
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6625436/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanisms of Nanoparticle-Induced Oxidative Stress and Toxicity. BioMed Research International, 2013, 2013, 1-15.	1.9	1,110
2	Protein Nanoparticles as Drug Delivery Carriers for Cancer Therapy. BioMed Research International, 2014, 2014, 1-12.	1.9	472
3	Inflammation and Lung Cancer: Roles of Reactive Oxygen/Nitrogen Species. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2008, 11, 1-15.	6.5	339
4	Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes. Pharmaceutical Research, 2000, 17, 521-525.	3.5	302
5	An NLRP7-Containing Inflammasome Mediates Recognition of Microbial Lipopeptides in Human Macrophages. Immunity, 2012, 36, 464-476.	14.3	288
6	Activation of Inflammasomes Requires Intracellular Redistribution of the Apoptotic Speck-Like Protein Containing a Caspase Recruitment Domain. Journal of Immunology, 2009, 182, 3173-3182.	0.8	217
7	Role of PI3K and AKT specific isoforms in ovarian cancer cell migration, invasion and proliferation through the p70S6K1 pathway. Cellular Signalling, 2006, 18, 2262-2271.	3.6	193
8	Reactive Oxygen Species Mediate Caspase Activation and Apoptosis Induced by Lipoic Acid in Human Lung Epithelial Cancer Cells through Bcl-2 Down-Regulation. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 1062-1069.	2.5	185
9	Cadmium Increases HIF-1 and VEGF Expression through ROS, ERK, and AKT Signaling Pathways and Induces Malignant Transformation of Human Bronchial Epithelial Cells. Toxicological Sciences, 2012, 125, 10-19.	3.1	182
10	S-Nitrosylation of Bcl-2 Inhibits Its Ubiquitin-Proteasomal Degradation. Journal of Biological Chemistry, 2006, 281, 34124-34134.	3.4	177
11	Regulation of Lung Cancer Cell Migration and Invasion by Reactive Oxygen Species and Caveolin-1. Journal of Biological Chemistry, 2010, 285, 38832-38840.	3.4	171
12	Cobalt-mediated generation of reactive oxygen species and its possible mechanism. Journal of Inorganic Biochemistry, 1998, 70, 239-244.	3.5	166
13	The Fas Death Signaling Pathway Connecting Reactive Oxygen Species Generation and FLICE Inhibitory Protein Down-Regulation. Journal of Immunology, 2008, 180, 3072-3080.	0.8	134
14	Carbon Nanotubes Induce Malignant Transformation and Tumorigenesis of Human Lung Epithelial Cells. Nano Letters, 2011, 11, 2796-2803.	9.1	129
15	Nitric Oxide Regulates Cell Sensitivity to Cisplatin-Induced Apoptosis through S-Nitrosylation and Inhibition of Bcl-2 Ubiquitination. Cancer Research, 2006, 66, 6353-6360.	0.9	116
16	Dispersion of single-walled carbon nanotubes by a natural lung surfactant for pulmonary in vitro and in vivo toxicity studies. Particle and Fibre Toxicology, 2010, 7, 31.	6.2	113
17	Direct Fibrogenic Effects of Dispersed Single-Walled Carbon Nanotubes on Human Lung Fibroblasts. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2010, 73, 410-422.	2.3	112
18	Phosphatidylinositol-3-Kinase/Akt Regulates Bleomycin-Induced Fibroblast Proliferation and Collagen Production. American Journal of Respiratory Cell and Molecular Biology, 2010, 42, 432-441.	2.9	104

YON ROJANASAKUL

#	Article	IF	CITATIONS
19	A Direct Comparison of the Anticancer Activities of Digitoxin MeON-Neoglycosides and <i>O</i> -Glycosides. ACS Medicinal Chemistry Letters, 2010, 1, 326-330.	2.8	104
20	Differential splicing of the apoptosis-associated speck like protein containing a caspase recruitment domain (ASC) regulates inflammasomes. Journal of Inflammation, 2010, 7, 23.	3.4	99
21	Oleanane triterpenoid CDDO-Me inhibits growth and induces apoptosis in prostate cancer cells through a ROS-dependent mechanism. Biochemical Pharmacology, 2010, 79, 350-360.	4.4	97
