List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6624697/publications.pdf Version: 2024-02-01

IFEDDEIDA

#	Article	IF	CITATIONS
1	Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at room temperature. Thin Solid Films, 2003, 427, 401-405.	1.8	277
2	Complementary Metal Oxide Semiconductor Technology With and On Paper. Advanced Materials, 2011, 23, 4491-4496.	21.0	235
3	Gate-bias stress in amorphous oxide semiconductors thin-film transistors. Applied Physics Letters, 2009, 95, .	3.3	213
4	Role of order and disorder on the electronic performances of oxide semiconductor thin film transistors. Journal of Applied Physics, 2007, 101, 044505.	2.5	192
5	Zinc oxide as an ozone sensor. Journal of Applied Physics, 2004, 96, 1398-1408.	2.5	181
6	Highly stable transparent and conducting gallium-doped zinc oxide thin films for photovoltaic applications. Solar Energy Materials and Solar Cells, 2008, 92, 1605-1610.	6.2	151
7	Zinc oxide, a multifunctional material: from material to device applications. Applied Physics A: Materials Science and Processing, 2009, 96, 197-205.	2.3	149
8	Chitosan-based nanoparticles as drug delivery systems for doxorubicin: Optimization and modelling. Carbohydrate Polymers, 2016, 147, 304-312.	10.2	137
9	Write-erase and read paper memory transistor. Applied Physics Letters, 2008, 93, .	3.3	127
10	High field-effect mobility zinc oxide thin film transistors produced at room temperature. Journal of Non-Crystalline Solids, 2004, 338-340, 806-809.	3.1	124
11	Recyclable, Flexible, Lowâ€Power Oxide Electronics. Advanced Functional Materials, 2013, 23, 2153-2161.	14.9	124
12	Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications. Applied Surface Science, 2016, 383, 240-247.	6.1	122
13	High quality conductive gallium-doped zinc oxide films deposited at room temperature. Thin Solid Films, 2004, 451-452, 443-447.	1.8	103
14	Growth of ZnO:Ga thin films at room temperature on polymeric substrates: thickness dependence. Thin Solid Films, 2003, 442, 121-126.	1.8	97
15	Influence of the layer thickness in plasmonic gold nanoparticles produced by thermal evaporation. Scientific Reports, 2013, 3, 1469.	3.3	97
16	Transparent aluminium zinc oxide thin films with enhanced thermoelectric properties. Journal of Materials Chemistry A, 2014, 2, 6649-6655.	10.3	97
17	New challenges on gallium-doped zinc oxide films prepared by r.f. magnetron sputtering. Thin Solid Films, 2003, 442, 102-106.	1.8	92
18	Electronics with and on paper. Physica Status Solidi - Rapid Research Letters, 2011, 5, 332-335.	2.4	91

#	Article	IF	CITATIONS
19	Role of hydrogen plasma on electrical and optical properties of ZGO, ITO and IZO transparent and conductive coatings. Thin Solid Films, 2006, 511-512, 295-298.	1.8	87
20	Effects of surfactants on the magnetic properties of iron oxide colloids. Journal of Colloid and Interface Science, 2014, 419, 46-51.	9.4	87
21	Electron transport and optical characteristics in amorphous indium zinc oxide films. Journal of Non-Crystalline Solids, 2006, 352, 1471-1474.	3.1	83
22	Thermal and magnetic properties of chitosan-iron oxide nanoparticles. Carbohydrate Polymers, 2016, 149, 382-390.	10.2	72
23	Thermoelectric properties of V2O5 thin films deposited by thermal evaporation. Applied Surface Science, 2013, 282, 590-594.	6.1	71
24	Transparent, conductive ZnO:Al thin film deposited on polymer substrates by RF magnetron sputtering. Surface and Coatings Technology, 2002, 151-152, 247-251.	4.8	67
25	Silicon thin film solar cells on commercial tiles. Energy and Environmental Science, 2011, 4, 4620.	30.8	65
26	Thermal and magnetic properties of iron oxide colloids: influence of surfactants. Nanotechnology, 2015, 26, 425704.	2.6	64
27	Role of annealing environment on the performances of large area ITO films produced by rf magnetron sputtering. Thin Solid Films, 2005, 487, 271-276.	1.8	63
28	Cul p-type thin films for highly transparent thermoelectric p-n modules. Scientific Reports, 2018, 8, 6867.	3.3	62
