
Jingrun Ran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6626024/publications.pdf Version: 2024-02-01

INCRUN RAN

#	Article	IF	CITATIONS
1	Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production of CdS-Cluster-Decorated Graphene Nanosheets. Journal of the American Chemical Society, 2011, 133, 10878-10884.	13.7	2,260
2	Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chemical Society Reviews, 2014, 43, 7787-7812.	38.1	2,125
3	Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nature Communications, 2017, 8, 13907.	12.8	1,496
4	Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH ₃) under ambient conditions. Energy and Environmental Science, 2018, 11, 45-56.	30.8	1,217
5	Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H ₂ production. Energy and Environmental Science, 2015, 8, 3708-3717.	30.8	1,146
6	Cocatalysts in Semiconductorâ€based Photocatalytic CO ₂ Reduction: Achievements, Challenges, and Opportunities. Advanced Materials, 2018, 30, 1704649.	21.0	1,034
7	Phosphorusâ€Doped Graphitic Carbon Nitrides Grown Inâ€Situ on Carbonâ€Fiber Paper: Flexible and Reversible Oxygen Electrodes. Angewandte Chemie - International Edition, 2015, 54, 4646-4650.	13.8	722
8	Metalâ€Free 2D/2D Phosphorene/gâ€C ₃ N ₄ Van der Waals Heterojunction for Highly Enhanced Visibleâ€Light Photocatalytic H ₂ Production. Advanced Materials, 2018, 30, e1800128.	21.0	707
9	Facile preparation and enhanced photocatalytic H2-production activity of Cu(OH)2 cluster modified TiO2. Energy and Environmental Science, 2011, 4, 1364.	30.8	554
10	Novel urea assisted hydrothermal synthesis of hierarchical BiVO4/Bi2O2CO3 nanocomposites with enhanced visible-light photocatalytic activity. Applied Catalysis B: Environmental, 2011, 110, 286-295.	20.2	392
11	Ni(OH)2 modified CdS nanorods for highly efficient visible-light-driven photocatalytic H2 generation. Green Chemistry, 2011, 13, 2708.	9.0	363
12	Engineering Highâ€Energy Interfacial Structures for Highâ€Performance Oxygenâ€Involving Electrocatalysis. Angewandte Chemie - International Edition, 2017, 56, 8539-8543.	13.8	314
13	Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. Nanoscale, 2015, 7, 17590-17610.	5.6	312
14	N-doped graphene film-confined nickel nanoparticles as a highly efficient three-dimensional oxygen evolution electrocatalyst. Energy and Environmental Science, 2013, 6, 3693.	30.8	309
15	Phosphorene Coâ€catalyst Advancing Highly Efficient Visibleâ€Light Photocatalytic Hydrogen Production. Angewandte Chemie - International Edition, 2017, 56, 10373-10377.	13.8	307
16	Atomicâ€Level Reactive Sites for Semiconductorâ€Based Photocatalytic CO ₂ Reduction. Advanced Energy Materials, 2020, 10, 1903879.	19.5	291
17	Characterization of semiconductor photocatalysts. Chemical Society Reviews, 2019, 48, 5184-5206.	38.1	260
18	Ternary NiS/Zn <i>_x</i> Cd _{1â€<i>x</i>} S/Reduced Graphene Oxide Nanocomposites for Enhanced Solar Photocatalytic H ₂ â€Production Activity. Advanced Energy Materials, 2014, 4, 1301925.	19.5	244

