
Gregory A Gambetta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6624910/publications.pdf

Version: 2024-02-01

#	Article	lF	CITATIONS
1	Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta, 2007, 227, 101-112.	1.6	527
2	Sugar and abscisic acid signaling orthologs are activated at the onset of ripening in grape. Planta, 2010, 232, 219-234.	1.6	183
3	The physiology of drought stress in grapevine: towards an integrative definition of drought tolerance. Journal of Experimental Botany, 2020, 71, 4658-4676.	2.4	173
4	Targeted Mutations in a Trametes villosa Laccase. Journal of Biological Chemistry, 1999, 274, 12372-12375.	1.6	172
5	Evidence for Hydraulic Vulnerability Segmentation and Lack of Xylem Refilling under Tension. Plant Physiology, 2016, 172, 1657-1668.	2.3	132
6	Selective sweep at the Rpv3 locus during grapevine breeding for downy mildew resistance. Theoretical and Applied Genetics, 2012, 124, 277-286.	1.8	116
7	Characterization of major ripening events during softening in grape: turgor, sugar accumulation, abscisic acid metabolism, colour development, and their relationship with growth. Journal of Experimental Botany, 2016, 67, 709-722.	2.4	110
8	Water Uptake along the Length of Grapevine Fine Roots: Developmental Anatomy, Tissue-Specific Aquaporin Expression, and Pathways of Water Transport Â. Plant Physiology, 2013, 163, 1254-1265.	2.3	109
9	Drought will not leave your glass empty: Low risk of hydraulic failure revealed by long-term drought observations in world's top wine regions. Science Advances, 2018, 4, eaao6969.	4.7	107
10	Expansion and subfunctionalisation of flavonoid 3',5'-hydroxylases in the grapevine lineage. BMC Genomics, 2010, 11, 562.	1.2	93
11	Merging genotypes: graft union formation and scion–rootstock interactions. Journal of Experimental Botany, 2019, 70, 747-755.	2.4	93
12	The influence of grapevine rootstocks on scion growth and drought resistance. Theoretical and Experimental Plant Physiology, 2016, 28, 143-157.	1.1	85
13	Ethylene receptors and related proteins in climacteric and non-climacteric fruits. Plant Science, 2018, 276, 63-72.	1.7	79
14	The sequence and thresholds of leaf hydraulic traits underlying grapevine varietal differences in drought tolerance. Journal of Experimental Botany, 2020, 71, 4333-4344.	2.4	67
15	Drought stress modulates cuticular wax composition of the grape berry. Journal of Experimental Botany, 2020, 71, 3126-3141.	2.4	57
16	ABA-mediated responses to water deficit separate grapevine genotypes by their genetic background. BMC Plant Biology, 2016, 16, 91.	1.6	54
17	An inconvenient truth about xylem resistance to embolism in the model species for refilling Laurus nobilis L. Annals of Forest Science, 2018, 75, 1.	0.8	53
18	Water Transport Properties of the Grape Pedicel during Fruit Development: Insights into Xylem Anatomy and Function Using Microtomography. Plant Physiology, 2015, 168, 1590-1602.	2.3	48