29	Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors. Optics Express, 2014, 22, A1059.	3.4	60
30	Design of optimized wave-optical spheroidal nanostructures for photonic-enhanced solar cells. Nano Energy, 2016, 26, 286-296.	16.0	60
31	Aluminum doped zinc oxide sputtering targets obtained from nanostructured powders: Processing and application. Journal of the European Ceramic Society, 2012, 32, 4381-4391.	5.7	57
32	New developments in gallium doped zinc oxide deposited on polymeric substrates by RF magnetron sputtering. Surface and Coatings Technology, 2004, 180-181, 20-25.	4.8	56
33	Highly Sensitive ZnO Ozone Detectors at Room Temperature. Japanese Journal of Applied Physics, 2003, 42, L435-L437.	1.5	55
34	Nanostructured silicon and its application to solar cells, position sensors and thin film transistors. Philosophical Magazine, 2009, 89, 2699-2721.	1.6	53
35	Cellulose-based electrospun fibers functionalized with polypyrrole and polyaniline for fully organic batteries. Journal of Materials Chemistry A, 2018, 6, 256-265.	10.3	53
36	Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids. Nanotechnology, 2015, 26, 135202.	2.6	51

#	Article	IF	CITATIONS
37	Polycrystalline intrinsic zinc oxide to be used in transparent electronic devices. Thin Solid Films, 2005, 487, 212-215.	1.8	50
38	Self-Rechargeable Paper Thin-Film Batteries: Performance and Applications. Journal of Display Technology, 2010, 6, 332-335.	1.2	46
39	New composite of natural hydraulic lime mortar with graphene oxide. Construction and Building Materials, 2017, 156, 1150-1157.	7.2	46
40	Hydrogenated silicon carbon nitride films obtained by HWCVD, PA-HWCVD and PECVD techniques. Journal of Non-Crystalline Solids, 2006, 352, 1361-1366.	3.1	45
41	Characterization of aluminium doped zinc oxide thin films deposited on polymeric substrates. Vacuum, 2002, 64, 233-236.	3.5	44
42	Role of order and disorder in covalent semiconductors and ionic oxides used to produce thin film transistors. Applied Physics A: Materials Science and Processing, 2007, 89, 37-42.	2.3	44
43	Selective floating gate nonâ€volatile paper memory transistor. Physica Status Solidi - Rapid Research Letters, 2009, 3, 308-310.	2.4	43
44	One-pot synthesis of dual-stimuli responsive hybrid PNIPAAm-chitosan microgels. Materials and Design, 2015, 86, 745-751.	7.0	39
45	Thin and flexible bio-batteries made of electrospun cellulose-based membranes. Biosensors and Bioelectronics, 2011, 26, 2742-2745.	10.1	38
46	Solid-state paper batteries for controlling paper transistors. Electrochimica Acta, 2011, 56, 1099-1105.	5.2	35
47	Flexible a-Si:H Position-Sensitive Detectors. Proceedings of the IEEE, 2005, 93, 1281-1286.	21.3	33
48	Large Area Deposition of Polymorphous Silicon by Plasma Enhanced Chemical Vapor Deposition at 27.12 MHz and 13.56 MHz. Japanese Journal of Applied Physics, 2003, 42, 4935-4942.	1.5	31
49	Highly conductive and highly transparent n-type microcrystalline silicon thin films. Thin Solid Films, 1997, 303, 47-52.	1.8	28
50	Study of nanostructured/amorphous silicon solar cell by impedance spectroscopy technique. Journal of Non-Crystalline Solids, 2006, 352, 1880-1883.	3.1	28
51	Optical and structural analysis of porous silicon coated with GZO films using rf magnetron sputtering. Thin Solid Films, 2007, 515, 8664-8669.	1.8	28
52	Towards the development of multifunctional chitosan-based iron oxide nanoparticles: Optimization and modelling of doxorubicin release. Carbohydrate Polymers, 2016, 153, 212-221.	10.2	28
53	Graphene oxide-reinforced aluminium-matrix nanostructured composites fabricated by accumulative roll bonding. Composites Part B: Engineering, 2019, 164, 265-271.	12.0	28
54	Carbon threads sweat-based supercapacitors for electronic textiles. Scientific Reports, 2020, 10, 7703.	3.3	28

#	Article	IF	CITATIONS
55	New insights on large area flexible position sensitive detectors. Journal of Non-Crystalline Solids, 2002, 299-302, 1272-1276.	3.1	27
