
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6625390/publications.pdf Version: 2024-02-01

RUBAO LI

#	Article	IF	CITATIONS
1	Marine plankton phenology and life history in a changing climate: current research and future directions. Journal of Plankton Research, 2010, 32, 1355-1368.	0.8	201
2	Sea ice phenology and timing of primary production pulses in the Arctic Ocean. Global Change Biology, 2013, 19, 734-741.	4.2	146
3	Early Life History and Fisheries Oceanography: New Questions in a Changing World. Oceanography, 2014, 27, 26-41.	0.5	103
4	Rapid Climate-Driven Circulation Changes Threaten Conservation of Endangered North Atlantic Right Whales. Oceanography, 2019, 32, .	0.5	97
5	A model study of the coupled biological and physical dynamics in Lake Michigan. Ecological Modelling, 2002, 152, 145-168.	1.2	90
6	lt's about time: A synthesis of changing phenology in the Gulf of Maine ecosystem. Fisheries Oceanography, 2019, 28, 532-566.	0.9	83
7	Life history and biogeography of Calanus copepods in the Arctic Ocean: An individual-based modeling study. Progress in Oceanography, 2012, 96, 40-56.	1.5	81
8	Remote climate forcing of decadalâ€scale regime shifts in Northwest Atlantic shelf ecosystems. Limnology and Oceanography, 2013, 58, 803-816.	1.6	78
9	Influence of ocean freshening on shelf phytoplankton dynamics. Geophysical Research Letters, 2007, 34, .	1.5	54
10	Summertime primary production in northwest South China Sea: Interaction of coastal eddy, upwelling and biological processes. Continental Shelf Research, 2012, 48, 110-121.	0.9	53
11	Predation control of zooplankton dynamics: a review of observations and models. ICES Journal of Marine Science, 2014, 71, 254-271.	1.2	53
12	Influence of local and external processes on the annual nitrogen cycle and primary productivity on Georges Bank: A 3-D biological–physical modeling study. Journal of Marine Systems, 2008, 73, 31-47.	0.9	51
13	Modeling the influence of low-salinity water inflow on winter-spring phytoplankton dynamics in the Nova Scotian Shelf–Gulf of Maine region. Journal of Plankton Research, 2008, 30, 1399-1416.	0.8	50
14	Influences of physical processes on the ecosystem in Jiaozhou Bay: A coupled physical and biological model experiment. Journal of Geophysical Research, 1999, 104, 29925-29949.	3.3	49
15	Phenology of phytoplankton blooms in the Nova Scotian Shelf-Gulf of Maine region: remote sensing and modeling analysis. Journal of Plankton Research, 2010, 32, 1485-1499.	0.8	48
16	Spatio-temporal patterns of stratification on the Northwest Atlantic shelf. Progress in Oceanography, 2015, 134, 123-137.	1.5	45
17	Pan-Antarctic analysis aggregating spatial estimates of Adélie penguin abundance reveals robust dynamics despite stochastic noise. Nature Communications, 2017, 8, 832.	5.8	43
18	Persistence of Calanus finmarchicus in the western Gulf of Maine during recent extreme warming. Journal of Plankton Research, 2015, 37, 221-232.	0.8	42

