
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6625425/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using the World Wide Lightning Location Network (WWLLN) to Study Very Low Frequency Transmission in the Earthâ€lonosphere Waveguide: 2. Model Test by Patterns of Detection/Nonâ€Detection. Radio Science, 2022, 57, .	0.8	2
2	A Terrestrial Gammaâ€Ray Flash From the 2022 Hunga Tonga–Hunga Ha'apai Volcanic Eruption. Geophysical Research Letters, 2022, 49, .	1.5	7
3	Radio Frequency Emissions Associated With Multiâ€Pulsed Terrestrial Gammaâ€Ray Flashes. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA027928.	0.8	0
4	Lightning in the Arctic. Geophysical Research Letters, 2021, 48, e2020GL091366.	1.5	47
5	The Evolution of the Waveâ€One Ozone Maximum During the 2017 LASIC Field Campaign at Ascension Island. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033972.	1.2	1
6	Detail study of time evolution of three thunderstorm events in Tehran area using observations and numerical simulations for lightning nowcasting. Natural Hazards, 2021, 109, 1481-1508.	1.6	1
7	Using the World Wide Lightning Location Network (WWLLN) to Study Very Low Frequency Transmission in the Earthâ€lonosphere Waveguide: 1. Comparison With a Fullâ€Wave Model. Radio Science, 2021, 56, e2021RS007293.	0.8	8
8	The Relationship Between TGF Production in Thunderstorms and Lightning Flash Rates and Amplitudes. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034401.	1.2	4
9	CAPE Threshold for Lightning Over the Tropical Ocean. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035621.	1.2	3
10	Lowâ€Latitude Whistlerâ€Wave Spectra and Polarization From VEFI and CINDI Payloads on C/NOFS Satellite. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027074.	0.8	1
11	Special Classes of Terrestrial Gamma Ray Flashes From RHESSI. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033043.	1.2	4
12	Registration of Atmospheric-Electric Effects from Volcanic Clouds on the Kamchatka Peninsula (Russia). Atmosphere, 2020, 11, 634.	1.0	11
13	Did ice-charging generate volcanic lightning during the 2016–2017 eruption of Bogoslof volcano, Alaska?. Bulletin of Volcanology, 2020, 82, 1.	1.1	45
14	Midlatitude Lightning NO _x Production Efficiency Inferred From OMI and WWLLN Data. Journal of Geophysical Research D: Atmospheres, 2019, 124, 13475-13497.	1.2	25
15	Global Distribution of Superbolts. Journal of Geophysical Research D: Atmospheres, 2019, 124, 9996-10005.	1.2	61
16	Characteristics of Typhoon Eyewalls According to World Wide Lightning Location Network Data. Monthly Weather Review, 2019, 147, 4027-4043.	0.5	6
17	A Fermi Gammaâ€Ray Burst Monitor Event Observed as a Terrestrial Gammaâ€Ray Flash and Terrestrial Electron Beam. Journal of Geophysical Research: Space Physics, 2019, 124, 10580-10591.	0.8	6
18	Lightning NO _x Production in the Tropics as Determined Using OMI NO ₂ Retrievals and WWLLN Stroke Data. Journal of Geophysical Research D: Atmospheres, 2019, 124, 13498-13518.	1.2	17

#	Article	IF	CITATIONS
19	Globally detected volcanic lightning and umbrella dynamics during the 2014 eruption of Kelud, Indonesia. Journal of Volcanology and Geothermal Research, 2019, 382, 81-91.	0.8	28
20	Evidence for Extended Charging Periods Prior to Terrestrial Gamma Ray Flashes. Geophysical Research Letters, 2019, 46, 10619-10626.	1.5	6
21	Coordinated Satellite Observations of the Very Low Frequency Transmission Through the Ionospheric <i>D</i> Layer at Low Latitudes, Using Broadband Radio Emissions From Lightning. Journal of Geophysical Research: Space Physics, 2018, 123, 2926-2952.	0.8	8