56	Oxide semiconductors: Order within the disorder. Philosophical Magazine, 2009, 89, 2741-2758.	1.6	27
57	Sintering Behavior of Nano―and Micro‣ized <scp><scp>ZnO</scp> </scp> Powder Targets for rf Magnetron Sputtering Applications. Journal of the American Ceramic Society, 2012, 95, 204-210.	3.8	27
58	Optimization of Cuprous Oxides Thin Films to be used as Thermoelectric Touch Detectors. ACS Applied Materials & Interfaces, 2017, 9, 6520-6529.	8.0	27
59	Tunneling in vertical μcî—,Si/aî—,SixCyOz:H/μcî—,Si heterostructures. Journal of Non-Crystalline Solids, 1989, 1 120-122.	15, 3.1	26
60	The effects of ZnO coating on the photoluminescence properties of porous silicon for the advanced optoelectronic devices. Journal of Non-Crystalline Solids, 2008, 354, 2181-2185.	3.1	26
61	Fabrication and characterization of hybrid solar cells based on copper phthalocyanine/porous silicon. Journal of Non-Crystalline Solids, 2008, 354, 2892-2896.	3.1	24
62	Influence of the Strain on the Electrical Resistance of Zinc Oxide Doped Thin Film Deposited on Polymer Substrates. Advanced Engineering Materials, 2002, 4, 610-612.	3.5	23
63	Nanostructured p-type Cr/V ₂ O ₅ thin films with boosted thermoelectric properties. Journal of Materials Chemistry A, 2014, 2, 6456-6462.	10.3	23
64	V ₂ O ₅ Thin Films for Flexible and High Sensitivity Transparent Temperature Sensor. Advanced Materials Technologies, 2016, 1, 1600077.	5.8	23
65	Role of buffer layer on the performances of amorphous silicon solar cells with incorporated nanoparticles produced by plasma enhanced chemical vapor deposition at 27.12 MHz. Thin Solid Films, 2005, 487, 170-173.	1.8	21
66	Al-doped ZnO nanostructured powders by emulsion detonation synthesis – Improving materials for high quality sputtering targets manufacturing. Journal of the European Ceramic Society, 2014, 34, 2325-2338.	5.7	21
67	Toxicity Evaluation of Quantum Dots (ZnS and CdS) Singly and Combined in Zebrafish (Danio rerio). International Journal of Environmental Research and Public Health, 2020, 17, 232.	2.6	21
68	Characterization of silicon carbide thin films prepared by VHF-PECVD technology. Journal of Non-Crystalline Solids, 2004, 338-340, 530-533.	3.1	20
69	SnO2 thin Film Oxides Produced by rf Sputtering for Transparent Thermoelectric Devices. Materials Today: Proceedings, 2015, 2, 647-653.	1.8	20
70	A multi-integrated approach on toxicity effects of engineered TiO2 nanoparticles. Frontiers of Environmental Science and Engineering, 2015, 9, 793-803.	6.0	19
71	Performances of an optical ruler based on one-dimensional hydrogenated amorphous Si position-sensitive detectors produced using different metal contacts. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2000, 80, 765-774.	0.6	18
72	Ag and Sn Nanoparticles to Enhance the Near-Infrared Absorbance of a-Si:H Thin Films. Plasmonics, 2014, 9, 1015-1023.	3.4	18

#	Article	IF	CITATIONS
73	Role of the gas temperature and power to gas flow ratio on powder and voids formation in films grown by PECVD technique. Vacuum, 2000, 56, 25-30.	3.5	17
74	Flexible large area thin film position sensitive detectors. Sensors and Actuators A: Physical, 2000, 86, 182-186.	4.1	17
75	New ultra-light flexible large area thin film position sensitive detector based on amorphous silicon. Journal of Non-Crystalline Solids, 2000, 266-269, 1213-1217.	3.1	17
76	Silicon thin films prepared in the transition region and their use in solar cells. Solar Energy Materials and Solar Cells, 2006, 90, 3001-3008.	6.2	17
77	Facile Microwave-assisted Synthesis Manganese Doped Zinc Sulfide Nanoparticles. Scientific Reports, 2018, 8, 15992.	3.3	17
78	Silicon carbide alloys produced by hot wire, hot wire plasma-assisted and plasma-enhanced CVD techniques. Applied Surface Science, 2001, 184, 8-19.	6.1	16
79	a-Si:H interface optimisation for thin film position sensitive detectors produced on polymeric substrates. Journal of Non-Crystalline Solids, 2002, 299-302, 1289-1294.	3.1	16
