Pradeep K Luther

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6626300/publications.pdf

Version: 2024-02-01

47 papers

2,233 citations

236912 25 h-index 243610 44 g-index

48 all docs

48 docs citations 48 times ranked 2319 citing authors

#	Article	IF	CITATIONS
1	Geometric frustration in the myosin superlattice of vertebrate muscle. Journal of the Royal Society Interface, 2021, 18, 20210585.	3.4	1
2	Ablation of the calpain-targeted site in cardiac myosin binding protein-C is cardioprotective during ischemia-reperfusion injury. Journal of Molecular and Cellular Cardiology, 2019, 129, 236-246.	1.9	20
3	Three-dimensional structure of the basketweave Z-band in midshipman fish sonic muscle. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15534-15539.	7.1	19
4	Mammalian muscle fibers may be simple as well as slow. Journal of General Physiology, 2019, 151, 1334-1338.	1.9	1
5	A post-MI power struggle: adaptations in cardiac power occur at the sarcomere level alongside MyBP-C and RLC phosphorylation. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H465-H475.	3.2	7
6	Analysis of Tyrosine Kinase Inhibitor-Mediated Decline in Contractile Force in Rat Engineered Heart Tissue. PLoS ONE, 2016, 11, e0145937.	2.5	36
7	Three-Dimensional Structure of Vertebrate Muscle Z-Band: The Small-Square Lattice Z-Band in Rat Cardiac Muscle. Journal of Molecular Biology, 2015, 427, 3527-3537.	4.2	29
8	The Intriguing Dual Lattices of the Myosin Filaments in Vertebrate Striated Muscles: Evolution and Advantage. Biology, 2014, 3, 846-865.	2.8	26
9	Characterizing the ultrastructure of primary ciliary dyskinesia transposition defect using electron tomography. Cytoskeleton, 2014, 71, 294-301.	2.0	29
10	Structure, sarcomeric organization, and thin filament binding of cardiac myosin-binding protein-C. Pflugers Archiv European Journal of Physiology, 2014, 466, 425-431.	2.8	44
11	Functional improvement and maturation of rat and human engineered heart tissue by chronic electrical stimulation. Journal of Molecular and Cellular Cardiology, 2014, 74, 151-161.	1.9	305
12	MYBPC1 mutations impair skeletal muscle function in zebrafish models of arthrogryposis. Human Molecular Genetics, 2013, 22, 4967-4977.	2.9	48
13	The nebulin SH3 domain is dispensable for normal skeletal muscle structure but is required for effective active load bearing in mouse. Journal of Cell Science, 2013, 126, 5477-89.	2.0	31
14	Quantitative MUC5AC and MUC6 mucin estimations in gastric mucus by a least-squares minimization method. Analytical Biochemistry, 2013, 439, 204-211.	2.4	3
15	Generation of a Three-Dimensional Ultrastructural Model of Human Respiratory Cilia. American Journal of Respiratory Cell and Molecular Biology, 2012, 47, 800-806.	2.9	18
16	Cardiac myosin binding protein-C is a potential diagnostic biomarker for myocardial infarction. Journal of Molecular and Cellular Cardiology, 2012, 52, 154-164.	1.9	62
17	Axial distribution of myosin binding protein-C is unaffected by mutations in human cardiac and skeletal muscle. Journal of Muscle Research and Cell Motility, 2012, 33, 61-74.	2.0	13
18	Myosin binding protein-C: an essential protein in skeletal and cardiac muscle. Journal of Muscle Research and Cell Motility, 2011, 31, 303-305.	2.0	12

