Daniel C. Ashley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6624875/publications.pdf

Version: 2024-02-01

687363 677142 21 640 13 22 citations h-index g-index papers 22 22 22 918 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Visible Light-Induced Catalyst-Free Activation of Peroxydisulfate: Pollutant-Dependent Production of Reactive Species. Environmental Science & Environ	10.0	58
2	Enhanced Degradation of Micropollutants in a Peracetic Acid–Fe(III) System with Picolinic Acid. Environmental Science & Env	10.0	30
3	Halogenation affects driving forces, reorganization energies and "rocking―motions in strained [Fe(tpy) ₂] ²⁺ complexes. Dalton Transactions, 2021, 50, 14566-14575.	3. 3	6
4	Are all charge-transfer parameters created equally? A study of functional dependence and excited-state charge-transfer quantification across two dye families. Physical Chemistry Chemical Physics, 2021, 23, 20583-20597.	2.8	3
5	Electrode-adsorption activates <i>trans</i> -[Cr(cyclam)Cl ₂] ⁺ for electrocatalytic nitrate reduction. Chemical Communications, 2020, 56, 603-606.	4.1	15
6	Intramolecular Hydrogen Bonding Facilitates Electrocatalytic Reduction of Nitrite in Aqueous Solutions. Inorganic Chemistry, 2019, 58, 9443-9451.	4.0	40
7	Designing air-stable cyclometalated Fe(<scp>ii</scp>) complexes: stabilization <i>via</i> electrostatic effects. Dalton Transactions, 2019, 48, 374-378.	3.3	12
8	Predicting the electrochemical behavior of Fe(II) complexes from ligand orbital energies. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 376, 7-11.	3.9	4
9	Ray-Dutt and Bailar Twists in Fe(II)-Tris(2,2′-bipyridine): Spin States, Sterics, and Fe–N Bond Strengths. Inorganic Chemistry, 2018, 57, 5585-5596.	4.0	25
10	A flexible, redox-active macrocycle enables the electrocatalytic reduction of nitrate to ammonia by a cobalt complex. Chemical Science, 2018, 9, 4950-4958.	7.4	63
11	Amphiphile self-assembly dynamics at the solution-solid interface reveal asymmetry in head/tail desorption. Chemical Communications, 2018, 54, 10076-10079.	4.1	8
12	Tuning the Redox Potentials and Ligand Field Strength of Fe(II) Polypyridines: The Dual π-Donor and π-Acceptor Character of Bipyridine. Inorganic Chemistry, 2018, 57, 9907-9917.	4.0	44
13	Mechanistic Investigation of Bis(imino)pyridine Manganese Catalyzed Carbonyl and Carboxylate Hydrosilylation. Journal of the American Chemical Society, 2017, 139, 4901-4915.	13.7	88
14	Ironing out the photochemical and spin-crossover behavior of Fe(II) coordination compounds with computational chemistry. Coordination Chemistry Reviews, 2017, 337, 97-111.	18.8	103
15	Effects of varying the 6-position oxidation state of hexopyranoses: a systematic comparative computational analysis of 48 monosaccharide stereoisomers. Journal of Molecular Modeling, 2017, 23, 214.	1.8	3
16	The Electronic Structure of [Mn(V)â•O]: What is the Connection between Oxyl Radical Character, Physical Oxidation State, and Reactivity?. ACS Catalysis, 2016, 6, 7202-7216.	11.2	28
17	Mechanistic Studies of Bismuth(V)-Mediated Thioglycoside Activation Reveal Differential Reactivity of Anomers. Journal of Organic Chemistry, 2016, 81, 5949-5962.	3.2	19
18	Factors Affecting the Production of Aromatic Immonium Ions in MALDI 157 nm Photodissociation Studies. Journal of the American Society for Mass Spectrometry, 2016, 27, 834-846.	2.8	7

#	Article	IF	CITATION
19	How a Redoxâ€Innocent Metal Promotes the Formal Reductive Elimination of Biphenyl Using Redoxâ€Active Ligands. Chemistry - A European Journal, 2015, 21, 4308-4314.	3.3	12
20	Carbon Dioxide Promoted H ⁺ Reduction Using a Bis(imino)pyridine Manganese Electrocatalyst. Inorganic Chemistry, 2015, 54, 4475-4482.	4.0	45
21	Oxygen Isotope Effects as Structural and Mechanistic Probes in Inorganic Oxidation Chemistry. Inorganic Chemistry, 2010, 49, 3661-3675.	4.0	26