80	Cellulose-Based Bioelectronic Devices. , 0, , .		16
81	Cellulose paper functionalised with polypyrrole and poly(3,4-ethylenedioxythiophene) for paper battery electrodes. Organic Electronics, 2018, 62, 530-535.	2.6	15
82	Large-Area Paper Batteries with Ag and Zn/Ag Screen-Printed Electrodes. ACS Omega, 2019, 4, 16781-16788.	3.5	15
83	Transport in μc-Six:Cy:Oz:H films prepared by a TCDDC system. Journal of Non-Crystalline Solids, 1989, 114, 486-488.	3.1	14
84	Production and characterization of large area flexible thin film position sensitive detectors. Thin Solid Films, 2001, 383, 310-313.	1.8	14
85	Thin film position sensitive detectors based on pin amorphous silicon carbide structures. Applied Surface Science, 2001, 184, 443-447.	6.1	14
86	Down conversion photoluminescence on PVP/Ag-nanoparticles electrospun composite fibers. Optical Materials, 2015, 39, 278-281.	3.6	14
87	Wide Band Gap Microcrystalline Silicon Thin Films. Solid State Phenomena, 1995, 44-46, 299-346.	0.3	13
88	Polymorphous Silicon Films Deposited at 27.12 MHz. Chemical Vapor Deposition, 2003, 9, 333-337.	1.3	13
89	Amorphous silicon position sensitive detectors applied to micropositioning. Journal of Non-Crystalline Solids, 2006, 352, 1792-1796.	3.1	13
90	Improved thermoelectric properties of nanocrystalline hydrogenated silicon thin films by post-deposition thermal annealing. Thin Solid Films, 2017, 642, 276-280.	1.8	13

#	Article	IF	CITATIONS
91	Conductive Electrospun Polyaniline/Polyvinylpyrrolidone Nanofibers: Electrical and Morphological Characterization of New Yarns for Electronic Textiles. Fibers, 2020, 8, 24.	4.0	13
92	Porous a/nc-Si:H films produced by HW-CVD as ethanol vapour detector and primary fuel cell. Sensors and Actuators B: Chemical, 2004, 103, 344-349.	7.8	12
93	Study of nanostructured silicon by hydrogen evolution and its application in p–i–n solar cells. Journal of Non-Crystalline Solids, 2006, 352, 1945-1948.	3.1	12
94	P-type oxide-based thin film transistors produced at low temperatures. , 2012, , .		12
95	Stability under humidity, UV-light and bending of AZO films deposited by ALD on Kapton. Scientific Reports, 2019, 9, 17919.	3.3	12
96	Role of the deposition conditions on the properties presented by nanocrystallite silicon films produced by hot wire. Journal of Non-Crystalline Solids, 1998, 227-230, 901-905.	3.1	11
97	Nanocrystalline silicon carbon doped films prepared by hot wire technique. Vacuum, 1999, 52, 147-152.	3.5	11
98	Structural characterisation of NiTi thin film shape memory alloys. Sensors and Actuators A: Physical, 2002, 99, 55-58.	4.1	11
99	Morphology and structure of nanocrystalline p-doped silicon films produced by hot wire technique. Vacuum, 2002, 64, 237-243.	3.5	11
100	Surface modification of a new flexible substrate based on hydroxypropylcellulose for optoelectronic applications. Thin Solid Films, 2003, 442, 127-131.	1.8	11
101	Amorphous Silicon Position Sensitive Detector Array for Fast 3-D Object Profiling. IEEE Sensors Journal, 2012, 12, 812-820.	4.7	11
102	AbÂlnitio Calculations and Measurements of Thermoelectric Properties of V2O5 Films. Journal of Electronic Materials, 2013, 42, 1597-1603.	2.2	11
103	Hydrogenated nanocrystalline silicon thin films with promising thermoelectric properties. Applied Physics A: Materials Science and Processing, 2015, 120, 1497-1502.	2.3	11
104	Customized tracheal design using 3D printing of a polymer hydrogel: influence of UV laser cross-linking on mechanical properties. 3D Printing in Medicine, 2019, 5, 12.	3.1	11
105	Microwave Synthesis of Silver Sulfide and Silver Nanoparticles: Light and Time Influence. ACS Omega, 2020, 5, 12877-12881.	3.5	11
106	32 linear array position sensitive detector based on NIP and hetero a-Si:H microdevices. Journal of Non-Crystalline Solids, 2002, 299-302, 1283-1288.	3.1	10
