Christopher Szota

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6624495/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High water users can be drought tolerant: using physiological traits for green roof plant selection. Plant and Soil, 2013, 372, 177-193.	1.8	106
2	Does the turgor loss point characterize drought response in dryland plants?. Plant, Cell and Environment, 2017, 40, 1500-1511.	2.8	85
3	A root trait accounting for the extreme phosphorus sensitivity of Hakea prostrata (Proteaceae). Plant, Cell and Environment, 2004, 27, 991-1004.	2.8	82
4	Influence of plant composition and water use strategies on green roof stormwater retention. Science of the Total Environment, 2018, 625, 775-781.	3.9	81
5	AusTraits, a curated plant trait database for the Australian flora. Scientific Data, 2021, 8, 254.	2.4	73
6	Phenotypic plasticity and genetic adaptation of functional traits influences intra-specific variation in hydraulic efficiency and safety. Tree Physiology, 2020, 40, 215-229.	1.4	49
7	Drought-avoiding plants with low water use can achieve high rainfall retention without jeopardising survival on green roofs. Science of the Total Environment, 2017, 603-604, 340-351.	3.9	44
8	Salt tolerant plants increase nitrogen removal from biofiltration systems affected by saline stormwater. Water Research, 2015, 83, 195-204.	5.3	41
9	Establishing street trees in stormwater control measures can double tree growth when extended waterlogging is avoided. Landscape and Urban Planning, 2018, 178, 122-129.	3.4	41
10	Green roof storage capacity can be more important than evapotranspiration for retention performance. Journal of Environmental Management, 2019, 232, 404-412.	3.8	41
11	Tree pits to help mitigate runoff in dense urban areas. Journal of Hydrology, 2018, 565, 400-410.	2.3	33
12	Street tree stormwater control measures can reduce runoff but may not benefit established trees. Landscape and Urban Planning, 2019, 182, 144-155.	3.4	33
13	Urban Plantings: â€~Living Laboratories' for Climate Change Response. Trends in Plant Science, 2015, 20, 597-599.	4.3	29
14	Root Architecture of Jarrah (<i>Eucalyptus marginata</i>) Trees in Relation to Postâ€Mining Deep Ripping in Western Australia. Restoration Ecology, 2007, 15, S65.	1.4	28
15	Tree water-use strategies to improve stormwater retention performance of biofiltration systems. Water Research, 2018, 144, 285-295.	5.3	27
16	Previous drought exposure leads to greater drought resistance in eucalypts through changes in morphology rather than physiology. Tree Physiology, 2021, 41, 1186-1198.	1.4	26
17	Transpiration by established trees could increase the efficiency of stormwater control measures. Water Research, 2020, 173, 115597.	5.3	22
18	Contrasting physiological responses of two co-occurring eucalypts to seasonal drought at restored bauxite mine sites. Tree Physiology, 2011, 31, 1052-1066.	1.4	21

2

CHRISTOPHER SZOTA

#	Article	IF	CITATIONS
19	Relating the climate envelopes of urban tree species to their drought and thermal tolerance. Science of the Total Environment, 2021, 753, 142012.	3.9	15
20	Laboratory Tests of Substrate Physical Properties May Not Represent the Retention Capacity of Green Roof Substrates In Situ. Water (Switzerland), 2017, 9, 920.	1.2	13
21	Urban Trees as Green Infrastructure for Stormwater Mitigation and Use. Ecological Studies, 2020, , 397-432.	0.4	13
22	Selecting tree species with high transpiration and drought avoidance to optimise runoff reduction in passive irrigation systems. Science of the Total Environment, 2022, 812, 151466.	3.9	6
23	Microsite and litter cover effects on soil conditions and seedling recruitment in a saline agricultural system. Plant and Soil, 2011, 348, 397-409.	1.8	4
24	Supporting Growth and Transpiration of Newly Planted Street Trees With Passive Irrigation Systems. Water Resources Research, 2022, 58, .	1.7	4
25	Influence of water storage and plant crop factor on green roof retention and plant drought stress. , 2022, 1, e0000009.		3