22	The First <i>Fermi</i> â€GBM Terrestrial Gamma Ray Flash Catalog. Journal of Geophysical Research: Space Physics, 2018, 123, 4381-4401.	0.8	57
23	CAPE Times P Explains Lightning Over Land But Not the Landâ€Ocean Contrast. Geophysical Research Letters, 2018, 45, 12,623.	1.5	41
24	A Terrestrial Gammaâ€Ray Flash inside the Eyewall of Hurricane Patricia. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4977-4987.	1.2	23
25	Atmospheric electric effects during the explosion of Shiveluch volcano on November 16, 2014. Izvestiya - Atmospheric and Oceanic Physics, 2017, 53, 24-31.	0.2	11
26	Lightning enhancement over major oceanic shipping lanes. Geophysical Research Letters, 2017, 44, 9102-9111.	1.5	113
27	Lightning and electrical activity during the Shiveluch volcano eruption on 16ÂNovemberÂ2014. Natural Hazards and Earth System Sciences, 2016, 16, 871-874.	1.5	15
28	Characteristics of Thunderstorms That Produce Terrestrial Gamma Ray Flashes. Bulletin of the American Meteorological Society, 2016, 97, 639-653.	1.7	36
29	Estimates of lightning NO <i>_x</i> production based on OMI NO ₂ observations over the Gulf of Mexico. Journal of Geophysical Research D: Atmospheres, 2016, 121, 8668-8691.	1.2	52
30	The rarity of terrestrial gammaâ€ray flashes: 2. RHESSI stacking analysis. Journal of Geophysical Research D: Atmospheres, 2016, 121, 11,382.	1.2	16
31	Automated identification of discrete, lightningâ€generated, multipleâ€dispersed whistler waves in C/NOFSâ€VEFI very low frequency observations. Radio Science, 2016, 51, 1547-1569.	0.8	4
32	Thunderstorm activity and the structure of tropical cyclones. Atmospheric and Oceanic Optics, 2015, 28, 585-590.	0.6	3
33	A method to estimate whistler wave vector from polarization using threeâ€component electric field data. Radio Science, 2014, 49, 131-145.	0.8	6
34	Diurnal variation of the global electric circuit from clustered thunderstorms. Journal of Geophysical Research: Space Physics, 2014, 119, 620-629.	0.8	34
35	Radio signals from electron beams in terrestrial gamma ray flashes. Journal of Geophysical Research: Space Physics, 2013, 118, 2313-2320.	0.8	80
36	Azimuthal dependence of VLF propagation. Journal of Geophysical Research: Space Physics, 2013, 118, 5808-5812.	0.8	13

#	Article	IF	CITATIONS
37	Terrestrial gammaâ€ray flashes in the Fermi era: Improved observations and analysis methods. Journal of Geophysical Research: Space Physics, 2013, 118, 3805-3830.	0.8	109
38	Radiated VLF energy differences of land and oceanic lightning. Geophysical Research Letters, 2013, 40, 2390-2394.	1.5	82
39	Attenuation of lightningâ€produced sferics in the Earthâ€ionosphere waveguide and lowâ€latitude ionosphere. Journal of Geophysical Research: Space Physics, 2013, 118, 3692-3699.	0.8	19
40	Highlights of a New Ground-Based, Hourly Global Lightning Climatology. Bulletin of the American Meteorological Society, 2013, 94, 1381-1391.	1.7	173
41	Far-Field Power of Lightning Strokes as Measured by the World Wide Lightning Location Network. Journal of Atmospheric and Oceanic Technology, 2012, 29, 1102-1110.	0.5	114
42	Location prediction of electron TGFs. Journal of Geophysical Research, 2012, 117, .	3.3	11
43	Atmosphereâ€ionosphere conductivity enhancements during a hard solar energetic particle event. Journal of Geophysical Research, 2012, 117, .	3.3	4
44	Relative detection efficiency of the World Wide Lightning Location Network. Radio Science, 2012, 47, .	0.8	181