107	Composition and structure of silicon-carbide alloys obtained by hot wire and hot wire plasma assisted techniques. Vacuum, 2002, 64, 261-266.	3.5	10
108	Investigation of the amorphous to microcrystalline phase transition of thin film silicon produced by PECVD. Thin Solid Films, 1998, 317, 144-148.	1.8	9

#	Article	IF	CITATIONS
109	Study of the effect of different plasma-enhanced chemical vapour deposition reactor configurations on the properties of hydrogenated amorphous silicon thin films. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2000, 80, 475-486.	0.6	9
110	Characterization of the density of states of polymorphous silicon films produced at 13.56 and 27.12 MHz using CPM and SCLC techniques. Journal of Non-Crystalline Solids, 2004, 338-340, 206-210.	3.1	9
111	Room temperature dc and ac electrical behaviour of undoped ZnO films under UV light. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 118, 135-140.	3.5	9
112	Electrical properties of amorphous and nanocrystalline hydrogenated silicon films obtained by impedance spectroscopy. Thin Solid Films, 2006, 511-512, 390-393.	1.8	9
113	Role of oxygen partial pressure on the properties of doped silicon oxycarbide microcrystalline layers produced by spatial separation techniques. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1995, 13, 2199-2209.	2.1	8
114	Undoped and doped crystalline silicon films obtained by Nd-YAG laser. Thin Solid Films, 1998, 317, 140-143.	1.8	8
115	Role of ion bombardment and plasma impedance on the performances presented by undoped a-Si:H films. Thin Solid Films, 2001, 383, 165-168.	1.8	8
116	Micro Cantilever Movement Detection with an Amorphous Silicon Array of Position Sensitive Detectors. Sensors, 2010, 10, 8173-8184.	3.8	8
117	Electronic control of drug release from gauze or cellulose acetate fibres for dermal applications. Journal of Materials Chemistry B, 2021, 9, 3515-3522.	5.8	8
118	Near infrared photothermoelectric effect in transparent AZO/ITO/Ag/ITO thin films. Scientific Reports, 2021, 11, 24313.	3.3	8
119	Role of the hot wire filament temperature on the structure and morphology of the nanocrystalline silicon p-doped films. Applied Surface Science, 1999, 144-145, 690-696.	6.1	7
120	Application of Amorphous Silicon Thin-Film Position-Sensitive Detector to Optical Rules. Advanced Engineering Materials, 2001, 3, 174-177.	3.5	7
121	Mass spectroscopy analysis during the deposition of a-SiC:H and a-C:H films produced by hot wire and hot wire plasma-assisted techniques. Applied Surface Science, 2001, 184, 60-65.	6.1	7
122	n-PS/a-Si:H heterojunction for device application. Journal of Non-Crystalline Solids, 2008, 354, 2632-2636.	3.1	7
123	Selfâ€sustained nâ€type memory transistor devices based on natural cellulose paper fibers. Journal of Information Display, 2009, 10, 149-157.	4.0	7
124	Discovery of phosphotyrosine-binding oligopeptides with supramolecular target selectivity. Chemical Science, 2021, 13, 210-217.	7.4	7
125	Drug Delivery from PCL/Chitosan Multilayer Coatings for Metallic Implants. ACS Omega, 2022, 7, 23096-23106.	3.5	7
126	Structure, composition and electro-optical properties of n-type amorphous and microcrystalline silicon thin films. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1997, 76. 249-258.	0.6	6

#	Article	IF	CITATIONS
127	Role of the deposition parameters in the uniformity of films produced by the plasma-enhanced chemical vapour deposition technique. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1997, 76, 259-272.	0.6	6
128	Performances of Nano/Amorphous Silicon Films Produced by Hot Wire Plasma Assisted Technique. Materials Research Society Symposia Proceedings, 1998, 507, 607.	0.1	6
129	New metallurgical systems for electronic soldering applications. Sensors and Actuators A: Physical, 1999, 74, 70-76.	4.1	6
130	Dependence of the Strains and Residual Mechanical Stresses on the Performances Presented by a-Si:H Thin Film Position Sensors. Advanced Engineering Materials, 2002, 4, 612-616.	3.5	6
