Mohsen Sheikholeslami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6625183/publications.pdf Version: 2024-02-01

		2795	6979
308	27,391	94	154
papers	citations	h-index	g-index
313	313	313	5028
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. Journal of Magnetism and Magnetic Materials, 2015, 374, 36-43.	1.0	712
2	Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. International Journal of Heat and Mass Transfer, 2015, 89, 799-808.	2.5	561
3	New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Computer Methods in Applied Mechanics and Engineering, 2019, Numerica Sapproach for MHD Al <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>3.4</td><td>509</td></mml:math>	3.4	509
4	Id="mml48" display="inline" overflow="scroll" altimg="si21.gif"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub> xmlns:mml="http://www.w3.org/1998/Math/MathML" id="mml49" display="inline" overflow="scroll" altimg="si49.gif"> <mml:msub><mml:mrow< td=""><td>3.4</td><td>455</td></mml:mrow<></mml:msub>	3.4	455
5	/> <mml:mrow></mml:mrow> -water nanofluid transpor Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. International Journal of Heat and Mass Transfer, 2019, 130, 1322-1342.	2.5	418
6	Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer. Energy, 2014, 75, 400-410.	4.5	394
7	Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices. Renewable and Sustainable Energy Reviews, 2015, 49, 444-469.	8.2	370
8	Forced convection heat transfer in a semi annulus under the influence of a variable magnetic field. International Journal of Heat and Mass Transfer, 2016, 92, 339-348.	2.5	365
9	Numerical simulation for solidification in a LHTESS by means of nano-enhanced PCM. Journal of the Taiwan Institute of Chemical Engineers, 2018, 86, 25-41.	2.7	352
10	Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. International Journal of Heat and Mass Transfer, 2019, 135, 470-478.	2.5	341
11	Simulation of nanofluid heat transfer in presence of magnetic field: A review. International Journal of Heat and Mass Transfer, 2017, 115, 1203-1233.	2.5	339
12	Numerical simulation of magnetic nanofluid natural convection in porous media. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 494-503.	0.9	336
13	Simulation of MHD CuO–water nanofluid flow and convective heat transfer considering Lorentz forces. Journal of Magnetism and Magnetic Materials, 2014, 369, 69-80.	1.0	332
14	Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM. Computer Methods in Applied Mechanics and Engineering, 2015, 283, 651-663.	3.4	306
15	Nanofluid flow and heat transfer in a rotating system in the presence of a magnetic field. Journal of Molecular Liquids, 2014, 190, 112-120.	2.3	304
16	Forced convection of nanofluid in presence of constant magnetic field considering shape effects of nanoparticles. International Journal of Heat and Mass Transfer, 2017, 111, 1039-1049.	2.5	295
17	Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems. Journal of Cleaner Production, 2019, 215, 963-977.	4.6	285
18	Investigation of squeezing unsteady nanofluid flow using ADM. Powder Technology, 2013, 239, 259-265.	2.1	280

#	Article	IF	CITATIONS
19	CuO-water nanofluid flow due to magnetic field inside a porous media considering Brownian motion. Journal of Molecular Liquids, 2018, 249, 921-929.	2.3	280
20	Entropy generation of nanofluid in presence of magnetic field using Lattice Boltzmann Method. Physica A: Statistical Mechanics and Its Applications, 2015, 417, 273-286.	1.2	272
21	Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. International Journal of Heat and Mass Transfer, 2019, 141, 974-980.	2.5	266
22	Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. International Journal of Heat and Mass Transfer, 2019, 137, 1290-1300.	2.5	266
23	Heat transfer of nanoparticles employing innovative turbulator considering entropy generation. International Journal of Heat and Mass Transfer, 2019, 136, 1233-1240.	2.5	258
24	Magnetic field influence on nanofluid thermal radiation in a cavity with tilted elliptic inner cylinder. Journal of Molecular Liquids, 2017, 229, 137-147.	2.3	256
25	Numerical simulation of MHD nanofluid flow and heat transfer considering viscous dissipation. International Journal of Heat and Mass Transfer, 2014, 79, 212-222.	2.5	254
26	Acceleration of discharge process of clean energy storage unit with insertion of porous foam considering nanoparticle enhanced paraffin. Journal of Cleaner Production, 2020, 261, 121206.	4.6	253
27	Simulation of CuO-water nanofluid heat transfer enhancement in presence of melting surface. International Journal of Heat and Mass Transfer, 2018, 116, 909-919.	2.5	248
28	Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. International Journal of Heat and Mass Transfer, 2018, 120, 772-781.	2.5	245
29	Analytical investigation of MHD nanofluid flow in a semi-porous channel. Powder Technology, 2013, 246, 327-336.	2.1	243
30	Effects of Heat Transfer in Flow of Nanofluids Over a Permeable Stretching Wall in a Porous Medium. Journal of Computational and Theoretical Nanoscience, 2014, 11, 486-496.	0.4	237
31	Magnetohydrodynamic nanofluid forced convection in a porous lid driven cubic cavity using Lattice Boltzmann method. Journal of Molecular Liquids, 2017, 231, 555-565.	2.3	231
32	Numerical investigation of nanofluid free convection under the influence of electric field in a porous enclosure. Journal of Molecular Liquids, 2018, 249, 1212-1221.	2.3	231
33	Effect of space dependent magnetic field on free convection of Fe3O4–water nanofluid. Journal of the Taiwan Institute of Chemical Engineers, 2015, 56, 6-15.	2.7	225
34	Effect of a magnetic field on natural convection in an inclined half-annulus enclosure filled with Cu–water nanofluid using CVFEM. Advanced Powder Technology, 2013, 24, 980-991.	2.0	224
35	Flow and convective heat transfer of a ferro-nanofluid in a double-sided lid-driven cavity with a wavy wall in the presence of a variable magnetic field. Numerical Heat Transfer; Part A: Applications, 2016, 69, 1186-1200.	1.2	223
36	Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid; an experimental procedure. International Journal of Heat and Mass Transfer, 2018, 122, 643-650.	2.5	221