45	Study of oblique whistlers in the low-latitude ionosphere, jointly with the C/NOFS satellite and the World-Wide Lightning Location Network. Annales Geophysicae, 2011, 29, 851-863.	0.6	17
46	Terrestrial gamma ray flashes correlated to storm phase and tropopause height. Journal of Geophysical Research, 2010, 115, .	3.3	74
47	A performance assessment of the World Wide Lightning Location Network (WWLLN) via comparison with the Canadian Lightning Detection Network (CLDN). Atmospheric Measurement Techniques, 2010, 3, 1143-1153.	1.2	39
48	Fullâ€wave reflection of lightning longâ€wave radio pulses from the ionospheric <i>D</i> region: Comparison with midday observations of broadband lightning signals. Journal of Geophysical Research, 2010, 115, .	3.3	14
49	First results on terrestrial gamma ray flashes from the Fermi Gammaâ€ray Burst Monitor. Journal of Geophysical Research, 2010, 115, .	3.3	218
50	Lightningâ€generated NO _{<i>x</i>} seen by the Ozone Monitoring Instrument during NASA's Tropical Composition, Cloud and Climate Coupling Experiment (TC ⁴). Journal of Geophysical Research, 2010, 115, .	3.3	65
51	Associations between Fermi Gammaâ€ray Burst Monitor terrestrial gamma ray flashes and sferics from the World Wide Lightning Location Network. Journal of Geophysical Research, 2010, 115, .	3.3	92
52	Growing Detection Efficiency of the World Wide Lightning Location Network. , 2009, , .		106
53	Spectral dependence of terrestrial gammaâ€ray flashes on source distance. Geophysical Research Letters, 2009, 36, .	1.5	78
54	Fullâ€wave reflection of lightning longâ€wave radio pulses from the ionospheric <i>D</i> region: Numerical model. Journal of Geophysical Research, 2009, 114, .	3.3	30

#	Article	IF	CITATIONS
55	Magnetospheric electric field variations caused by storm-time shock fronts. Advances in Space Research, 2008, 42, 181-191.	1.2	12
56	Local time variation in land/ocean lightning flash density as measured by the World Wide Lightning Location Network. Journal of Geophysical Research, 2007, 112, .	3.3	71
57	Low-frequency ionospheric sounding with Narrow Bipolar Event lightning radio emissions: regular variabilities and solar-X-ray responses. Annales Geophysicae, 2007, 25, 2175-2184.	0.6	14
58	Detection efficiency of the VLF World-Wide Lightning Location Network (WWLLN): initial case study. Annales Geophysicae, 2006, 24, 3197-3214.	0.6	239
59	Rapid fluctuations of stratospheric electric field following a solar energetic particle event. Geophysical Research Letters, 2006, 33, .	1.5	27
60	Performance Assessment of the World Wide Lightning Location Network (WWLLN), Using the Los Alamos Sferic Array (LASA) as Ground Truth. Journal of Atmospheric and Oceanic Technology, 2006, 23, 1082-1092.	0.5	184
61	Balloon observations of temporal and spatial fluctuations in stratospheric conductivity. Advances in Space Research, 2005, 35, 1434-1449.	1.2	13
62	Latitude gradients in the natural variance in stratospheric conductivity – Implications for studies of long-term changes. Advances in Space Research, 2005, 35, 1385-1397.	1.2	6
63	WWLL global lightning detection system: Regional validation study in Brazil. Geophysical Research Letters, 2004, 31, .	1.5	141
64	Long term changes in the electrical conductivity of the stratosphere. Advances in Space Research, 2003, 32, 1725-1735.	1.2	7
65	Solar flare perturbations in stratospheric current systems. Geophysical Research Letters, 1987, 14, 852-855.	1.5	42