, 2021, 50, 13468-13475.	1.6	4
45	Efficient Color Tuning of Upconversion Luminescence from Core-Shell Oxysulfide Nanoparticles. Journal of Nanomaterials, 2019, 2019, 1-6.	1.5	1
46	Near-infrared-emitting upconverting BiVO4 nanoprobes for in vivo fluorescent imaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 270, 120811.	2.0	0