#	Article	IF	CITATIONS
37	Influence of Lorentz forces on nanofluid flow in a porous cylinder considering Darcy model. Journal of Molecular Liquids, 2017, 225, 903-912.	2.3	220
38	Lattice Boltzmann method simulation for MHD non-Darcy nanofluid free convection. Physica B: Condensed Matter, 2017, 516, 55-71.	1.3	218
39	Analysis of flow and heat transfer in water based nanofluid due to magnetic field in a porous enclosure with constant heat flux using CVFEM. Computer Methods in Applied Mechanics and Engineering, 2017, 320, 68-81.	3.4	212
40	Mesoscopic method for MHD nanofluid flow inside a porous cavity considering various shapes of nanoparticles. International Journal of Heat and Mass Transfer, 2017, 113, 106-114.	2.5	208
41	Ferrofluid flow and heat transfer in a semi annulus enclosure in the presence of magnetic source considering thermal radiation. Journal of the Taiwan Institute of Chemical Engineers, 2015, 47, 6-17.	2.7	207
42	Three dimensional heat and mass transfer in a rotating system using nanofluid. Powder Technology, 2014, 253, 789-796.	2.1	205
43	Magnetic field influence on CuO–H2O nanofluid convective flow in a permeable cavity considering various shapes for nanoparticles. International Journal of Hydrogen Energy, 2017, 42, 19611-19621.	3.8	204
44	Magnetic field effects on natural convection flow of a nanofluid in a horizontal cylindrical annulus using Lattice Boltzmann method. International Journal of Thermal Sciences, 2013, 64, 240-250.	2.6	202
45	Fe 3 O 4 –H 2 O nanofluid natural convection in presence of thermal radiation. International Journal of Hydrogen Energy, 2017, 42, 5708-5718.	3.8	196
46	Simulation of water based nanofluid convective flow inside a porous enclosure via non-equilibrium model. International Journal of Heat and Mass Transfer, 2018, 120, 1200-1212.	2.5	193
47	Two-Phase Simulation of Nanofluid Flow and Heat Transfer in an Annulus in the Presence of an Axial Magnetic Field. IEEE Nanotechnology Magazine, 2015, 14, 561-569.	1.1	192
48	Numerical investigation of magnetic nanofluid forced convective heat transfer in existence of variable magnetic field using two phase model. Journal of Molecular Liquids, 2015, 212, 117-126.	2.3	192
49	Free convection of ferrofluid in a cavity heated from below in the presence of an external magnetic field. Powder Technology, 2014, 256, 490-498.	2.1	188
50	Effect of uniform suction on nanofluid flow and heat transfer over a cylinder. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2015, 37, 1623-1633.	0.8	188
51	Nanofluid turbulent convective flow in a circular duct with helical turbulators considering CuO nanoparticles. International Journal of Heat and Mass Transfer, 2018, 124, 980-989.	2.5	187
52	Natural convection heat transfer in a cavity with sinusoidal wall filled with CuO–water nanofluid in presence of magnetic field. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 40-49.	2.7	186
53	Nanofluid flow and heat transfer due to a stretching cylinder in the presence of magnetic field. Heat and Mass Transfer, 2013, 49, 427-436.	1.2	185
54	Micropolar fluid flow and heat transfer in a permeable channel using analytical method. Journal of Molecular Liquids, 2014, 194, 30-36.	2.3	183

#	Article	IF	CITATIONS
55	Electrohydrodynamic free convection heat transfer of a nanofluid in a semi-annulus enclosure with a sinusoidal wall. Numerical Heat Transfer; Part A: Applications, 2016, 69, 781-793.	1.2	182
56	Simulation of Ferrofluid Flow for Magnetic Drug Targeting Using the Lattice Boltzmann Method. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2015, 70, 115-124.	0.7	181
57	Melting heat transfer influence on nanofluid flow inside a cavity in existence of magnetic field. International Journal of Heat and Mass Transfer, 2017, 114, 517-526.	2.5	180
58	Two phase simulation of nanofluid flow and heat transfer using heatline analysis. International Communications in Heat and Mass Transfer, 2013, 47, 73-81.	2.9	169
59	Lattice Boltzmann simulation of magnetohydrodynamic natural convection heat transfer of Al 2 O 3 –water nanofluid in a horizontal cylindrical enclosure with an inner triangular cylinder. International Journal of Heat and Mass Transfer, 2015, 80, 16-25.	2.5	163
60	Effect of electric field on hydrothermal behavior of nanofluid in a complex geometry. Journal of Molecular Liquids, 2016, 213, 153-161.	2.3	162
61	Magnetic nanofluid flow and convective heat transfer in a porous cavity considering Brownian motion effects. Physics of Fluids, 2018, 30, .	1.6	155
62	Electrohydrodynamic Nanofluid Hydrothermal Treatment in an Enclosure with Sinusoidal Upper Wall. Applied Sciences (Switzerland), 2015, 5, 294-306.	1.3	154
63	CVFEM for magnetic nanofluid convective heat transfer in a porous curved enclosure. European Physical Journal Plus, 2016, 131, 1.	1.2	154
64	Impact of Lorentz forces on Fe3O4-water ferrofluid entropy and exergy treatment within a permeable semi annulus. Journal of Cleaner Production, 2019, 221, 885-898.	4.6	153
65	Influence of CuO nanoparticles on heat transfer behavior of PCM in solidification process considering radiative source term. International Journal of Heat and Mass Transfer, 2018, 126, 1252-1264.	2.5	152
66	Numerical investigation for two phase modeling of nanofluid in a rotating system with permeable sheet. Journal of Molecular Liquids, 2014, 194, 13-19.	2.3	144
67	Heat transfer improvement in a double pipe heat exchanger by means of perforated turbulators. Energy Conversion and Management, 2016, 127, 112-123.	4.4	144
68	Application of LBM in simulation of natural convection in a nanofluid filled square cavity with curve boundaries. Powder Technology, 2013, 247, 87-94.	2.1	141
69	Solidification inside a clean energy storage unit utilizing phase change material with copper oxide nanoparticles. Journal of Cleaner Production, 2020, 245, 118888.	4.6	141
70	MHD free convection in an eccentric semi-annulus filled with nanofluid. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 1204-1216.	2.7	139
71	Numerical investigation of nanofluid spraying on an inclined rotating disk for cooling process. Journal of Molecular Liquids, 2015, 211, 577-583.	2.3	139
72	Nanofluid hydrothermal behavior in existence of Lorentz forces considering Joule heating effect. Journal of Molecular Liquids, 2016, 224, 526-537.	2.3	137

