Virendra Gajbhiye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6625651/publications.pdf

Version: 2024-02-01

60 3,222 30 54
papers citations h-index g-index

60 60 4157
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A review of nanocarriers for the delivery of small interfering RNA. Biomaterials, 2012, 33, 7138-7150.	5.7	313
2	Applications of cobalt ferrite nanoparticles in biomedical nanotechnology. Nanomedicine, 2018, 13, 1221-1238.	1.7	194
3	Pulmonary toxicity of carbon nanotubes: a systematic report. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 40-49.	1.7	192
4	Exploring dendrimer towards dual drug delivery: pH responsive simultaneous drug-release kinetics. Journal of Microencapsulation, 2009, 26, 287-296.	1.2	162
5	Cancer targeting potential of some ligand-anchored poly(propylene imine) dendrimers: a comparison. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 295-304.	1.7	152
6	Dendrimers as therapeutic agents: a systematic review. Journal of Pharmacy and Pharmacology, 2010, 61, 989-1003.	1.2	148
7	Enhanced Oral Bioavailability of Griseofulvin via Niosomes. AAPS PharmSciTech, 2009, 10, 1186-92.	1.5	131
8	Pharmaceutical and Biomedical Potential of PEGylated Dendrimers. Current Pharmaceutical Design, 2007, 13, 415-429.	0.9	119
9	Micro- and nanocarrier-mediated lung targeting. Expert Opinion on Drug Delivery, 2010, 7, 781-794.	2.4	111
10	Ligand based dendritic systems for tumor targeting. International Journal of Pharmaceutics, 2008, 350, 3-13.	2.6	103
11	The treatment of Glioblastoma Xenografts by surfactant conjugated dendritic nanoconjugates. Biomaterials, 2011, 32, 6213-6225.	5.7	101
12	Dendimer-Mediated Solubilization, Formulation Development and in Vitroâ ² in Vivo Assessment of Piroxicam. Molecular Pharmaceutics, 2009, 6, 940-950.	2.3	97
13	Transferrin functionalized chitosan-PEG nanoparticles for targeted delivery of paclitaxel to cancer cells. Colloids and Surfaces B: Biointerfaces, 2016, 148, 363-370.	2.5	89
14	PEGylated PPI dendritic architectures for sustained delivery of H2 receptor antagonist. European Journal of Medicinal Chemistry, 2009, 44, 1155-1166.	2.6	87
15	Synthesis, characterization and targeting potential of zidovudine loaded sialic acid conjugated-mannosylated poly(propyleneimine) dendrimers. European Journal of Pharmaceutical Sciences, 2013, 48, 668-679.	1.9	78
16	Ligand anchored poly(propyleneimine) dendrimers for brain targeting: Comparative in vitro and in vivo assessment. Journal of Colloid and Interface Science, 2016, 482, 142-150.	5.0	77
17	Mesoporous silica nanoparticles as cutting-edge theranostics: Advancement from merely a carrier to tailor-made smart delivery platform. Journal of Controlled Release, 2018, 287, 35-57.	4.8	69
18	Dendrimers as therapeutic agents: a systematic review. Journal of Pharmacy and Pharmacology, 2009, 61, 989-1003.	1.2	68

#	Article	IF	CITATIONS
19	Decapeptide functionalized targeted mesoporous silica nanoparticles with doxorubicin exhibit enhanced apoptotic effect in breast and prostate cancer cells. International Journal of Nanomedicine, 2018, Volume 13, 7669-7680.	3.3	61
20	Evaluation of Dendrimer Safety and Efficacy through Cell Line Studies. Current Drug Targets, 2011, 12, 1478-1497.	1.0	57
21	Lactoferrin-Conjugated Dendritic Nanoconstructs for Lung Targeting of Methotrexate. Journal of Pharmaceutical Sciences, 2011, 100, 2311-2320.	1.6	53
22	Synthesis, characterization and brain targeting potential of paclitaxel loaded thiamine-PPI nanoconjugates. Journal of Drug Targeting, 2012, 20, 841-849.	2.1	47
23	Folate/ N -acetyl glucosamine conjugated mesoporous silica nanoparticles for targeting breast cancer cells: A comparative study. Colloids and Surfaces B: Biointerfaces, 2017, 156, 203-212.	2.5	47
24	Triptorelin Tethered Multifunctional PAMAM-Histidine-PEG Nanoconstructs Enable Specific Targeting and Efficient Gene Silencing in LHRH Overexpressing Cancer Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 35562-35573.	4.0	43
25	PEGylated nanocarriers: A promising tool for targeted delivery to the brain. Colloids and Surfaces B: Biointerfaces, 2020, 187, 110770.	2.5	42
26	Novel PEGylated PPI Dendritic Nanostructures for Sustained Delivery of Anti-Inflammatory Agent. Current Nanoscience, 2008, 4, 267-277.	0.7	33
27	A robust pH-sensitive unimolecular dendritic nanocarrier that enables targeted anti-cancer drug delivery via GLUT transporters. Colloids and Surfaces B: Biointerfaces, 2018, 171, 437-444.	2.5	32
28	cRGD functionalised nanocarriers for targeted delivery of bioactives. Journal of Drug Targeting, 2019, 27, 111-124.	2.1	32
29	Smart triblock dendritic unimolecular micelles as pioneering nanomaterials: Advancement pertaining to architecture and biomedical applications. Journal of Controlled Release, 2019, 299, 64-89.	4.8	32
30	Dendrimeric nanoarchitectures mediated transdermal and oral delivery of bioactives. Indian Journal of Pharmaceutical Sciences, 2008, 70, 431.	1.0	32
31	Ascorbic acid tethered polymeric nanoparticles enable efficient brain delivery of galantamine: An in vitro-in vivo study. Scientific Reports, 2017, 7, 11086.	1.6	31
32	Lectin functionalized nanocarriers for gene delivery. Biotechnology Advances, 2013, 31, 552-562.	6.0	29
33	Carboxymethyl fenugreek galactomannan-g-poly(N-isopropylacrylamide-co-N,N′-methylene-bis-acrylamide)-clay based pH/temperature-responsive nanocomposites as drug-carriers. Materials Science and Engineering C, 2020. 110. 110628.	3.8	27
34	Stimuli-responsive mesoporous silica nanoparticles: A custom-tailored next generation approach in cargo delivery. Materials Science and Engineering C, 2021, 124, 112084.	3.8	27
35	Carrier mediated protein and peptide stabilization. Drug Delivery, 2010, 17, 605-616.	2.5	26
36	Drug-loaded nanoparticles induce gene expression in human pluripotent stem cell derivatives. Nanoscale, 2014, 6, 521-531.	2.8	26