22	Role of oxidative/nitrosative stressâ€mediated Bclâ€2 regulation in apoptosis and malignant transformation. Annals of the New York Academy of Sciences, 2010, 1203, 1-6.	3.8	97
23	Interleukin-10-mediated inhibition of free radical generation in macrophages. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 280, L1196-L1202.	2.9	96
24	Digitoxin and its analogs as novel cancer therapeutics. Experimental Hematology and Oncology, 2012, 1, 4.	5.0	96
25	Nitric Oxide Negatively Regulates Fas CD95-induced Apoptosis through Inhibition of Ubiquitin-Proteasome-mediated Degradation of FLICE Inhibitory Protein. Journal of Biological Chemistry, 2005, 280, 42044-42050.	3.4	93
26	Antioxidant properties of (-)-epicatechin-3-gallate and its inhibition of Cr(VI)-induced DNA damage and Cr(IV)- or TPA-stimulated NF-kappaB activation. Molecular and Cellular Biochemistry, 2000, 206, 125-132.	3.1	92
27	A Shope Fibroma virus PYRIN-only protein modulates the host immune response. Virus Genes, 2007, 35, 685-694.	1.6	85
28	Cellular Pyrin Domain-Only Protein 2 Is a Candidate Regulator of Inflammasome Activation. Infection and Immunity, 2007, 75, 1484-1492.	2.2	83
29	Reactive oxygen species-mediated p38 MAPK regulates carbon nanotube-induced fibrogenic and angiogenic responses. Nanotoxicology, 2013, 7, 157-168.	3.0	82
30	Regulation of apoptosis by Bcl-2 cysteine oxidation in human lung epithelial cells. Molecular Biology of the Cell, 2013, 24, 858-869.	2.1	81
31	Mitochondrial superoxide mediates doxorubicin-induced keratinocyte apoptosis through oxidative modification of ERK and Bcl-2 ubiquitination. Biochemical Pharmacology, 2012, 83, 1643-1654.	4.4	80
32	Digitoxin and a synthetic monosaccharide analog inhibit cell viability in lung cancer cells. Toxicology and Applied Pharmacology, 2012, 258, 51-60.	2.8	79
33	Mesothelin promotes epithelial-to-mesenchymal transition and tumorigenicity of human lung cancer and mesothelioma cells. Molecular Cancer, 2017, 16, 63.	19.2	79
34	Novel non-endocytic delivery of antisense oligonucleotides. Advanced Drug Delivery Reviews, 2000, 44, 35-49.	13.7	77
35	Curcumin sensitizes non-small cell lung cancer cell anoikis through reactive oxygen species-mediated Bcl-2 downregulation. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 574-585.	4.9	77

Nanomaterials in Humans. Toxicologic Pathology, 2011, 39, 841-849.

1.8 77

#	Article	IF	CITATIONS
37	Oligonucleotide targeting to alveolar macrophages by mannose receptor-mediated endocytosis. Biochimica Et Biophysica Acta - Biomembranes, 1996, 1279, 227-234.	2.6	72
38	Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells. Toxicology and Applied Pharmacology, 2012, 261, 204-216.	2.8	71
39	Effect of Fiber Length on Carbon Nanotube-Induced Fibrogenesis. International Journal of Molecular Sciences, 2014, 15, 7444-7461.	4.1	68
40	Stereochemical Survey of Digitoxin Monosaccharides. ACS Medicinal Chemistry Letters, 2011, 2, 73-78.	2.8	67
41	Vanadium-induced apoptosis and pulmonary inflammation in mice: Role of reactive oxygen species. Journal of Cellular Physiology, 2003, 195, 99-107.	4.1	66
42	Curcumin Sensitizes Lung Cancer Cells to Cisplatin-Induced Apoptosis Through Superoxide Anion-Mediated Bcl-2 Degradation. Cancer Investigation, 2009, 27, 624-635.	1.3	65
43	Neoplastic-like transformation effect of single-walled and multi-walled carbon nanotubes compared to asbestos on human lung small airway epithelial cells. Nanotoxicology, 2014, 8, 485-507.	3.0	65
44	Phosphatidylinositol 3-Kinase/Akt Positively Regulates Fas (CD95)-Mediated Apoptosis in Epidermal Cl41 Cells. Journal of Immunology, 2006, 176, 6785-6793.	0.8	64