Jingrun Ran

#	Article	IF	CITATIONS
19	One-step hydrothermal fabrication and photocatalytic activity of surface-fluorinated TiO ₂ hollow microspheres and tabular anatase single micro-crystals with high-energy facets. CrystEngComm, 2010, 12, 872-879.	2.6	241
20	2D Metal Organic Framework Nanosheet: A Universal Platform Promoting Highly Efficient Visible‣ightâ€Induced Hydrogen Production. Advanced Energy Materials, 2019, 9, 1803402.	19.5	200
21	lonic liquid self-combustion synthesis of BiOBr/Bi ₂₄ O ₃₁ Br ₁₀ heterojunctions with exceptional visible-light photocatalytic performances. Nanoscale, 2015, 7, 1116-1126.	5.6	173
22	Enhanced Visibleâ€Light Photocatalytic H ₂ Production by Zn _{<i>x</i>} Cd _{1â~<i>x</i>} S Modified with Earthâ€Abundant Nickelâ€Based Cocatalysts. ChemSusChem, 2014, 7, 3426-3434.	6.8	164
23	Enhanced Photoelectrocatalytic Activity of BiOI Nanoplate–Zinc Oxide Nanorod p–n Heterojunction. Chemistry - A European Journal, 2015, 21, 15360-15368.	3.3	139
24	Photocatalysts for Hydrogen Evolution Coupled with Production of Valueâ€Added Chemicals. Small Methods, 2020, 4, 2000063.	8.6	124
25	Surface activated carbon nitride nanosheets with optimized electro-optical properties for highly efficient photocatalytic hydrogen production. Journal of Materials Chemistry A, 2016, 4, 2445-2452.	10.3	121
26	Single-Atom Photocatalysts for Emerging Reactions. ACS Central Science, 2021, 7, 39-54.	11.3	94
27	Strongly interactive 0D/2D hetero-structure of a Zn _x Cd _{1â^x} S nano-particle decorated phosphorene nano-sheet for enhanced visible-light photocatalytic H ₂ production. Chemical Communications, 2017, 53, 9882-9885.	4.1	68
28	Paperâ€Based Nâ€Doped Carbon Films for Enhanced Oxygen Evolution Electrocatalysis. Advanced Science, 2015, 2, 1400015.	11.2	67
29	ReS ₂ Nanosheets with In Situ Formed Sulfur Vacancies for Efficient and Highly Selective Photocatalytic CO ₂ Reduction. Small Science, 2021, 1, 2000052.	9.9	66
30	Atomic-Level Insights into the Edge Active ReS ₂ Ultrathin Nanosheets for High-Efficiency Light-to-Hydrogen Conversion. , 2020, 2, 1484-1494.		65
31	Nanoconfined Nickel@Carbon Core–Shell Cocatalyst Promoting Highly Efficient Visible‣ight Photocatalytic H ₂ Production. Small, 2018, 14, e1801705.	10.0	56
32	Significantly Raised Visible‣ight Photocatalytic H ₂ Evolution on a 2D/2D ReS ₂ /In ₂ ZnS ₄ van der Waals Heterostructure. Small, 2021, 17, e2100296.	10.0	38
33	Metallic MoN ultrathin nanosheets boosting high performance photocatalytic H ₂ production. Journal of Materials Chemistry A, 2018, 6, 23278-23282.	10.3	37
34	Engineering Highâ€Energy Interfacial Structures for Highâ€Performance Oxygenâ€Involving Electrocatalysis. Angewandte Chemie, 2017, 129, 8659-8663.	2.0	36
35	Phosphorene Co atalyst Advancing Highly Efficient Visible‣ight Photocatalytic Hydrogen Production. Angewandte Chemie, 2017, 129, 10509-10513.	2.0	36
36	Photocatalytic CO ₂ Reduction: Identification and Elimination of False-Positive Results. ACS Energy Letters, 2022, 7, 1611-1617.	17.4	34

Jingrun Ran

#	Article	IF	CITATIONS
37	Molecules interface engineering derived external electric field for effective charge separation in photoelectrocatalysis. Nano Energy, 2017, 42, 90-97.	16.0	33
38	CO2 reduction by single copper atom supported on g-C3N4 with asymmetrical active sites. Applied Surface Science, 2021, 540, 148293.	6.1	33
39	A two-dimensional metal–organic framework accelerating visible-light-driven H ₂ production. Nanoscale, 2019, 11, 8304-8309.	5.6	26
40	Effects of Calcination Temperatures on Photocatalytic Activity of Ordered Titanate Nanoribbon/SnO ₂ Films Fabricated during an EPD Process. International Journal of Photoenergy, 2012, 2012, 1-7.	2.5	24
41	Scalable Self-Supported Graphene Foam for High-Performance Electrocatalytic Oxygen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 41980-41987.	8.0	22
42	Advancing Photoelectrochemical Energy Conversion through Atomic Design of Catalysts. Advanced Science, 2022, 9, e2104363.	11.2	21
43	One-Pot Template-Free Hydrothermal Synthesis of Monoclinic Hollow Microspheres and Their Enhanced Visible-Light Photocatalytic Activity. International Journal of Photoenergy, 2012, 2012, 1-10.	2.5	17
44	Two-dimensional building blocks for photocatalytic ammonia production. Journal of Materials Chemistry A, 2021, 9, 18733-18745.	10.3	14
45	Atomically Dispersed Single Co Sites in Zeolitic Imidazole Frameworks Promoting Highâ€Efficiency Visibleâ€Lightâ€Driven Hydrogen Production. Chemistry - A European Journal, 2019, 25, 9670-9677.	3.3	10
46	Theoretical considerations on activity of the electrochemical CO2 reduction on metal single-atom catalysts with asymmetrical active sites. Catalysis Today, 2022, 397-399, 574-580.	4.4	9
47	Significantly Raised Visibleâ€Light Photocatalytic H ₂ Evolution on a 2D/2D ReS ₂ /ln ₂ ZnS ₄ van der Waals Heterostructure (Small 32/2021). Small, 2021, 17, 2170168.	10.0	1