#	Article	IF	CITATIONS
73	Numerical analysis of discharging process acceleration in LHTESS by immersing innovative fin configuration using finite element method. Applied Thermal Engineering, 2016, 107, 154-166.	3.0	134
74	Heat flux boundary condition for nanofluid filled enclosure in presence of magnetic field. Journal of Molecular Liquids, 2014, 193, 174-184.	2.3	133
75	Nanofluid heat transfer analysis in a microchannel heat sink (MCHS) under the effect of magnetic field by means of KKL model. Powder Technology, 2018, 324, 36-47.	2.1	125
76	Effect of magnetic field on Cu–water nanofluid heat transfer using GMDH-type neural network. Neural Computing and Applications, 2014, 25, 171-178.	3.2	124
77	Analytical investigation of MHD nanofluid flow in non-parallel walls. Journal of Molecular Liquids, 2014, 194, 251-259.	2.3	124
78	EFFECTS OF MAGNETOHYDRODYNAMICS ON PERISTALTIC FLOW OF JEFFREY FLUID IN A RECTANGULAR DUCT THROUGH A POROUS MEDIUM. Journal of Porous Media, 2014, 17, 143-157.	1.0	122
79	Nanofluid heat transfer in a permeable enclosure in presence of variable magnetic field by means of CVFEM. International Journal of Heat and Mass Transfer, 2017, 114, 1169-1180.	2.5	121
80	Thermal management for free convection of nanofluid using two phase model. Journal of Molecular Liquids, 2014, 194, 179-187.	2.3	117
81	Nanofluid flow and heat transfer in an asymmetric porous channel with expanding or contracting wall. Journal of Molecular Liquids, 2014, 195, 230-239.	2.3	117
82	On simulation of nanofluid radiation and natural convection in an enclosure with elliptical cylinders. International Journal of Heat and Mass Transfer, 2017, 115, 981-991.	2.5	117
83	Heat transfer enhancement in an air to water heat exchanger with discontinuous helical turbulators; experimental and numerical studies. Energy, 2016, 116, 341-352.	4.5	114
84	Effect of thermal diffusion and heat-generation on MHD nanofluid flow past an oscillating vertical plate through porous medium. Journal of Molecular Liquids, 2018, 257, 12-25.	2.3	113
85	Nanofluid flow inside a solar collector utilizing twisted tape considering exergy and entropy analysis. Renewable Energy, 2019, 141, 246-258.	4.3	113
86	Homotopy perturbation method for three-dimensional problem of condensation film on inclined rotating disk. Scientia Iranica, 2012, 19, 437-442.	0.3	111
87	Numerical study of natural convection between a circular enclosure and a sinusoidal cylinder using control volume based finite element method. International Journal of Thermal Sciences, 2013, 72, 147-158.	2.6	111
88	Numerical simulation of two phase unsteady nanofluid flow and heat transfer between parallel plates in presence of time dependent magnetic field. Journal of the Taiwan Institute of Chemical Engineers, 2015, 46, 43-50.	2.7	109
89	Influence of EFD viscosity on nanofluid forced convection in a cavity with sinusoidal wall. Journal of Molecular Liquids, 2017, 232, 390-395.	2.3	109
90	Effect of melting heat transfer on nanofluid flow in existence of magnetic field considering Buongiorno Model. Chinese Journal of Physics, 2017, 55, 1115-1126.	2.0	108

Mohsen Sheikholeslami

#	Article	IF	CITATIONS
91	Free convection of nanofluid filled enclosure using lattice Boltzmann method (LBM). Applied Mathematics and Mechanics (English Edition), 2013, 34, 833-846.	1.9	106
92	Influence of Induced Magnetic Field on Free Convection of Nanofluid Considering Koo-Kleinstreuer-Li (KKL) Correlation. Applied Sciences (Switzerland), 2016, 6, 324.	1.3	106
93	Numerical approach for magnetic nanofluid flow in a porous cavity using CuO nanoparticles. Materials and Design, 2017, 120, 382-393.	3.3	105
94	Numerical treatment for Carreau nanofluid flow over a porous nonlinear stretching surface. Results in Physics, 2018, 8, 1185-1193.	2.0	96
95	Nanoparticles favorable effects on performance of thermal storage units. Journal of Molecular Liquids, 2020, 300, 112329.	2.3	96
96	MHD natural convection in a nanofluid filled inclined enclosure with sinusoidal wall using CVFEM. Neural Computing and Applications, 2014, 24, 873-882.	3.2	91
97	Nanofluid MHD natural convection through a porous complex shaped cavity considering thermal radiation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 1615-1632.	0.9	91
98	Effect of discontinuous helical turbulators on heat transfer characteristics of double pipe water to air heat exchanger. Energy Conversion and Management, 2016, 118, 75-87.	4.4	86
99	Steady nanofluid flow between parallel plates considering thermophoresis and Brownian effects. Journal of King Saud University - Science, 2016, 28, 380-389.	1.6	85
100	Transport of Magnetohydrodynamic nanofluid in a porous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520, 201-212.	2.3	85
101	Nanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticles. Journal of Thermal Analysis and Calorimetry, 2018, 134, 2295-2303.	2.0	81
102	Effect of Lorentz forces on forced-convection nanofluid flow over a stretched surface. Particuology, 2016, 26, 108-113.	2.0	80
103	Transportation of MHD nanofluid free convection in a porous semi annulus using numerical approach. Chemical Physics Letters, 2017, 669, 202-210.	1.2	80
104	Convective flow of nanofluid inside a lid driven porous cavity using CVFEM. Physica B: Condensed Matter, 2017, 521, 239-250.	1.3	80
105	Nanofluid flow and forced convection heat transfer due to Lorentz forces in a porous lid driven cubic enclosure with hot obstacle. Computer Methods in Applied Mechanics and Engineering, 2018, 338, 491-505.	3.4	80
106	Influence of magnetic field on CuO–H2O nanofluid flow considering Marangoni boundary layer. International Journal of Hydrogen Energy, 2017, 42, 2748-2755.	3.8	79
107	Nonlinear thermal radiation and cubic autocatalysis chemical reaction effects on the flow of stretched nanofluid under rotational oscillations. Journal of Colloid and Interface Science, 2017, 505, 253-265.	5.0	78
108	Simulation of turbulent flow of nanofluid due to existence of new effective turbulator involving entropy generation. Journal of Molecular Liquids, 2019, 291, 111283.	2.3	78