45	Role of S-nitrosylation in apoptosis resistance and carcinogenesis. Nitric Oxide - Biology and Chemistry, 2008, 19, 146-151.	2.7	63
46	Arsenite induces cell transformation by reactive oxygen species, AKT, ERK1/2, and p70S6K1. Biochemical and Biophysical Research Communications, 2011, 414, 533-538.	2.1	63
47	Synthesis and Evaluation of the α- <scp>d</scp> -/α- <scp>l</scp> -Rhamnosyl and Amicetosyl Digitoxigenin Oligomers as Antitumor Agents. ACS Medicinal Chemistry Letters, 2011, 2, 264-269.	2.8	62
48	Effects of acid treatment on structure, properties and biocompatibility of carbon nanotubes. Applied Surface Science, 2013, 264, 261-268.	6.1	59
49	Peroxide Is a Key Mediator of Bcl-2 Down-Regulation and Apoptosis Induction by Cisplatin in Human Lung Cancer Cells. Molecular Pharmacology, 2008, 73, 119-127.	2.3	58
50	C5′-Alkyl Substitution Effects on Digitoxigenin α- <scp>l</scp> -Glycoside Cancer Cytotoxicity. ACS Medicinal Chemistry Letters, 2011, 2, 259-263.	2.8	58
51	Potential role of apoptotic macrophages in pulmonary inflammation and fibrosis. Journal of Cellular Physiology, 2003, 194, 215-224.	4.1	57
52	High-efficiency gene transfection of macrophages by lipoplexes. International Journal of Pharmaceutics, 2000, 206, 97-104.	5.2	56
53	Induction of secondary apoptosis, inflammation, and lung fibrosis after intratracheal instillation of apoptotic cells in rats. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L695-L702.	2.9	54
54	Hydrogen peroxide inhibits non-small cell lung cancer cell anoikis through the inhibition of caveolin-1 degradation. American Journal of Physiology - Cell Physiology, 2011, 300, C235-C245.	4.6	54

#	Article	IF	CITATIONS
55	The aryl hydrocarbon receptor interacts with nuclear factor erythroid 2-related factor 2 to mediate induction of NAD(P)H:quinoneoxidoreductase 1 by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Archives of Biochemistry and Biophysics, 2013, 537, 31-38.	3.0	53
56	Nitrosothiol signaling and protein nitrosation in cell death. Nitric Oxide - Biology and Chemistry, 2014, 42, 9-18.	2.7	52
57	Nitric Oxide Mediates Bleomycinâ€induced Angiogenesis and Pulmonary Fibrosis via Regulation of VEGF. Journal of Cellular Biochemistry, 2015, 116, 2484-2493.	2.6	52
58	Induction of neutrophil apoptosis and secondary necrosis during endotoxin-induced pulmonary inflammation in mice. Journal of Cellular Physiology, 2002, 191, 320-326.	4.1	51
59	Regulation of Fas (CD95)-induced apoptotic and necrotic cell death by reactive oxygen species in macrophages. Journal of Cellular Physiology, 2005, 203, 78-84.	4.1	51
60	Vaccine Delivery - Current Trends and Future. Current Drug Delivery, 2006, 3, 137-146.	1.6	51
61	Induction of stem-like cells with malignant properties by chronic exposure of human lung epithelial cells to single-walled carbon nanotubes. Particle and Fibre Toxicology, 2014, 11, 22.	6.2	51
62	Dependence of NF-kappaB activation and free radical generation on silica-induced TNF-alpha production in macrophages. Molecular and Cellular Biochemistry, 1999, 200, 119-125.	3.1	50
63	Nitric Oxide Regulates Lung Carcinoma Cell Anoikis through Inhibition of Ubiquitin-Proteasomal Degradation of Caveolin-1. Journal of Biological Chemistry, 2009, 284, 28476-28484.	3.4	50
64	Superoxide-mediated proteasomal degradation of Bcl-2 determines cell susceptibility to Cr(VI)-induced apoptosis. Carcinogenesis, 2008, 29, 1538-1545.	2.8	49
65	The effects of carbon nanotubes on lung and dermal cellular behaviors. Nanomedicine, 2014, 9, 895-912.	3.3	48
66	Chronic Exposure to Carbon Nanotubes Induces Invasion of Human Mesothelial Cells through Matrix Metalloproteinase-2. ACS Nano, 2013, 7, 7711-7723.	14.6	47