#	Article	IF	CITATIONS
19	Modulation of striated muscle contraction by binding of myosin binding protein C to actin. Bioarchitecture, $2011, 1, 277-283$.	1.5	16
20	Direct visualization of myosin-binding protein C bridging myosin and actin filaments in intact muscle. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11423-11428.	7.1	159
21	Zebrafish deficient for Muscleblind-like 2 exhibit features of myotonic dystrophy. DMM Disease Models and Mechanisms, 2011, 4, 381-392.	2.4	34
22	Clenbuterol Induces Cardiac Myocyte Hypertrophy via Paracrine Signalling and Fibroblast-derived IGF-1. Journal of Cardiovascular Translational Research, 2010, 3, 688-695.	2.4	21
23	The vertebrate muscle Z-disc: sarcomere anchor for structure and signalling. Journal of Muscle Research and Cell Motility, 2009, 30, 171-185.	2.0	194
24	Determination of Myosin Filament Orientations in Electron Micrographs of Muscle Cross Sections. IEEE Transactions on Image Processing, 2009, 18, 831-839.	9.8	3
25	Understanding the Organisation and Role of Myosin Binding Protein C in Normal Striated Muscle by Comparison with MyBP-C Knockout Cardiac Muscle. Journal of Molecular Biology, 2008, 384, 60-72.	4.2	117
26	Zebrafishâ€"Topical, Transparent, and Tractable for Ultrastructural Studies. Journal of General Physiology, 2008, 131, 439-443.	1.9	3
27	Visualization of cardiac muscle thin filaments and measurement of their lengths by electron tomography. Cardiovascular Research, 2008, 77, 707-712.	3.8	38
28	Sample Shrinkage and Radiation Damage of Plastic Sections. , 2007, , 17-48.		17
29	Molecular Architecture in Muscle Contractile Assemblies. Advances in Protein Chemistry, 2005, 71, 17-87.	4.4	60
30	Muscle weakness in a mouse model of nemaline myopathy can be reversed with exercise and reveals a novel myofiber repair mechanism. Human Molecular Genetics, 2004, 13, 2633-2645.	2.9	47
31	<title>Determination of myosin filament positions and orientations in electron micrographs of muscle cross sections</title> ., 2004, , .		5
32	Structural Evidence for the Interaction of C-protein (MyBP-C) with Actin and Sequence Identification of a Possible Actin-binding Domain. Journal of Molecular Biology, 2003, 331, 713-724.	4.2	146
33	Heterogeneity of Z-band Structure Within a Single Muscle Sarcomere: Implications for Sarcomere Assembly. Journal of Molecular Biology, 2003, 332, 161-169.	4.2	35
34	Cryoelectron microscopy of refrozen cryosections. Journal of Structural Biology, 2003, 142, 233-240.	2.8	9
35	The three-dimensional structure of a vertebrate wide (slow muscle) Z-band: lessons on Z-band assembly11Edited by J. Karn. Journal of Molecular Biology, 2002, 315, 9-20.	4.2	28
36	Muscle Z-band Ultrastructure: Titin Z-repeats and Z-band Periodicities Do Not Match. Journal of Molecular Biology, 2002, 319, 1157-1164.	4.2	54

3

#	Article	IF	CITATION
37	Titin Organisation and the 3D Architecture of the Vertebrate-striated Muscle I-band. Journal of Molecular Biology, 2002, 322, 731-739.	4.2	39
38	Three-Dimensional Structure of a Vertebrate Muscle Z-band: Implications for Titin and \hat{l}_{\pm} -Actinin Binding. Journal of Structural Biology, 2000, 129, 1-16.	2.8	49
39	Myosin Rod-Packing Schemes in Vertebrate Muscle Thick Filaments. Journal of Structural Biology, 1998, 122, 128-138.	2.8	36
40	Evolution of myosin filament arrangements in vertebrate skeletal muscle. Journal of Morphology, 1996, 229, 325-335.	1.2	37
41	Symmetry of a Vertebrate Muscle Basketweave Z-Band. Journal of Structural Biology, 1995, 115, 275-282.	2.8	11
42	Equatorial A-band and I-band X-ray Diffraction from Relaxed and Active Fish Muscle. Journal of Molecular Biology, 1994, 239, 500-512.	4.2	23
43	Cryoultramicrotomy of muscle: improved preservation and resolution of muscle ultrastructure using negatively stained ultrathin cryosections. Journal of Microscopy, 1991, 163, 29-42.	1.8	11
44	Averaging of periodic images using a microcomputer. Journal of Microscopy, 1986, 142, 289-300.	1.8	12
45	Three-dimensional structure of the vertebrate muscle A-band. Journal of Molecular Biology, 1981, 151, 703-730.	4.2	113
46	Three-dimensional structure of the vertebrate muscle A-band. Journal of Molecular Biology, 1980, 141, 409-439.	4.2	102
47	Three-dimensional structure of the vertebrate muscle M-region. Journal of Molecular Biology, 1978, 125, 313-324.	4.2	110