#	Article	IF	CITATIONS
19	Spring bloom dynamics and zooplankton biomass response on the US Northeast Continental Shelf. Continental Shelf Research, 2015, 102, 47-61.	0.9	40
20	Wind-induced interannual variability of sea level slope, along-shelf flow, and surface salinity on the Northwest Atlantic shelf. Journal of Geophysical Research: Oceans, 2014, 119, 2462-2479.	1.0	38
21	Influences of suspended sediments on the ecosystem in Lake Michigan: a 3-D coupled bio-physical modeling experiment. Ecological Modelling, 2002, 152, 169-190.	1.2	37
22	Copepod diapause and the biogeography of the marine lipidscape. Journal of Biogeography, 2018, 45, 2238-2251.	1.4	37
23	Life history traits and spatiotemporal distributional patterns of copepod populations in the Gulf of Maine-Georges Bank region. Marine Ecology - Progress Series, 2009, 384, 187-205.	0.9	35
24	Tidal pumping and nutrient fluxes on Georges Bank: A process-oriented modeling study. Journal of Marine Systems, 2008, 74, 528-544.	0.9	34
25	The Paris Agreement objectives will likely halt future declines of emperor penguins. Global Change Biology, 2020, 26, 1170-1184.	4.2	33
26	Impacts of suspended sediment on the ecosystem in Lake Michigan: A comparison between the 1998 and 1999 plume events. Journal of Geophysical Research, 2004, 109, .	3.3	32
27	Understanding climate impacts on recruitment and spatial dynamics of Atlantic cod in the Gulf of Maine: Integration of observations and modeling. Progress in Oceanography, 2010, 87, 251-263.	1.5	32
28	Ecosystem model intercomparison of underâ€ice and total primary production in the <scp>A</scp> rctic <scp>O</scp> cean. Journal of Geophysical Research: Oceans, 2016, 121, 934-948.	1.0	31
29	Sensitivity of copepod populations to bottom-up and top-down forcing: a modeling study in the Gulf of Maine region. Journal of Plankton Research, 2013, 35, 66-79.	0.8	30
30	Revisiting Sverdrup's critical depth hypothesis. ICES Journal of Marine Science, 2015, 72, 1892-1896.	1.2	30
31	Seasonal phytoplankton blooms in the North Atlantic linked to the overwintering strategies of copepods. Elementa, 2016, 4, .	1.1	30
32	Calanus finmarchicus diapause initiation: new view from traditional life history-based model. Marine Ecology - Progress Series, 2011, 440, 105-114.	0.9	30
33	Vertical migration of dinoflagellates: model analysis of strategies, growth, and vertical distribution patterns. Marine Ecology - Progress Series, 2007, 344, 49-61.	0.9	29
34	Circumpolar analysis of the Adélie Penguin reveals the importance of environmental variability in phenological mismatch. Ecology, 2017, 98, 940-951.	1.5	28
35	Biogeographic responses of the copepod <i>Calanus glacialis</i> to a changing Arctic marine environment. Global Change Biology, 2018, 24, e159-e170.	4.2	28
36	The March 11, 2011 TÅhoku M9.0 earthquake-induced tsunami and coastal inundation along the Japanese coast: A model assessment. Progress in Oceanography, 2014, 123, 84-104.	1.5	27

#	Article	IF	CITATIONS
37	Model study of nutrient and phytoplankton dynamics in the Gulf of Maine: patterns and drivers for seasonal and interannual variability. ICES Journal of Marine Science, 2015, 72, 388-402.	1.2	26
38	Interannual variability in phytoplankton blooms and plankton productivity over the Nova Scotian Shelf and in the Gulf of Maine. Marine Ecology - Progress Series, 2011, 426, 105-118.	0.9	26
39	Early ice retreat and ocean warming may induce copepod biogeographic boundary shifts in the Arctic Ocean. Journal of Geophysical Research: Oceans, 2016, 121, 6137-6158.	1.0	25
40	A high-resolution modeling study on diel and seasonal vertical migrations of high-latitude copepods. Ecological Modelling, 2018, 368, 357-376.	1.2	24
41	Climate Impacts on Zooplankton Population Dynamics in Coastal Marine Ecosystems. Oceanography, 2013, 26, 34-51.	0.5	23
42	Sea ice predicts longâ€ŧerm trends in Adélie penguin population growth, but not annual fluctuations: Results from a rangeâ€wide multiscale analysis. Global Change Biology, 2020, 26, 3788-3798.	4.2	22
43	Coastal amplification of supply and transport (CAST): a new hypothesis about the persistence of Calanus finmarchicus in the Gulf of Maine. ICES Journal of Marine Science, 2017, 74, 1865-1874.	1.2	21
44	The impact of Scotian Shelf Water "cross-over―on the plankton dynamics on Georges Bank: A 3-D experiment for the 1999 spring bloom. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 2684-2707.	0.6	19
45	Spring phytoplankton bloom and associated lower trophic level food web dynamics on Georges Bank: 1-D and 2-D model studies. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 2656-2683.	0.6	19
46	Dispersal and survival of chub mackerel (Scomber Japonicus) larvae in the East China Sea. Ecological Modelling, 2014, 283, 70-84.	1.2	19
47	Dynamic Fineâ€Scale Sea Icescape Shapes Adult Emperor Penguin Foraging Habitat in East Antarctica. Geophysical Research Letters, 2019, 46, 11206-11218.	1.5	18
48	Pan-Arctic Depth Distribution of Diapausing <i>Calanus</i> Copepods. Biological Bulletin, 2019, 237, 76-89.	0.7	18
49	Synchronicity between ice retreat and phytoplankton bloom in circumâ€Antarctic polynyas. Geophysical Research Letters, 2016, 43, 2086-2093.	1.5	17
50	Decadal Changes in Zooplankton of the Northeast U.S. Continental Shelf. PLoS ONE, 2014, 9, e87720.	1.1	15
51	Variations in Rates of Biological Production in the Beaufort Gyre as the Arctic Changes: Rates From 2011 to 2016. Journal of Geophysical Research: Oceans, 2019, 124, 3628-3644.	1.0	15
52	Influence of projected ocean warming on population growth potential in two North Atlantic copepod species. Progress in Oceanography, 2010, 87, 264-276.	1.5	14
53	Responses of summer phytoplankton biomass to changes in top-down forcing: Insights from comparative modelling. Ecological Modelling, 2018, 376, 54-67.	1.2	14
54	Impact of larval behaviors on dispersal and connectivity of sea scallop larvae over the northeast U.S. shelf. Progress in Oceanography, 2021, 195, 102604.	1.5	14