67	Nitric oxide induces cancer stem cell-like phenotypes in human lung cancer cells. American Journal of Physiology - Cell Physiology, 2015, 308, C89-C100.	4.6	47
68	Essential role of p53 in silica-induced apoptosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 288, L488-L496.	2.9	46
69	Hydroxyl radical mediates cisplatin-induced apoptosis in human hair follicle dermal papilla cells and keratinocytes through Bcl-2-dependent mechanism. Apoptosis: an International Journal on Programmed Cell Death, 2011, 16, 769-782.	4.9	45
70	Induction of TNFalpha in macrophages by vanadate is dependent on activation of transcription factor NF-kappaB and free radical reactions. Molecular and Cellular Biochemistry, 1999, 198, 193-200.	3.1	44
71	One-Electron Reduction of Chromium(VI) by α-Lipoic Acid and Related Hydroxyl Radical Generation, dG Hydroxylation and Nuclear Transcription Factor-κB Activation. Archives of Biochemistry and Biophysics, 1997, 338, 165-172.	3.0	41
72	Nitric Oxide–Mediated Bcl-2 Stabilization Potentiates Malignant Transformation of Human Lung Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2010, 42, 578-585.	2.9	40

#	Article	IF	CITATIONS
73	Monosaccharide digitoxin derivative sensitize human non-small cell lung cancer cells to anoikis through Mcl-1 proteasomal degradation. Biochemical Pharmacology, 2014, 88, 23-35.	4.4	40
74	Caveolin-1 regulates Mcl-1 stability and anoikis in lung carcinoma cells. American Journal of Physiology - Cell Physiology, 2012, 302, C1284-C1292.	4.6	39
75	Dependence of Reactive Oxygen Species and FLICE Inhibitory Protein on Lipofectamine-Induced Apoptosis in Human Lung Epithelial Cells. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 969-977.	2.5	37
76	Regulation of Fas (CD95)-induced apoptosis by nuclear factor-κB and tumor necrosis factor-α in macrophages. American Journal of Physiology - Cell Physiology, 2002, 283, C831-C838.	4.6	36
77	Pulmonary toxicity and fibrogenic response of carbon nanotubes. Toxicology Mechanisms and Methods, 2013, 23, 196-206.	2.7	35
78	Caveolin-1 regulates lung cancer stem-like cell induction and p53 inactivation in carbon nanotube-driven tumorigenesis. Oncotarget, 2014, 5, 3541-3554.	1.8	35
79	Antiâ€Tumor Effects of Cardiac Glycosides on Human Lung Cancer Cells and Lung Tumorspheres. Journal of Cellular Physiology, 2017, 232, 2497-2507.	4.1	35
80	Cellular delivery of oligonucleotides by synthetic import peptide carrier. Pharmaceutical Research, 1997, 14, 1759-1764.	3.5	34
81	Multifunctional Role of Bcl-2 in Malignant Transformation and Tumorigenesis of Cr(VI)-Transformed Lung Cells. PLoS ONE, 2012, 7, e37045.	2.5	34
82	Selective stamp bonding of PDMS microfluidic devices to polymer substrates for biological applications. Sensors and Actuators A: Physical, 2013, 193, 186-192.	4.1	33
83	Effects of titanium dioxide nanoparticles on human keratinocytes. Drug and Chemical Toxicology, 2017, 40, 90-100.	2.3	33
84	Protective Roles of NF-κB for Chromium(VI)-induced Cytotoxicity Is Revealed by Expression of IκB Kinase-β Mutant. Journal of Biological Chemistry, 2002, 277, 3342-3349.	3.4	32
85	Antioxidant c-FLIP Inhibits Fas Ligand-Induced NF-κB Activation in a Phosphatidylinositol 3-Kinase/Akt-Dependent Manner. Journal of Immunology, 2011, 187, 3256-3266.	0.8	31
86	Early Assessment and Correlations of Nanoclay's Toxicity to Their Physical and Chemical Properties. ACS Applied Materials & Interfaces, 2017, 9, 32323-32335.	8.0	31
87	Nitric oxide promotes cancer cell dedifferentiation by disrupting an Oct4:caveolin-1 complex: A new regulatory mechanism for cancer stem cell formation. Journal of Biological Chemistry, 2018, 293, 13534-13552.	3.4	31