Mohsen Sheikholeslami

#	Article	IF	CITATIONS
109	Free convection of Fe 3 O 4 -water nanofluid under the influence of an external magnetic source. Journal of Molecular Liquids, 2017, 229, 530-540.	2.3	77
110	Investigation of nanofluid entropy generation in a heat exchanger with helical twisted tapes. Journal of Molecular Liquids, 2018, 266, 797-805.	2.3	76
111	Effects of heat transfer on peristaltic motion of Oldroyd fluid in the presence of inclined magnetic field. Journal of Magnetism and Magnetic Materials, 2014, 372, 97-106.	1.0	74
112	The Influence of magnetic field on heat transfer of magnetic nanofluid in a sinusoidal double pipe heat exchanger. Chemical Engineering Research and Design, 2016, 113, 112-124.	2.7	74
113	Numerical analysis of nanofluid transportation in porous media under the influence of external magnetic source. Journal of Molecular Liquids, 2017, 233, 499-507.	2.3	74
114	Magnetic source influence on nanofluid flow in porous medium considering shape factor effect. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 3071-3078.	0.9	74
115	Lattice Boltzmann method simulation for CuO-water nanofluid flow in a porous enclosure with hot obstacle. Journal of Molecular Liquids, 2017, 243, 249-256.	2.3	74
116	Experimental study on turbulent flow and heat transfer in an air to water heat exchanger using perforated circular-ring. Experimental Thermal and Fluid Science, 2016, 70, 185-195.	1.5	73
117	Magnetic source impact on nanofluid heat transfer using CVFEM. Neural Computing and Applications, 2018, 30, 1055-1064.	3.2	72
118	Unsteady nanofluid flow and heat transfer in presence of magnetic field considering thermal radiation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2015, 37, 895-902.	0.8	71
119	Influence of melting surface on MHD nanofluid flow by means of two phase model. Chinese Journal of Physics, 2017, 55, 1352-1360.	2.0	70
120	Entropy Analysis on Electro-Kinetically Modulated Peristaltic Propulsion of Magnetized Nanofluid Flow through a Microchannel. Entropy, 2017, 19, 481.	1.1	70
121	Entropy analysis of nanofluid convection in a heated porous microchannel under MHD field convection. Powder Technology, 2019, 344, 914-925.	2.1	70
122	Discharging process expedition of NEPCM in fin-assisted Latent Heat Thermal Energy Storage System. Journal of Molecular Liquids, 2016, 221, 833-841.	2.3	69
123	Impact of electric field on nanofluid forced convection heat transfer with considering variable properties. Journal of Molecular Liquids, 2017, 229, 566-573.	2.3	68
124	Radiative heat transfer study for flow of non-Newtonian nanofluid past a Riga plate with variable thickness. Journal of Molecular Liquids, 2017, 248, 143-152.	2.3	68
125	Control volume finite element method for nanofluid MHD natural convective flow inside a sinusoidal annulus under the impact of thermal radiation. Computer Methods in Applied Mechanics and Engineering, 2018, 338, 618-633.	3.4	68
126	Irreversibility analysis of the three dimensional flow of carbon nanotubes due to nonlinear thermal radiation and quartic chemical reactions. Journal of Molecular Liquids, 2019, 274, 379-392.	2.3	68

#	Article	IF	CITATIONS
127	Numerical modeling for Fe 3 O 4 -water nanofluid flow in porous medium considering MFD viscosity. Journal of Molecular Liquids, 2017, 242, 255-264.	2.3	67
128	Numerical investigation of nanofluid transportation in a curved cavity in existence of magnetic source. Chemical Physics Letters, 2017, 667, 307-316.	1.2	67
129	Investigation of Rotating MHD Viscous Flow and Heat Transfer between Stretching and Porous Surfaces Using Analytical Method. Mathematical Problems in Engineering, 2011, 2011, 1-17.	0.6	66
130	Radiation effects on heat transfer of three dimensional nanofluid flow considering thermal interfacial resistance and micro mixing in suspensions. Chinese Journal of Physics, 2017, 55, 2254-2272.	2.0	66
131	Magnetohydrodynamic CuO–Water Nanofluid in a Porous Complex-Shaped Enclosure. Journal of Thermal Science and Engineering Applications, 2017, 9, .	0.8	65
132	Forced convection heat transfer in Fe 3 O 4 -ethylene glycol nanofluid under the influence of Coulomb force. Journal of Molecular Liquids, 2017, 233, 203-210.	2.3	65
133	Heat transfer of Fe3O4–water nanofluid in a permeable medium with thermal radiation in existence of constant heat flux. Chemical Engineering Science, 2017, 174, 326-336.	1.9	65
134	High accuracy analysis for motion of a spherical particle in plane Couette fluid flow by Multi-step Differential Transformation Method. Powder Technology, 2014, 260, 59-67.	2.1	64
135	Forced convection in existence of Lorentz forces in a porous cavity with hot circular obstacle using nanofluid via Lattice Boltzmann method. Journal of Molecular Liquids, 2017, 246, 103-111.	2.3	64
136	Nanofluid convective heat transfer intensification in a porous circular cylinder. Chemical Engineering and Processing: Process Intensification, 2017, 120, 93-104.	1.8	64
137	Heat transfer enhancement of ferrofluid inside an 90° elbow channel by non-uniform magnetic field. Journal of Magnetism and Magnetic Materials, 2018, 460, 302-311.	1.0	64
138	Numerical simulation for forced convection flow of MHD CuO-H 2 O nanofluid inside a cavity by means of LBM. Journal of Molecular Liquids, 2018, 249, 941-948.	2.3	64
139	CuO-water nanofluid flow and heat transfer in a heat exchanger tube with twisted tape turbulator. Powder Technology, 2018, 336, 131-143.	2.1	64
140	Non-uniform magnetic field effect on nanofluid hydrothermal treatment considering Brownian motion and thermophoresis effects. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016, 38, 1171-1184.	0.8	63
141	Magnetic nanofluid natural convection in the presence of thermal radiation considering variable viscosity. European Physical Journal Plus, 2017, 132, 1.	1.2	60
142	Numerical investigation of MHD nanofluid free convective heat transfer in a porous tilted enclosure. Engineering Computations, 2017, 34, 1939-1955.	0.7	60
143	Macroscopic modeling for convection of Hybrid nanofluid with magnetic effects. Physica A: Statistical Mechanics and Its Applications, 2019, 534, 122136.	1.2	60
144	The influence of non-uniform magnetic field on heat transfer intensification of ferrofluid inside a T-junction. Chemical Engineering and Processing: Process Intensification, 2018, 123, 58-66.	1.8	58