131	ZnO:Ga Thin Films Produced by RF Sputtering at Room Temperature: Effect of the Power Density. Materials Science Forum, 2004, 455-456, 12-15.	0.3	6
132	Flexible position sensitive photodetectors based on a-Si:H heterostructures. Sensors and Actuators A: Physical, 2004, 116, 119-124.	4.1	6
133	Multifunctional Thin Film Zinc Oxide Semiconductors: Application to Electronic Devices. Materials Science Forum, 2006, 514-516, 3-7.	0.3	6
134	Away from silicon era: the paper electronics. Proceedings of SPIE, 2011, , .	0.8	6
135	3D scanning characteristics of an amorphous silicon position sensitive detector array system. Optics Express, 2012, 20, 4583.	3.4	6
136	Strongly Photosensitive and Fluorescent F8T2 Electrospun Fibers. Macromolecular Materials and Engineering, 2013, 298, 174-180.	3.6	6
137	Role of the gas temperature and power to gas flow ratio on powder formation and properties of films grown by the PECVD technique. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 69-70, 272-277.	3.5	5
138	New nanostructured silicon films grown by PECVD technique under controlled powder formation conditions. Solar Energy, 2001, 69, 263-269.	6.1	5
139	Towards the improvement of the stability of a-Si:H pin devices. Solar Energy, 2001, 69, 257-262.	6.1	5
140	From porous to compact films by changing the onset conditions of HW-CVD process. Thin Solid Films, 2003, 427, 225-230.	1.8	5
141	Amorphous silicon-based PINIP structure for color sensor. Thin Solid Films, 2005, 487, 268-270.	1.8	5
142	Influence of the layer thickness and hydrogen dilution on electrical properties of large area amorphous silicon p–i–n solar cell. Solar Energy Materials and Solar Cells, 2005, 87, 349-355.	6.2	5
143	Characterization of nanocrystalline silicon carbide films. Journal of Non-Crystalline Solids, 2006, 352, 1410-1415.	3.1	5
144	Doxorubicin vs. ladirubicin: methods for improving osteosarcoma treatment. Mini-Reviews in Medicinal Chemistry, 2012, 12, 1239-1249.	2.4	5

#	Article	IF	CITATIONS
145	Fluorescent and conductive cellulose acetate-based membranes with porphyrins. Materials Today Communications, 2017, 11, 26-37.	1.9	5
146	Engineering of the energy coupling in PECVD systems used to produce large area a-Si:H coatings. Vacuum, 1994, 45, 1107-1108.	3.5	4
147	Transport properties of doped silicon oxycarbide microcrystalline films produced by spatial separation techniques. Solar Energy Materials and Solar Cells, 1996, 41-42, 493-517.	6.2	4
148	Improvement of a-Si:H device stability and performances by proper design of the interfaces. Journal of Non-Crystalline Solids, 2000, 266-269, 1094-1098.	3.1	4
149	Silicon carbide photodiodes: Schottky and PINIP structures. Applied Surface Science, 2001, 184, 437-442.	6.1	4
150	Engineering of a-Si:H device stability by suitable design of interfaces. Solar Energy Materials and Solar Cells, 2002, 73, 39-49.	6.2	4
151	Investigation of hydrocarbon coated porous silicon using PECVD technique to detect CO2 gas. Journal of Non-Crystalline Solids, 2008, 354, 2610-2614.	3.1	4
152	Cellulose acetate fibres loaded with daptomycin for metal implant coatings. Carbohydrate Polymers, 2022, 276, 118733.	10.2	4
153	Nd-YAG Laser Induced Crystallization on a-Si:H Thin Films. Materials Research Society Symposia Proceedings, 1994, 358, 915.	0.1	3
154	Performances of a-Si:H films produced by hot wire plasma assisted technique. Vacuum, 1999, 52, 203-208.	3.5	3
155	Nanostructured silicon films produced by PECVD. Materials Research Society Symposia Proceedings, 2001, 664, 961.	0.1	3
156	Role of the gas pressure and hydrogen dilution on the properties of large area nanocrystalline p-type silicon films produced by hot wire technique. Materials Science and Engineering C, 2001, 15, 141-144.	7.3	3
157	Hot-wire plasma assisted chemical vapor deposition: A deposition technique to obtain silicon thin films. Journal of Applied Physics, 2002, 91, 1644-1649.	2.5	3
158	Metal-ferroelectric thin film devices. Journal of Non-Crystalline Solids, 2002, 299-302, 1311-1315.	3.1	3