88	Antisense Inhibition of Silica-induced Tumor Necrosis Factor in Alveolar Macrophages. Journal of Biological Chemistry, 1997, 272, 3910-3914.	3.4	29
89	Identification of TGF-β receptor-1 as a key regulator of carbon nanotube-induced fibrogenesis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L821-L833.	2.9	29
90	Role of Transcription Factor NF-κB in Asbestos-Induced TNFα Response from Macrophages. Experimental and Molecular Pathology, 1999, 66, 201-210.	2.1	28

#	Article	IF	CITATIONS
91	Exposure to Carbon Nanotubes Leads to Changes in the Cellular Biomechanics. Advanced Healthcare Materials, 2013, 2, 945-951.	7.6	28
92	Characterization of proteolytic activities of pulmonary alveolar epithelium. International Journal of Pharmaceutics, 2000, 195, 93-101.	5.2	27
93	Toxicity evaluations of nanoclays and thermally degraded byproducts through spectroscopical and microscopical approaches. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3406-3415.	2.4	27
94	Autophagyâ€Induced Apoptosis in Lung Cancer Cells by a Novel Digitoxin Analog. Journal of Cellular Physiology, 2016, 231, 817-828.	4.1	26
95	Evaluation of tumorigenic potential of CeO2 and Fe2O3 engineered nanoparticles by a human cell in vitro screening model. NanoImpact, 2017, 6, 39-54.	4.5	25
96	Carcinogenic potential of high aspect ratio carbon nanomaterials. Environmental Science: Nano, 2016, 3, 483-493.	4.3	24
97	Inhibition of endotoxin-induced lung inflammation by interleukin-10 gene transfer in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L872-L877.	2.9	23
98	Carbon nanotubes induced fibrogenesis on nanostructured substrates. Environmental Science: Nano, 2017, 4, 689-699.	4.3	23
99	SOX9 Regulates Cancer Stem-Like Properties and Metastatic Potential of Single-Walled Carbon Nanotube-Exposed Cells. Scientific Reports, 2017, 7, 11653.	3.3	23
100	Enhanced cellular uptake of oligonucleotides by EGF receptor-mediated endocytosis in A549 cells. Pharmaceutical Research, 1996, 13, 57-61.	3.5	22
101	AC927, a σ Receptor Ligand, Blocks Methamphetamine-Induced Release of Dopamine and Generation of Reactive Oxygen Species in NG108-15 Cells. Molecular Pharmacology, 2012, 81, 299-308.	2.3	22
102	Appalachian Mountaintop Mining Particulate Matter Induces Neoplastic Transformation of Human Bronchial Epithelial Cells and Promotes Tumor Formation. Environmental Science & Technology, 2014, 48, 12912-12919.	10.0	22
103	Gene expression profile of human lung epithelial cells chronically exposed to single-walled carbon nanotubes. Nanoscale Research Letters, 2015, 10, 12.	5.7	21
104	Effect of surface functionalizations of multi-walled carbon nanotubes on neoplastic transformation potential in primary human lung epithelial cells. Nanotoxicology, 2017, 11, 613-624.	3.0	21
105	Short-Term Pulmonary Toxicity Assessment of Pre- and Post-incinerated Organomodified Nanoclay in Mice. ACS Nano, 2018, 12, 2292-2310.	14.6	21
106	Characterization of mefenamic acid-guaiacol ester: stability and transport across Caco-2 cell monolayers. Pharmaceutical Research, 2002, 19, 1013-1018.	3.5	20
107	Inhibition of TNF-α gene expression and bioactivity by site-specific transcription factor-binding oligonucleotides. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 284, L386-L394.	2.9	20
108	ATR-FTIR characterization of transport properties of benzoic acid ion-pairs in silicone membranes. International Journal of Pharmaceutics, 2004, 283, 111-116.	5.2	20

#	Article	IF	CITATIONS
109	A novel TRPM7/O-GlcNAc axis mediates tumour cell motility and metastasis by stabilising c-Myc and caveolin-1 in lung carcinoma. British Journal of Cancer, 2020, 123, 1289-1301.	6.4	20