#	Article	IF	Citations
37	Drug targeting to arthritic region via folic acid appended surface-engineered multi-walled carbon nanotubes. Journal of Drug Targeting, 2016, 24, 318-327.	2.1	25
38	Dendrimers in Targeting and Delivery of Drugs. , 2017, , 363-388.		24
39	Stimuli-responsive biodegradable polyurethane nano-constructs as a potential triggered drug delivery vehicle for cancer therapy. International Journal of Pharmaceutics, 2020, 588, 119781.	2.6	24
40	Erlotinib-loaded carboxymethyl temarind gum semi-interpenetrating nanocomposites. Carbohydrate Polymers, 2020, 230, 115664.	5.1	20
41	Dendrimer as a momentous tool in tissue engineering and regenerative medicine. Journal of Controlled Release, 2022, 346, 328-354.	4.8	20
42	Magneto onducting Core/Shell Nanoparticles for Biomedical Applications. ChemNanoMat, 2018, 4, 151-164.	1.5	19
43	Synthesis and characterization of dendro-PLGA nanoconjugate for protein stabilization. Colloids and Surfaces B: Biointerfaces, 2015, 134, 279-286.	2.5	17
44	Application of dendrimer-based nanosensors in immunodiagnosis. Colloids and Surfaces B: Biointerfaces, 2022, 209, 112174.	2.5	15
45	miRNA transfection via poly(amidoamine)-based delivery vector prevents hypoxia/reperfusion-induced cardiomyocyte apoptosis. Nanomedicine, 2020, 15, 163-181.	1.7	14
46	Non-nuke HIV-1 inhibitor shuttled by mesoporous silica nanoparticles effectively slows down HIV-1 replication in infected human cells. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111227.	2.5	14
47	Biodegradable dendritic Boltornâ,,¢ nanoconstructs: A promising avenue for cancer theranostics. International Journal of Pharmaceutics, 2021, 594, 120177.	2.6	14
48	Development of nano-immunosensor with magnetic separation and electrical detection of Escherichia coli using antibody conjugated Fe ₃ O ₄ @Ppy. Nanotechnology, 2021, 32, 085603.	1.3	13
49	Efficient in vitro and in vivo docetaxel delivery mediated by pH-sensitive LPHNPs for effective breast cancer therapy. Colloids and Surfaces B: Biointerfaces, 2021, 203, 111760.	2.5	7
50	Engineered cellular carrier nanoerythrosomes as potential targeting vectors for anti-malarial drug. Asian Journal of Pharmaceutics (discontinued), 2010, 4, 116.	0.4	6
51	SiRNA Mediated Gene Silencing: Hurdles, Strategies and Applications. Pharmaceutical Nanotechnology, 2016, 3, 322-333.	0.6	5
52	Chemosensitivity assessments of curdlan-doped smart nanocomposites containing erlotinib HCl. International Journal of Biological Macromolecules, 2021, 181, 169-179.	3.6	4
53	Current Status and Future Challenges of Various Polymers as Cancer Therapeutics. , 2019, , 1-20.		3
54	Stimuli-responsive strategies: Role of various molecules/moieties facilitating the design of stimuli-responsive nanocarriers., 2022,, 29-60.		3

#	Article	IF	CITATIONS
55	Poly(Phospho Ester) and Poly(Phosphazene) Nanoparticles as a Promising Tool for Anticancer Therapeutics. , 2019, , 123-146.		2
56	Conjugated Polymer Nanoparticles as a Promising Tool for Anticancer Therapeutics., 2019,, 257-280.		2
57	MicroRNAs. Journal of Cardiovascular Pharmacology, 2021, Publish Ahead of Print, 773-781.	0.8	1
58	Novel Carriers for Controlled Site Specific Delivery of Anti-Inflammatory Agents. Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry, 2011, 10, 166-179.	1.1	1
59	Novel 3-fluoro-4-morpholinoaniline derivatives: Synthesis and assessment of anti-cancer activity in breast cancer cells. Journal of Molecular Structure, 2022, 1253, 132127.	1.8	1
60	Mesoporous silica nanoparticles-based stimuli-triggered drug release systems. , 2022, , 237-264.		0