159	Effect of Annealing on Gold Rectifying Contacts in Amorphous Silicon. Materials Science Forum, 2004, 455-456, 96-99.	0.3	3
160	Performances of an in-line PECVD system used to produce amorphous and nanocrystalline silicon solar cells. Thin Solid Films, 2006, 511-512, 238-242.	1.8	3
161	Thermoelectric transport in V2O5thin films. Journal of Physics: Conference Series, 2012, 395, 012016.	0.4	3
162	Color sensing ability of an amorphous silicon position sensitive detector array system. Sensors and Actuators A: Physical, 2014, 205, 26-37.	4.1	3

#	Article	IF	CITATIONS
163	Vanadium Pentoxide Alloyed with Graphite for Thin-Film Thermal Sensors. Journal of Electronic Materials, 2016, 45, 1987-1991.	2.2	3
164	DIFFERENCES BETWEEN AMORPHOUS AND NANOSTRUCTURED SILICON FILMS AND THEIR APPLICATION IN SOLAR CELL. High Temperature Material Processes, 2007, 11, 575-583.	0.6	3
165	The Structure and Composition of Doped Silicon Oxycarbide Microcrystalline Layers Produced by Spatial Separation Techniques. Materials Research Society Symposia Proceedings, 1994, 358, 787.	0.1	2
166	Influence of the H2 Dilution And Filament Temperature on the Properties of P Doped Silicon Carbide Thin Films Produced by Hot-Wire Technique. Materials Research Society Symposia Proceedings, 1998, 507, 831.	0.1	2
167	Nanocrystalline p-type silicon films produced by hot wire plasma assisted technique. Materials Science and Engineering C, 2001, 15, 137-140.	7.3	2
168	Highly Conductive/Transparent ZnO:Al Thin Films Deposited at Room Temperature by rf Magnetron Sputtering. Key Engineering Materials, 2002, 230-232, 571-574.	0.4	2
169	Combining HW-CVD and PECVD techniques to produce a-Si:H films. Thin Solid Films, 2003, 427, 231-235.	1.8	2
170	Ethanol vapour detector based in porous a-Si:H films produced by HW-CVD technique. Sensors and Actuators B: Chemical, 2004, 100, 236-239.	7.8	2
171	Effect of an interfacial oxide layer in the annealing behaviour of Au/a-Si:H MIS photodiodes. Journal of Non-Crystalline Solids, 2004, 338-340, 810-813.	3.1	2
172	Characterization of silicon carbide thin films and their use in colour sensor. Solar Energy Materials and Solar Cells, 2005, 87, 343-348.	6.2	2
173	Insights on Amorphous Silicon Nip and MIS 3D Position Sensitive Detectors. Materials Science Forum, 2006, 514-516, 13-17.	0.3	2
174	Simulated and Real Sheet-of-Light 3D Object Scanning Using a-Si:H Thin Film PSD Arrays. Sensors, 2015, 15, 29938-29949.	3.8	2
175	A New Ultra-Light Flexible Large Area Thin Film PSD Based on Amorphous Silicon. , 0, , 421-427.		2
176	Engineering of PECVD Systems for Macroelectronic Applications. Materials Research Society Symposia Proceedings, 1992, 258, 153.	0.1	1
177	Silicon Oxycarbide Microcrystalline Layers Produced by Spatial Separation Techniques. Materials Research Society Symposia Proceedings, 1994, 336, 55.	0.1	1
178	Correlation Between Electrical-Optical and Structural Properties of Microcrystalline Silicon N Type Films. Materials Research Society Symposia Proceedings, 1996, 420, 807.	0.1	1
179	Improvement of the ITO-P Interface in a-Si:H Solar Cells Using a Thin SiO Intermediate Layer. Materials Research Society Symposia Proceedings, 1996, 420, 861.	0.1	1
180	Correlation between the carbon and hydrogen contents with the gas species and the plasma impedance of silicon carbide films produced by PECVD technique. Applied Surface Science, 2001, 184, 101-106.	6.1	1

#	Article	IF	CITATIONS
181	Large-Area Polycrystalline p-Type Silicon Films Produced by the Hot Wire Technique. Solid State Phenomena, 2001, 80-81, 47-52.	0.3	1
182	Silicon nanostructure thin film materials. Vacuum, 2002, 64, 219-226.	3.5	1
183	Characterization of Transparent and Conductive ZnO:Ga Thin Films Produced by Rf Sputtering at Room Temperature. Materials Research Society Symposia Proceedings, 2003, 763, 5191.	0.1	1