110	Potential in vitro model for testing the effect of exposure to nanoparticles on the lung alveolar epithelial barrier. Sensing and Bio-Sensing Research, 2015, 3, 38-45.	4.2	19
111	Linking JNK-STAT3-Akt signaling axis to EZH2 phosphorylation. Cell Cycle, 2013, 12, 202-202.	2.6	18
112	Carbon nanotube uptake changes the biomechanical properties of human lung epithelial cells in a time-dependent manner. Journal of Materials Chemistry B, 2015, 3, 3983-3992.	5.8	18
113	Induction of cancer-associated fibroblast-like cells by carbon nanotubes dictates its tumorigenicity. Scientific Reports, 2016, 6, 39558.	3.3	18
114	Induction of Slug by Chronic Exposure to Single-Walled Carbon Nanotubes Promotes Tumor Formation and Metastasis. Chemical Research in Toxicology, 2017, 30, 1396-1405.	3.3	18
115	Substrate Stiffness-Dependent Carbon Nanotube-Induced Lung Fibrogenesis. Nano Letters, 2019, 19, 5443-5451.	9.1	17
116	Enzymatic degradation of luteinizing hormone releasing hormone (LHRH)/[D-Ala6]-LHRH in lung pneumocytes. Pharmaceutical Research, 1998, 15, 1480-1484.	3.5	15
117	Inhibition of nuclear transcription factor-kappaB by specific IkappaB kinase peptide inhibitor. Pharmaceutical Research, 2001, 18, 1631-1633.	3.5	15
118	Characteristics and anti-proliferative activity of azelaic acid and its derivatives entrapped in bilayer vesicles in cancer cell lines. Journal of Drug Targeting, 2007, 15, 334-341.	4.4	15
119	Assessment of Pulmonary Fibrogenic Potential of Multiwalled Carbon Nanotubes in Human Lung Cells. Journal of Nanomaterials, 2012, 2012, 1-11.	2.7	15
120	S-nitrosylation of FLICE inhibitory protein determines its interaction with RIP1 and activation of NF-κB. Cell Cycle, 2014, 13, 1948-1957.	2.6	15
121	Role of H-Ras/ERK signaling in carbon nanotube-induced neoplastic-like transformation of human mesothelial cells. Frontiers in Physiology, 2014, 5, 222.	2.8	15
122	Direct stimulation of human fibroblasts by nCeO2 in vitro is attenuated with an amorphous silica coating. Particle and Fibre Toxicology, 2015, 13, 23.	6.2	14
123	TRAIL and proteasome inhibitors combination induces a robust apoptosis in human malignant pleural mesothelioma cells through Mcl-1 and Akt protein cleavages. BMC Cancer, 2013, 13, 140.	2.6	13
124	Carbon Nanotubes Induce Apoptosis Resistance of Human Lung Epithelial Cells Through FLICE-Inhibitory Protein. Toxicological Sciences, 2015, 143, 499-511.	3.1	13
125	Carbon nanotubes physicochemical properties influence the overall cellular behavior and fate. NanoImpact, 2018, 9, 72-84.	4.5	13
126	Reactive oxygen species mediate cancer stem-like cells and determine bortezomib sensitivity via Mcl-1 and Zeb-1 in mantle cell lymphoma. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3739-3753.	3.8	13

#	Article	IF	CITATIONS
127	Towards elucidating the effects of purified MWCNTs on human lung epithelial cells. Environmental Science: Nano, 2014, 1, 595-603.	4.3	12
128	Acquisition of cancer stem cell-like properties in human small airway epithelial cells after a long-term exposure to carbon nanomaterials. Environmental Science: Nano, 2019, 6, 2152-2170.	4.3	12
129	Potential Occupational Risks Associated with Pulmonary Toxicity of Carbon Nanotubes. Occupational Medicine & Health Affairs, 2014, 02, .	0.1	12
130	Protection against oxidative injury and permeability alteration in cultured alveolar epithelium by transferrin-catalase conjugate. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1996, 1315, 21-28.	3.8	11