#	Article	IF	CITATIONS
145	Thermal management of MHD nanofluid within the porous medium enclosed in a wavy shaped cavity with square obstacle in the presence of radiation heat source. International Journal of Heat and Mass Transfer, 2019, 139, 87-94.	2.5	58
146	Second law analysis for nanofluid turbulent flow inside a circular duct in presence of twisted tape turbulators. Journal of Molecular Liquids, 2018, 263, 489-500.	2.3	56
147	Three-Dimensional Flow of Nanofluid Induced by an Exponentially Stretching Sheet: An Application to Solar Energy, PLoS ONE, 2015, 10, e0116603, Numerical Investigation of forced convective heat transfer of Fe <mml:math< td=""><td>1.1</td><td>55</td></mml:math<>	1.1	55
148	xmins:mml= http://www.w3.org/1998/Math/MathML_altimg= si30.gif_display= inline overflow="scroll"> < mml:msub> < mml:mrow /> < mml:mrow > < mml:mno > < / mml:mrow > < / mml:msub> < mml:msub> < mml:mrow > < mml:mstyle mathvariant="normal"> < mml:mi> O < / mml:mi> < / mml:mstyle > < / mml:mrow > < mml:mrow > < mml:mn> 4 < / mml:mn> <	3.4 /mml:mrov	55 w>
149	nanofluid in the presence of external magnetic source. Computer Methods in Applied Mechanics and Study of Fe3O4-water nanofluid with convective heat transfer in the presence of magnetic source. AEJ - Alexandria Engineering Journal, 2018, 57, 565-575.	3.4	55
150	Entropy generation on the interaction of nanoparticles over a stretched surface with thermal radiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 570, 368-376.	2.3	55
151	On the convective heat and zero nanoparticle mass flux conditions in the flow of 3D MHD Couple Stress nanofluid over an exponentially stretched surface. Scientific Reports, 2019, 9, 562.	1.6	55
152	Simulation of three dimensional MHD natural convection using double MRT Lattice Boltzmann method. Physica A: Statistical Mechanics and Its Applications, 2019, 515, 474-496.	1.2	55
153	Investigation of Nanofluid Flow and Heat Transfer in Presence of Magnetic Field Using KKL Model. Arabian Journal for Science and Engineering, 2014, 39, 5007-5016.	1.1	54
154	Numerical modeling of magnetohydrodynamic CuO—Water transportation inside a porous cavity considering shape factor effect. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 705-714.	2.3	54
155	A novel Bayesian optimization for flow condensation enhancement using nanorefrigerant: A combined analytical and experimental study. Chemical Engineering Science, 2020, 215, 115465.	1.9	54
156	Multi-objective RSM optimization of fin assisted latent heat thermal energy storage system based on solidification process of phase change Material in presence of copper nanoparticles. Applied Thermal Engineering, 2017, 118, 430-447.	3.0	53
157	Influence of various shapes of CuO nanomaterial on nanofluid forced convection within a sinusoidal channel with obstacles. Chemical Engineering Research and Design, 2019, 146, 478-485.	2.7	52
158	Magnetic force and radiation influences on nanofluid transportation through a permeable media considering Al2O3 nanoparticles. Journal of Thermal Analysis and Calorimetry, 2019, 136, 2477-2485.	2.0	52
159	Response surface method optimization of innovative fin structure for expediting discharging process in latent heat thermal energy storage system containing nano-enhanced phase change material. Journal of the Taiwan Institute of Chemical Engineers, 2016, 67, 115-125.	2.7	51
160	Numerical simulation for heat transfer intensification of nanofluid in a porous curved enclosure considering shape effect of Fe 3 O 4 nanoparticles. Chemical Engineering and Processing: Process Intensification, 2018, 124, 71-82.	1.8	49
161	Influence of Lorentz forces on nanofluid flow in a porous cavity by means of non-Darcy model. Engineering Computations, 2017, 34, 2651-2667.	0.7	48
162	Rotating frame analysis of radiating and reacting ferro-nanofluid considering Joule heating and viscous dissipation. International Journal of Heat and Mass Transfer, 2018, 120, 540-551.	2.5	48

#	Article	IF	CITATIONS
163	Exergy loss analysis for nanofluid forced convection heat transfer in a pipe with modified turbulators. Journal of Molecular Liquids, 2018, 262, 104-110.	2.3	47
164	Numerical simulation of Fe ₃ O ₄ -water nanofluid flow in a non-Darcy porous media. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 641-660.	1.6	47
165	Analysis of turbulent MHD Couette nanofluid flow and heat transfer using hybrid DTM–FDM. Particuology, 2016, 26, 95-101.	2.0	43
166	Experimental and numerical analysis for effects of using conical ring on turbulent flow and heat transfer in a double pipe air to water heat exchanger. Applied Thermal Engineering, 2016, 100, 805-819.	3.0	42
167	Non-Darcy free convection of Fe 3 O 4 -water nanoliquid in a complex shaped enclosure under impact of uniform Lorentz force. Chinese Journal of Physics, 2018, 56, 270-281.	2.0	42
168	Nanofluid heat transfer intensification in a permeable channel due to magnetic field using lattice Boltzmann method. Physica B: Condensed Matter, 2018, 542, 51-58.	1.3	42
169	Mesoscopic investigation for alumina nanofluid heat transfer in permeable medium influenced by Lorentz forces. Computer Methods in Applied Mechanics and Engineering, 2019, 349, 839-858.	3.4	42
170	Lattice Boltzmann simulation of natural convection heat transfer in an elliptical-triangular annulus. International Communications in Heat and Mass Transfer, 2013, 48, 164-177.	2.9	41
171	Simulation of convection heat transfer of magnetic nanoparticles including entropy generation using CVFEM. International Journal of Heat and Mass Transfer, 2019, 136, 146-156.	2.5	41
172	Combined thermophoresis and Brownian motion effects on nanofluid free convection heat transfer in an L-shaped enclosure. Chinese Journal of Physics, 2017, 55, 2356-2370.	2.0	40
173	CuO H2O nanofluid hydrothermal analysis in a complex shaped cavity. International Journal of Hydrogen Energy, 2016, 41, 17837-17845.	3.8	39
174	Interaction effects of an inclined magnetic field and nanofluid on forced convection heat transfer and flow irreversibility in a duct with an abrupt contraction. Journal of Magnetism and Magnetic Materials, 2019, 478, 216-226.	1.0	39
175	Heat transfer and flow analysis of nanofluid flow between parallel plates in presence of variable magnetic field using HPM. Journal of Magnetism and Magnetic Materials, 2015, 396, 275-282.	1.0	37
176	MHD free convection of nanofluid in a cavity with sinusoidal walls by using CVFEM. Chinese Journal of Physics, 2017, 55, 2291-2304.	2.0	37
177	Natural convection flow of a non-Newtonian nanofluid between two vertical flat plates. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2011, 225, 115-122.	0.1	36
178	Thermal management of double-pipe air to water heat exchanger. Energy and Buildings, 2015, 88, 361-366.	3.1	36
179	Analysis on the heat storage unit through a Y-shaped fin for solidification of NEPCM. Journal of Molecular Liquids, 2019, 292, 111378.	2.3	36
180	Investigation of the nanofluid convective flow and entropy generation within a microchannel heat sink involving magnetic field. Powder Technology, 2019, 351, 195-202.	2.1	36