GREGORY A GAMBETTA

#	Article	IF	CITATIONS
19	Aquaporins and Root Water Uptake. Signaling and Communication in Plants, 2017, , 133-153.	0.5	47
20	Effects of Leaf Removal and Applied Water on Flavonoid Accumulation in Grapevine (<i>Vitis) Tj ETQq0 0 0 rgE 8118-8127.</i>	3T /Overloch 2.4	to Tf 50 707 46
21	Abscisic acid transcriptomic signaling varies with grapevine organ. BMC Plant Biology, 2016, 16, 72.	1.6	45
22	Modelling grape growth in relation to whole-plant carbon and water fluxes. Journal of Experimental Botany, 2019, 70, 2505-2521.	2.4	45
23	Dissecting the rootstock control of scion transpiration using model-assisted analyses in grapevine. Tree Physiology, 2018, 38, 1026-1040.	1.4	44
24	Structure and transcriptional regulation of the major intrinsic protein gene family in grapevine. BMC Genomics, 2018, 19, 248.	1.2	43
25	A 3-D functional–structural grapevine model that couples the dynamics of water transport with leaf gas exchange. Annals of Botany, 2018, 121, 833-848.	1.4	40
26	Genome-wide analysis of cis-regulatory element structure and discovery of motif-driven gene co-expression networks in grapevine. DNA Research, 2017, 24, dsw061.	1.5	35
27	Nighttime transpiration represents a negligible part of water loss and does not increase the risk of water stress in grapevine. Plant, Cell and Environment, 2021, 44, 387-398.	2.8	33
28	Exploring the Hydraulic Failure Hypothesis of Esca Leaf Symptom Formation. Plant Physiology, 2019, 181, 1163-1174.	2.3	32
29	Water Stress and Grape Physiology in the Context of Global Climate Change. Journal of Wine Economics, 2016, 11, 168-180.	0.4	29
30	Grapevines under drought do not express esca leaf symptoms. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	25
31	Overâ€accumulation of abscisic acid in transgenic tomato plants increases the risk of hydraulic failure. Plant, Cell and Environment, 2020, 43, 548-562.	2.8	24
32	Global warming and wine quality: are we close to the tipping point?. Oeno One, 2021, 55, 353-361.	0.7	22
33	Behind the curtain of the compartmentalization process: Exploring how xylem vessel diameter impacts vascular pathogen resistance. Plant, Cell and Environment, 2020, 43, 2782-2796.	2.8	21
34	Stomatal responses in grapevine become increasingly more tolerant to low water potentials throughout the growing season. Plant Journal, 2022, 109, 804-815.	2.8	19
35	Drought activates MYB41 orthologs and induces suberization of grapevine fine roots. Plant Direct, 2020, 4, e00278.	0.8	16
36	Seasonal and long-term consequences of esca grapevine disease on stem xylem integrity. Journal of Experimental Botany, 2021, 72, 3914-3928.	2.4	16

GREGORY A GAMBETTA

#	Article	IF	CITATIONS
37	Response and Recovery of Grapevine to Water Deficit: From Genes to Physiology. Compendium of Plant Genomes, 2019, , 223-245.	0.3	8
38	Using Î' ¹³ C and hydroscapes for discriminating cultivar specific drought responses. Oeno One, 2022, 56, 239-250.	0.7	5
39	Genomic <scp>DNA</scp> â€based absolute quantification of gene expression in <i>Vitis</i> . Physiologia Plantarum, 2013, 148, 334-343.	2.6	4
40	The Genomics of Grape Berry Ripening. Compendium of Plant Genomes, 2019, , 247-274.	0.3	4
41	Varietal responses to soil water deficit: first results from a common-garden vineyard near Bordeaux France. E3S Web of Conferences, 2018, 50, 01043.	0.2	3
42	Monitoring Xylem Hydraulic Pressure in Woody Plants. Bio-protocol, 2017, 7, e2580.	0.2	3
43	Connection matters: exploring the implications of scion–rootstock alignment in grafted grapevines. Australian Journal of Grape and Wine Research, 2022, 28, 561-571.	1.0	3
44	A revised and unified pressure-clamp/relaxation theory for studying plant cell water relations with pressure probes: In-situ determination of cell volume for calculation of volumetric elastic modulus and hydraulic conductivity. Journal of Theoretical Biology, 2014, 359, 80-91.	0.8	1
45	Gas exchange, root hydraulic conductivity, water use efficiency and the growth of <i>Toona ciliata</i> clones and seedlings. Ciencia Florestal, 2019, 29, 715-727.	0.1	1
46	Variety-specific response of bulk stomatal conductance of grapevine canopies to changes in net radiation, atmospheric demand, and drought stress Oeno One, 2022, 56, 205-222.	0.7	1