184	Composition, Structure and Optical Characteristics of Polymorphous Silicon Films Deposited by PECVD at 27.12 MHz. Materials Science Forum, 2004, 455-456, 100-103.	0.3	1
185	Growth of Polymorphous/Nanocrystalline Silicon Films Deposited by PECVD at 13.56 MHz. Materials Science Forum, 2004, 455-456, 532-535.	0.3	1
186	Batch Processing Method to Deposit a-Si:H Films by PECVD. Materials Science Forum, 2004, 455-456, 104-107.	0.3	1
187	Detection Limits of a nip a-Si:H Linear Array Position Sensitive Detector. Materials Research Society Symposia Proceedings, 2004, 808, 263.	0.1	1
188	Study of a-SiC:H buffer layer on nc-Si/a-Si:H solar cells deposited by PECVD technique. , 0, , .		1
189	Role of Hydrogen Plasma on the Electrical and Optical Properties of Indium Zinc Transparent Conductive Oxide. Materials Science Forum, 2006, 514-516, 63-67.	0.3	1
190	Floating gate memory paper transistor. , 2010, , .		1
191	SPECTRAL RESPONSE OF LARGE AREA AMORPHOUS SILICON SOLAR CELLS. High Temperature Material Processes, 2004, 8, 293-299.	0.6	1
192	Transport properties of doped silicon oxycarbide microcrystalline films produced by spatial separation techniques. , 0, , .		0
193	Study of the effect of different plasma-enhanced chemical vapour deposition reactor configurations on the properties of hydrogenated amorphous silicon thin films. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2000, 80,	0.6	0
194	Performances of an optical ruler based on one-dimensional hydrogenated amorphous Si position-sensitive detectors produced using different metal contacts. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2000–80, 765-774	0.6	0
195	Thin Film Metal Oxide Semiconductors Deposited on Polymeric Substrates. Materials Research Society Symposia Proceedings, 2001, 666, 1131.	0.1	0
196	Characterization of Zinc Oxide Thin Films Deposited by rf Magnetron Sputtering on Mylar Substrates. Materials Research Society Symposia Proceedings, 2001, 666, 3211.	0.1	0
197	Zinc Oxide Thin Films Deposited by RF Magnetron Sputtering on Mylar Substrates at Room Temperature. Materials Research Society Symposia Proceedings, 2001, 685, 1.	0.1	0
198	Thin Film Metal Oxide Semiconductors Deposited on Polymeric Substrates. Materials Research Society Symposia Proceedings, 2001, 685, 1.	0.1	0

#	Article	IF	CITATIONS
199	New Steps to Improve a-Si:H Device Stability by Design of the Interfaces. Advanced Engineering Materials, 2001, 3, 170-173.	3.5	0
200	Silicon Films Produced by PECVD under Powder Formation Conditions. Materials Science Forum, 2001, 382, 21-30.	0.3	0
201	Optical and Photoelectric Properties of PZT Films for Microelectronic Applications. Key Engineering Materials, 2002, 230-232, 563-566.	0.4	Ο
202	Influence of Hydrogen Gas Dilution on the Properties of Silicon-Doped Thin Films Prepared by the Hot-Wire Plasma-Assisted Technique. Key Engineering Materials, 2002, 230-232, 591-594.	0.4	0
203	Growth Model of Gas Species Produced by the Hot-Wire and Hot-Wire Plasma-Assisted Techniques. Key Engineering Materials, 2002, 230-232, 603-606.	0.4	Ο
204	The properties of a-Si:H films deposited on Mylar substrates by hot-wire plasma assisted technique. Journal of Non-Crystalline Solids, 2002, 299-302, 30-35.	3.1	0
205	Gallium zinc oxide coated polymeric substrates for optoelectronic applications. Materials Research Society Symposia Proceedings, 2003, 769, 941.	0.1	Ο
206	Properties of a-Si:H intrinsic films produced by HWPA-CVD technique. Thin Solid Films, 2004, 451-452, 366-369.	1.8	0
207	Amorphous Silicon Based p-i-i-n Structure for Color Sensor. Materials Research Society Symposia Proceedings, 2005, 862, 951.	0.1	Ο
208	Optical and Microstructural Investigations of Porous Silicon Coated with a-Si:H Using PECVD Technique. Materials Science Forum, 0, 587-588, 308-312.	0.3	0
209	Zinc oxide and related compounds: order within the disorder. Proceedings of SPIE, 2009, , .	0.8	0
210	Image Recording and Processing Chemical Synthesis: Method Description and Demonstration. Chemistry Methods, 2021, 1, 157-161.	3.8	0