#	Article	IF	CITATIONS
181	Numerical modeling of time-dependent bio-convective stagnation flow of a nanofluid in slip regime. Results in Physics, 2017, 7, 3325-3332.	2.0	35
182	An entropy generation analysis for MHD water based Fe3O4 ferrofluid through a porous semi annulus cavity via CVFEM. International Communications in Heat and Mass Transfer, 2019, 108, 104295.	2.9	34
183	Simulation of exergy loss of nanomaterial through a solar heat exchanger with insertion of multi-channel twisted tape. Journal of Thermal Analysis and Calorimetry, 2019, 138, 795-804.	2.0	34
184	Control volume based finite element simulation of magnetic nanofluid flow and heat transport in non-Darcy medium. Journal of Molecular Liquids, 2018, 268, 354-364.	2.3	33
185	Semi analytical analysis for transient Eyring-Powell squeezing flow in a stretching channel due to magnetic field using DTM. Journal of Molecular Liquids, 2018, 260, 30-36.	2.3	32
186	Application of Differential Transformation Method for Nanofluid Flow in a Semi-Permeable Channel Considering Magnetic Field Effect. International Journal for Computational Methods in Engineering Science and Mechanics, 2015, 16, 246-255.	1.4	31
187	Two phase modeling of nanofluid flow in existence of melting heat transfer by means of HAM. Indian Journal of Physics, 2018, 92, 205-214.	0.9	31
188	Non-equilibrium Model for Nanofluid Free Convection Inside a Porous Cavity Considering Lorentz Forces. Scientific Reports, 2018, 8, 16881.	1.6	31
189	Numerical mesoscopic method for transportation of H ₂ O-based nanofluid through a porous channel considering Lorentz forces. International Journal of Modern Physics C, 2019, 30, 1950007.	0.8	31
190	The influence of a magnetic field on the heat transfer of a magnetic nanofluid in a sinusoidal channel. European Physical Journal Plus, 2016, 131, 1.	1.2	29
191	Analytical and numerical studies on heat transfer of a nanofluid over a stretching/shrinking sheet with second-order slip flow model. International Journal of Mechanical and Materials Engineering, 2016, 11, .	1.1	29
192	Ferrofluid convective heat transfer under the influence of external magnetic source. AEJ - Alexandria Engineering Journal, 2018, 57, 49-60.	3.4	29
193	Investigation of Coulomb force effects on ethylene glycol based nanofluid laminar flow in a porous enclosure. Applied Mathematics and Mechanics (English Edition), 2018, 39, 1341-1352.	1.9	29
194	Numerical Investigation of the Effect of Magnetic Field on Natural Convection in a Curved-Shape Enclosure. Mathematical Problems in Engineering, 2013, 2013, 1-10.	0.6	28
195	Condensation of nano-refrigerant inside a horizontal tube. Physica B: Condensed Matter, 2018, 537, 33-39.	1.3	28
196	Melting heat transfer and entropy optimization owing to carbon nanotubes suspended Casson nanoliquid flow past a swirling cylinder-A numerical treatment. AIP Advances, 2018, 8, .	0.6	27
197	Investigation of second law and hydrothermal behavior of nanofluid through a tube using passive methods. Journal of Molecular Liquids, 2018, 269, 407-416.	2.3	27
198	CVFEM modeling for nanofluid behavior involving non-equilibrium model and Lorentz effect in appearance of radiation. Physica A: Statistical Mechanics and Its Applications, 2019, 534, 122154.	1.2	27

#	Article	IF	CITATIONS
199	FVM modeling of nanofluid forced convection through a solar unit involving MCTT. International Journal of Mechanical Sciences, 2019, 159, 126-139.	3.6	27
200	CVFEM for free convective heat transfer of CuO-water nanofluid in a tilted semi annulus. AEJ - Alexandria Engineering Journal, 2017, 56, 635-645.	3.4	25
201	Investigation of the heat transfer of a non-Newtonian fluid flow in an axisymmetric channel with porous wall using Parameterized Perturbation Method (PPM). Journal of the Franklin Institute, 2014, 351, 701-712.	1.9	24
202	Experimental study of the influence of perforated circular-ring on pressure loss and heat transfer enhancement using sensitivity analysis. Applied Thermal Engineering, 2015, 91, 739-748.	3.0	24
203	Effect of dispersing nanoparticles on solidification process in existence of Lorenz forces in a permeable media. Journal of Molecular Liquids, 2018, 266, 181-193.	2.3	24
204	Solidification process through a solar energy storage enclosure using various sizes of Al2O3 nanoparticles. Journal of Molecular Liquids, 2019, 275, 941-954.	2.3	24
205	Mixed Convective Radiative Flow through a Slender Revolution Bodies Containing Molybdenum-Disulfide Graphene Oxide along with Generalized Hybrid Nanoparticles in Porous Media. Crystals, 2020, 10, 771.	1.0	24
206	Analytical approach for the effect of melting heat transfer on nanofluid heat transfer. European Physical Journal Plus, 2017, 132, 1.	1.2	23
207	Numerical investigation of MHD nanomaterial convective migration and heat transfer within a sinusoidal porous cavity. Physica Scripta, 2019, 94, 115225.	1.2	23
208	Electrohydrodynamic nanofluid flow and forced convective heat transfer in a channel. European Physical Journal Plus, 2016, 131, 1.	1.2	22
209	Analytical investigation for Lorentz forces effect on nanofluid Marangoni boundary layer hydrothermal behavior using HAM. Indian Journal of Physics, 2017, 91, 1581-1587.	0.9	22
210	Lattice Boltzmann method for nanofluid flow in a porous cavity with heat sources and magnetic field. Chinese Journal of Physics, 2018, 56, 1578-1587.	2.0	22
211	Nanoparticle transportation of CuO-H ₂ 0 nanofluid in a porous semi annulus due to Lorentz forces. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 294-308.	1.6	22
212	Simulation of nanoparticles second law treatment inside a solar collector considering turbulent flow. Physica A: Statistical Mechanics and Its Applications, 2019, 525, 1-12.	1.2	21
213	Fluid flow and heat transfer in an air-to-water double-pipe heat exchanger. European Physical Journal Plus, 2015, 130, 1.	1.2	20
214	Investigation of turbulent flow and heat transfer in an air to water double-pipe heat exchanger. Neural Computing and Applications, 2015, 26, 941-947.	3.2	20
215	CuO–Water Nanofluid Magnetohydrodynamic Natural Convection inside a Sinusoidal Annulus in Presence of Melting Heat Transfer. Mathematical Problems in Engineering, 2017, 2017, 1-9	0.6	20
216	Investigation of Lorentz forces and radiation impacts on nanofluid treatment in a porous semi annulus via Darcy law. Journal of Molecular Liquids, 2018, 272, 8-14.	2.3	20