#	Article	IF	CITATIONS
55	Initial spread of ¹³⁷ Cs from the Fukushima Dai-ichi Nuclear Power Plant over the Japan continental shelf: a study using a high-resolution, global-coastal nested ocean model. Biogeosciences, 2013, 10, 5439-5449.	1.3	13
56	Strong and regionally distinct links between iceâ€retreat timing and phytoplankton production in the Arctic Ocean. Limnology and Oceanography, 2021, 66, 2498-2508.	1.6	13
5 7	Processes controlling seasonality and spatial distribution of Centropages typicus: a modeling study in the Gulf of Maine/Georges Bank region. Journal of Plankton Research, 2012, 34, 18-35.	0.8	12
58	Optimizing plankton survey strategies using Observing System Simulation Experiments. Journal of Marine Systems, 2010, 82, 187-194.	0.9	11
59	Pushing the limit: Resilience of an Arctic copepod to environmental fluctuations. Global Change Biology, 2018, 24, 5426-5439.	4.2	11
60	Benthic hotspots on the northern Bering and Chukchi continental shelf: Spatial variability in production regimes and environmental drivers. Progress in Oceanography, 2021, 191, 102497.	1.5	11
61	Effects of surface forcing on interannual variability of the fall phytoplankton bloom in the Gulf of Maine revealed using a process-oriented model. Marine Ecology - Progress Series, 2011, 427, 29-49.	0.9	10
62	Artificial evolution of behavioral and life history strategies of high-latitude copepods in response to bottom-up and top-down selection pressures. Progress in Oceanography, 2019, 173, 134-164.	1.5	8
63	Interannual differences in larval haddock survival: hypothesis testing with a 3D biophysical model of Georges Bank. Fisheries Oceanography, 2014, 23, 521-553.	0.9	7
64	Resource Allocation for Lagrangian Tracking. Journal of Atmospheric and Oceanic Technology, 2016, 33, 1225-1235.	0.5	7
65	Variability of primary production among basins in the East/Japan Sea: Role of water column stability in modulating nutrient and light availability. Progress in Oceanography, 2019, 178, 102173.	1.5	7
66	Spatially varying phytoplankton seasonality on the Northwest Atlantic Shelf: a model-based assessment of patterns, drivers, and implications. ICES Journal of Marine Science, 2021, 78, 1920-1934.	1.2	7
67	Drivers of variability of <i>Calanus finmarchicus</i> in the Gulf of Maine: roles of internal production and external exchange. ICES Journal of Marine Science, 2022, 79, 775-784.	1.2	7
68	Remote silicate supply regulates spring phytoplankton bloom magnitude in the Gulf of Maine. Limnology and Oceanography Letters, 2022, 7, 277-285.	1.6	6
69	Larval transport pathways from three prominent sand lance habitats in the Gulf of Maine. Fisheries Oceanography, 2022, 31, 333-352.	0.9	6
70	Environmental drivers and trends in forage fish occupancy of the Northeast US shelf. ICES Journal of Marine Science, 2021, 78, 3687-3708.	1.2	5
71	Impact of Shifting Subpolar Front on Phytoplankton Dynamics in the Western Margin of East/Japan Sea. Frontiers in Marine Science, 2021, 8, .	1.2	4
72	Timing of Calanus finmarchicus diapause in stochastic environments. Ecological Modelling, 2021, 460, 109739.	1.2	3

#	Article	IF	CITATIONS
73	Modeling Atlantic sea scallop (<scp><i>Placopecten magellanicus</i></scp>) scope for growth on the Northeast U.S. Shelf. Fisheries Oceanography, 2022, 31, 271-290.	0.9	3
74	Spatial heterogeneity of seasonal phytoplankton blooms in a marginal sea: physical drivers and biological responses. ICES Journal of Marine Science, 2019, , .	1.2	2
75	The interactive effects of temperature and food consumption on growth of larval Arctic cod (<i>Boreogadus saida</i>). Elementa, 2022, 9, .	1.1	2
76	Lack of synchronized breeding success in a seabird community: extreme events, niche separation, and environmental variability. Oikos, 2021, 130, 1943-1953.	1.2	1