131	Role of mesothelin in carbon nanotube-induced carcinogenic transformation of human bronchial epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L538-L549.	2.9	10
132	Predicting Nanotube Fibrogenicity through Stem Cell-Mediated Fibroblast Focus and Spheroid Formation. Nano Letters, 2018, 18, 6500-6508.	9.1	10
133	Iron Oxide Nanoparticle-Induced Neoplastic-Like Cell Transformation <i>in Vitro</i> Is Reduced with a Protective Amorphous Silica Coating. Chemical Research in Toxicology, 2019, 32, 2382-2397.	3.3	10
134	Rapid and sensitive assay of tumor necrosis factor-alpha gene transcription. Pharmaceutical Research, 2001, 18, 408-411.	3.5	8
135	Nanobiotechnology in Drug Delivery. American Journal of Drug Delivery, 2006, 4, 79-88.	0.6	8
136	Role of lung surfactant in phagocytic clearance of apoptotic cells by macrophages in rats. Laboratory Investigation, 2006, 86, 458-466.	3.7	8
137	Experimental and Computational Studies of Epithelial Transport of Mefenamic Acid Ester Prodrugs. Pharmaceutical Research, 2005, 22, 721-727.	3.5	7
138	Toxicity and oxidative stress responses induced by nano- and micro-CoCrMo particles. Journal of Materials Chemistry B, 2017, 5, 5648-5657.	5.8	7
139	Glutathione conjugation of busulfan produces a hydroxyl radical-trapping dehydroalanine metabolite. Xenobiotica, 2012, 42, 1170-1177.	1.1	6
140	SOX2Mediates Carbon Nanotube-Induced Fibrogenesis and Fibroblast Stem Cell Acquisition. ACS Biomaterials Science and Engineering, 2020, 6, 5290-5304.	5.2	6
141	Nitrosothiol Signaling in Anoikis Resistance and Cancer Metastasis. Forum on Immunopathological Diseases and Therapeutics, 2012, 3, 141-154.	0.1	6
142	Impacts of Organomodified Nanoclays and Their Incinerated Byproducts on Bronchial Cell Monolayer Integrity. Chemical Research in Toxicology, 2019, 32, 2445-2458.	3.3	5
143	Potential antitumor activity of digitoxin and user-designed analog administered to human lung cancer cells. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129683.	2.4	5
144	Cellular delivery of functional peptides to block cytokine gene expression. Journal of Controlled Release, 2000, 65, 13-17.	9.9	4

#	Article	IF	CITATIONS
145	Anticancer Properties of Curcumin. , 0, , .		4
146	Microfluidic gradient device for studying mesothelial cell migration and the effect of chronic carbon nanotube exposure. Journal of Micromechanics and Microengineering, 2015, 25, 075010.	2.6	4
147	Interleukin-12 elicits a non-canonical response in B16 melanoma cells to enhance survival. Cell Communication and Signaling, 2020, 18, 78.	6.5	4
148	Methods to Analyze S-nitrosylation of Proteins Involved in Apoptosis. Methods in Molecular Biology, 2009, 559, 117-130.	0.9	3
149	Chemotherapy-Induced Alopecia. , 2012, , .		2
150	Secondary Necrosis of Apoptotic Neutrophils Contributes to Inflammatory Lung Injury in vivo. Scientific World Journal, The, 2001, 1, 57-57.	2.1	1
151	Luciferase reporter cells as a platform to detect SMAD-dependent collagen production. Journal of Bioscience and Bioengineering, 2014, 118, 732-735.	2.2	1
152	Mechanisms Underlying the Fibrogenic Responses of Carbon Nanotubes. Advances in Molecular Toxicology, 2018, , 47-68.	0.4	1
153	Macromolecular Drug Delivery. , 2008, , 293-323.		1
154	DNA Microarrays in Drug Discovery and Development. , 2008, , 47-66.		1
155	S-Nitrosylation $\hat{a} \in $ How Cancer Cells Say NO to Cell Death. , 2010, , 85-102.		1
156	Evaluating Carcinogenic Potential of Carbon Nanomaterials. , 2019, , 103-144.		1
157	Role of Nitric Oxide in Cancer Stem Cell Regulation and Metastasis. , 2017, , 179-189.		0
158	Biological Activities of Carbon Nanotubes. , 0, , .		0
159	The Emerging Role of Protein S-Nitrosylation in Cancer Metastasis. , 2015, , 111-125.		0