#	Article	IF	CITATIONS
217	TiO2-water nanofluid in a porous channel under the effects of an inclined magnetic field and variable thermal conductivity. Applied Mathematics and Mechanics (English Edition), 2018, 39, 1201-1216.	1.9	20
218	Improving thermal performance of water bath heaters in natural gas pressure drop stations. Applied Thermal Engineering, 2019, 159, 113829.	3.0	20
219	Influence of adding nanoparticles on solidification in a heat storage system considering radiation effect. Journal of Molecular Liquids, 2019, 273, 589-605.	2.3	20
220	Modeling of nanomaterial treatment through a porous space including magnetic forces. Journal of Thermal Analysis and Calorimetry, 2020, 140, 825-834.	2.0	20
221	Investigation of heat and mass transfer of rotating MHD viscous flow between a stretching sheet and a porous surface. Engineering Computations, 2013, 30, 357-378.	0.7	19
222	Natural Convection of Fe 3 O 4 -Ethylene Glycol Nanouid under the Impact of Electric Field in a Porous Enclosure. Communications in Theoretical Physics, 2018, 69, 667.	1.1	19
223	Macroscopic simulation of nanofluid turbulent flow due to compound turbulator in a pipe. Chemical Physics, 2019, 527, 110475.	0.9	19
224	Time dependent conduction heat transfer during solidification in a storage system using nanoparticles. Microsystem Technologies, 2019, 25, 2153-2169.	1.2	18
225	Nonlinear Radiative Flow of Casson Nanoliquid Past a Cone and Wedge with Magnetic Dipole: Mathematical Model of Renewable Energy. Journal of Nanofluids, 2018, 7, 1089-1100.	1.4	18
226	IMPACT OF NON-DARCY MEDIUM ON MIXED CONVECTIVE FLOW TOWARDS A PLATE CONTAINING MICROPOLAR WATER-BASED TiO2 NANOMATERIAL WITH ENTROPY GENERATION. Journal of Porous Media, 2020, 23, 11-26.	1.0	18
227	Effect of adding nanoparticle on squeezing flow and heat transfer improvement using KKL model. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 1535-1553.	1.6	17
228	Second law analysis of a porous structured enclosure with nano-enhanced phase change material and under magnetic force. Journal of Thermal Analysis and Calorimetry, 2020, 140, 2585-2599.	2.0	17
229	Numerical analysis of nanofluid flow conveying nanoparticles through expanding and contracting gaps between permeable walls. Journal of Molecular Liquids, 2015, 212, 785-791.	2.3	16
230	Magnetohydrodynamic and ferrohydrodynamic. , 2016, , 1-47.		16
231	Turbulent heat transfer enhancement in an air-to-water heat exchanger. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2017, 231, 1235-1248.	1.4	16
232	Simulation of triplex-tube heat storage including nanoparticles, solidification process. Journal of Molecular Liquids, 2019, 296, 111731.	2.3	16
233	An application of CVFEM for nanofluid heat transfer intensification in a porous sinusoidal cavity considering thermal non-equilibrium model. Computer Methods in Applied Mechanics and Engineering, 2018, 339, 663-680.	3.4	15
234	Numerical study for forced MHD convection heat transfer of a nanofluid in a square cavity with a cylinder of constant heat flux. European Physical Journal Plus, 2018, 133, 1.	1.2	14

#	Article	IF	CITATIONS
235	Nanofluid unsteady heat transfer in a porous energy storage enclosure in existence of Lorentz forces. International Journal of Heat and Mass Transfer, 2018, 127, 914-926.	2.5	14
236	Detailed Explanation of Control Volume-based Finite Element Method. , 2019, , 1-13.		14
237	Numerical analysis of MHD flow and nanoparticle migration within a permeable space containing Non-equilibrium model. Physica A: Statistical Mechanics and Its Applications, 2020, 537, 122459.	1.2	14
238	Recent Advances in the Application of Differential Equations in Mechanical Engineering Problems. Mathematical Problems in Engineering, 2018, 2018, 1-3.	0.6	13
239	Effect of second order slip condition on the flow of Tangent hyperbolic fluid—a novel perception of Cattaneo–Christov heat flux. Physica Scripta, 2019, 94, 115707.	1.2	13
240	Acceleration of solidification process by means of nanoparticles in an energy storage enclosure using numerical approach. Physica A: Statistical Mechanics and Its Applications, 2019, 524, 540-552.	1.2	13
241	Turbulent nanofluid flow through a solar collector influenced by multi-channel twisted tape considering entropy generation. European Physical Journal Plus, 2019, 134, 1.	1.2	13
242	Effects of wavy wall and Y-shaped fins on solidification of PCM with dispersion of Al2O3 nanoparticle. Journal of Thermal Analysis and Calorimetry, 2020, 140, 381-396.	2.0	13
243	Nanofluid turbulent forced convection through a solar flat plate collector with Al2O3 nanoparticles. Microsystem Technologies, 2019, 25, 4237-4247.	1.2	12
244	NUMERICAL STUDY OF MHD NATURAL CONVECTION LIQUID METAL FLOW AND HEAT TRANSFER IN A WAVY ENCLOSURE USING CVFEM. Heat Transfer Research, 2017, 48, 121-138.	0.9	12
245	Numerical simulation for external magnetic field influence on Fe3O4-water nanofluid forced convection. Engineering Computations, 2018, 35, 1639-1654.	0.7	11
246	Cubic Auto-Catalysis Reactions in Three-Dimensional Nanofluid Flow Considering Viscous and Joule Dissipations Under Thermal Jump. Communications in Theoretical Physics, 2019, 71, 779.	1.1	11
247	Magnetohydrodynamic nanofluid radiative thermal behavior by means of Darcy law inside a porous media. Scientific Reports, 2019, 9, 12765.	1.6	11
248	Time-dependent heat transfer simulation for NEPCM solidification inside a channel. Journal of Thermal Analysis and Calorimetry, 2019, 138, 721-726.	2.0	11
249	Ferrofluid irreversibility and heat transfer simulation inside a permeable space including Lorentz forces. Physica A: Statistical Mechanics and Its Applications, 2019, 528, 121492.	1.2	10
250	Application of Nanofluids. , 2018, , 1-44.		9
251	Solidification entropy generation via FEM through a porous storage unit with applying a magnetic field. Physica Scripta, 2019, 94, 095207.	1.2	9
252	porous cavity using <mml:math <br="" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll" id="d1e681" altimg="si1.gif"><mml:msub><mml:mrow><mml:mi mathvariant="normal">Fe</mml:mi </mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>	ub> <mml:< td=""><td>:msub><mml< td=""></mml<></td></mml:<>	:msub> <mml< td=""></mml<>

mathvariant="normal">O</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:msub></mml:math> nanoparticles. Physica A: Statistical Mechanics and Its Applications, 2019, 524, 272-288.

#	Article	IF	CITATIONS
253	Analyze of entropy generation for NEPCM melting process inside a heat storage system. Microsystem Technologies, 2019, 25, 3203-3211.	1.2	9
254	Numerical study of the effect of magnetic field on Fe ₃ O ₄ –water ferrofluid convection with thermal radiation. Engineering Computations, 2018, 35, 1855-1872.	0.7	8
255	Hydrothermal analysis of nanoparticles transportation through a porous compound cavity utilizing two temperature model and radiation heat transfer under the effects of magnetic field. Microsystem Technologies, 2020, 26, 333-344.	1.2	8
256	Stability analysis of multiple solutions in case of a stretched nanofluid flow obeying Corcione's correlation: An extended Darcy model. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2021, 101, e202000172.	0.9	8
257	Simulation of nanomaterial turbulent modeling in appearance of compound swirl device concerning exergy drop. Physica A: Statistical Mechanics and Its Applications, 2019, 534, 122121.	1.2	7
258	Nanoparticle application for heat transfer and irreversibility analysis in an air conditioning unit. Journal of Molecular Liquids, 2019, 292, 111372.	2.3	7
259	MHD effect on nanofluid with energy and hydrothermal behavior between two collateral plates: Application of new semi analytical technique. Thermal Science, 2017, 21, 2081-2093.	0.5	7
260	Introduction to Differential Transformation Method. , 2017, , 1-54.		6
261	Corrigendum to "Investigation of squeezing unsteady nanofluid flow using ADM―[Powder Technology 239 (2013) 259–265]. Powder Technology, 2017, 310, 103.	2.1	5
262	Nanofluid: Definition and Applications. , 2017, , 1-52.		4
263	Basic Ideas of Semi Analytical Methods. , 2018, , 45-59.		4
264	Boiling process with incorporating nanoparticles through a flattened channel using experimental approach. Journal of Thermal Analysis and Calorimetry, 2021, 143, 3569-3576.	2.0	4
265	Nanofluid Flow and Heat Transfer inÂPorous Media. , 2017, , 475-526.		3
266	Nanofluid Forced Convection HeatÂTransfer. , 2017, , 127-193.		2
267	Entropy Generation of Nanofluid by Means of Semi Analytical Methods. , 2018, , 511-554.		2
268	Lattice Boltzmann method modeling of magnetic water-based nanofluid through a permeable 3D enclosure. Revista Mexicana De FÃsica, 2019, 65, 365-372.	0.2	2
269	Lattice Boltzmann method: application for MHD nanofluid hydrothermal behavior. , 2016, , 191-261.		1
270	Nanofluid Flow and Heat Transfer in the Presence of Constant Magnetic Field. , 2017, , 279-384.		1

#	Article	IF	CITATIONS
271	Effect of Marangoni Convection onÂNanofluid Treatment. , 2018, , 491-510.		1
272	Electrohydrodynamic Nanofluid Natural Convection Using CVFEM. , 2019, , 373-398.		1
273	Thermal Radiation Influence on Nanofluid Flow in a Porous Medium in the Presence of Coulomb Forces Using CVFEM. , 2019, , 623-647.		1
274	Nanofluid Heat Transfer Enhancement in Presence of Melting Surface Using CVFEM. , 2019, , 675-706.		1
275	Non-Darcy Model for Nanofluid Hydrothermal Treatment in a Porous Medium Using CVFEM. , 2019, , 483-546.		1
276	The control volume finite element method: application for magnetohydrodynamic nanofluid hydrothermal behavior. , 2016, , 49-119.		0
277	New semianalytical methods: application for MHD nanofluid hydrothermal behavior. , 2016, , 121-190.		0
278	DTM for Heat Transfer Problems. , 2017, , 103-151.		0
279	DTM for Nanofluids and Nanostructures Modeling. , 2017, , 197-238.		0
280	Nanofluid Flow and Heat Transfer in the Presence of Variable Magnetic Field. , 2017, , 385-444.		0
281	Nanofluid Flow and Heat Transfer in the Presence of Electric Field. , 2017, , 239-277.		0
282	Nanofluid Conductive Heat Transfer inÂSolidification Mechanism. , 2017, , 445-474.		0
283	Nanofluid Natural Convection HeatÂTransfer. , 2017, , 53-125.		Ο
284	Nanofluid Flow and Heat Transfer in the Presence of Thermal Radiation. , 2017, , 195-237.		0
285	Nanofluid Flow Analysis by Means of Semi Analytical Methods. , 2018, , 61-187.		0
286	Melting Heat Transfer Effect on Nanofluid Behavior. , 2018, , 189-246.		0
287	Magnetohydrodynamic Nanofluid Flow by Means of Semi Analytical Methods. , 2018, , 247-333.		0

#	Article	IF	CITATIONS
289	Thermal Radiation Heat Transfer of Nanofluid by Means of Semi Analytical Methods. , 2018, , 361-388.		0
290	Effect of Induced Magnetic Field on Nanofluid Treatment. , 2018, , 389-432.		0
291	Nanofluid Flow in a Permeable Media by Means of Semi Analytical Methods. , 2018, , 433-490.		0
292	Nanofluid Flow Over a Stretching Surface. , 2018, , 555-597.		0
293	Biomechanically Driven Nanofluid Flow. , 2018, , 599-614.		0
294	Nanofluid Forced and Mixed Convection Heat Transfer by Means of CVFEM. , 2019, , 127-161.		0
295	Effect of Uniform Lorentz Forces on Nanofluid Flow Using CVFEM. , 2019, , 163-199.		0
296	Influence of Variable Lorentz Forces on Nanofluid Free Convection Using CVFEM. , 2019, , 201-291.		0
297	Nanofluid Forced Convective Heat Transfer in Presence of Variable Magnetic Field Using CVFEM. , 2019, , 293-326.		0
298	Influence of Shape Factor on Nanofluid Heat Transfer Improvement Using CVFEM. , 2019, , 327-371.		0
299	Forced Convection of Nanofluid in Existence of Electric Field Using CVFEM. , 2019, , 399-440.		0
300	Darcy Model for Nanofluid Flow in a Porous Media by Means of CVFEM. , 2019, , 441-482.		0
301	Nonuniform Magnetic Field Effect on Nanofluid Convective Flow in a Porous Cavity. , 2019, , 581-622.		0
302	Influence of Electric Field on Forced Convection of Nanofluid in a Porous Medium by Means of CVFEM. , 2019, , 649-673.		0
303	Nanofluid Convective Heat Transfer Considering Magnetic Field Dependent (MFD) Viscosity by Means of CVFEM. , 2019, , 707-749.		0
304	Simulation of Vorticity Stream Function Formulation by Means of CVFEM. , 2019, , 15-32.		0
305	Various Application of Nanofluid for Heat Transfer Augmentation. , 2019, , 33-71.		0
306	Single-phase Model for Nanofluid Free Convection Heat Transfer by Means of CVFEM. , 2019, , 73-97.		0

#	Article	IF	CITATIONS
307	Buongiorno Model for Nanofluid Treatment Using CVFEM. , 2019, , 99-126.		0
308	Thermal Nonequilibrium Model for Nanofluid Flow in a Porous Enclosure by Means of CVFEM. , 2019, , 547-580.		0