Thomas P Russell

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/662448/thomas-p-russell-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

963	77,178 citations	140	238
papers		h-index	g-index
1,013	82,527 ext. citations	10.3	8.06
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
963	Chemical Polishing of Perovskite Surface Enhances Photovoltaic Performances <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	11
962	Visualizing Assembly Dynamics of All-Liquid 3D Architectures (Small 6/2022). Small, 2022, 18, 2270028	11	
961	Interfacial Assembly of Graphene Oxide: From Super Elastic Interfaces to Liquid-in-Liquid Printing. <i>Advanced Materials Interfaces</i> , 2022 , 9, 2101659	4.6	3
960	Visualizing Assembly Dynamics of All-Liquid 3D Architectures Small, 2022, 18, e2105017	11	4
959	Analytical solution for large-deposit non-linear reactive flows in porous media. <i>Chemical Engineering Journal</i> , 2022 , 430, 132812	14.7	1
958	Interfacial Assembly of Graphene Oxide: From Super Elastic Interfaces to Liquid-in-Liquid Printing (Adv. Mater. Interfaces 6/2022). <i>Advanced Materials Interfaces</i> , 2022 , 9, 2270032	4.6	O
957	Reconfigurable structured liquids 2022 , 1, 100013		4
956	Zwitterionic Ammonium Sulfonate Polymers: Synthesis and Properties in Fluids <i>Macromolecular Rapid Communications</i> , 2021 , e2100678	4.8	1
955	Responsive Interfacial Assemblies Based on Charge-Transfer Interactions. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 26363-26367	16.4	5
954	Responsive Interfacial Assemblies Based on Charge-Transfer Interactions. <i>Angewandte Chemie</i> , 2021 , 133, 26567	3.6	4
953	Hysteresis-Free Nanoparticle-Reinforced Hydrogels. Advanced Materials, 2021, e2108243	24	13
952	Layer-by-Layer Engineered All-Liquid Microfluidic Chips for Enzyme Immobilization. <i>Advanced Materials</i> , 2021 , e2105386	24	4
951	Shear-sensitive chain extension of dissolved poly(ethylene oxide) by aluminate ions. <i>Journal of Polymer Science</i> , 2021 , 59, 146-152	2.4	1
950	Interfacial Reaction Induced Disruption and Dissolution of Dynamic Polymer Networks. <i>Macromolecular Rapid Communications</i> , 2021 , 42, e2100023	4.8	1
949	Redox-Responsive, Reconfigurable All-Liquid Constructs. <i>Journal of the American Chemical Society</i> , 2021 , 143, 3719-3722	16.4	18
948	Visualizing Interfacial Jamming Using an Aggregation-Induced-Emission Molecular Reporter. <i>Angewandte Chemie</i> , 2021 , 133, 8776-8781	3.6	4
947	High-Efficiency Organic Photovoltaics using Eutectic Acceptor Fibrils to Achieve Current Amplification. <i>Advanced Materials</i> , 2021 , 33, e2007177	24	52

(2021-2021)

946	Visualizing Interfacial Jamming Using an Aggregation-Induced-Emission Molecular Reporter. Angewandte Chemie - International Edition, 2021 , 60, 8694-8699	16.4	11
945	Near-complete depolymerization of polyesters with nano-dispersed enzymes. <i>Nature</i> , 2021 , 592, 558-56	5 3 0.4	37
944	Dielectric screening in perovskite photovoltaics. <i>Nature Communications</i> , 2021 , 12, 2479	17.4	22
943	Boltzmann's colloidal transport in porous media with velocity-dependent capture probability. <i>Physics of Fluids</i> , 2021 , 33, 053306	4.4	O
942	Interfacial stabilization for inverted perovskite solar cells with long-term stability. <i>Science Bulletin</i> , 2021 , 66, 991-1002	10.6	15
941	Organic Solar Cells: High-Efficiency Organic Photovoltaics using Eutectic Acceptor Fibrils to Achieve Current Amplification (Adv. Mater. 18/2021). <i>Advanced Materials</i> , 2021 , 33, 2170142	24	
940	HostQuest Molecular Recognition at LiquidQiquid Interfaces. Engineering, 2021, 7, 603-614	9.7	4
939	Gated Molecular Diffusion at Liquid-Liquid Interfaces. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 17394-17397	16.4	9
938	Gated Molecular Diffusion at Liquid Liquid Interfaces. <i>Angewandte Chemie</i> , 2021 , 133, 17534-17537	3.6	4
937	Molecular Brush Surfactants: Versatile Emulsifiers for Stabilizing and Structuring Liquids. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 19626-19630	16.4	7
936	Conductive Ionenes Promote Interfacial Self-Doping for Efficient Organic Solar Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 41810-41817	9.5	3
935	Characteristics of Non-Fullerene Acceptor-Based Organic Photovoltaic Active Layers Using X-ray Scattering and Solid-State NMR. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 15863-15871	3.8	1
934	Unexpected Elasticity in Assemblies of Glassy Supra-Nanoparticle Clusters. <i>Angewandte Chemie</i> , 2021 , 133, 4944-4950	3.6	3
933	Bifunctional Bis-benzophenone as A Solid Additive for Non-Fullerene Solar Cells. <i>Advanced Functional Materials</i> , 2021 , 31, 2008699	15.6	7
932	Unexpected Elasticity in Assemblies of Glassy Supra-Nanoparticle Clusters. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 4894-4900	16.4	12
931	Polymers with advanced architectures as emulsifiers for multi-functional emulsions. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 1205-1220	7.8	3
930	Surfactant-Induced Interfacial Aggregation of Porphyrins for Structuring Color-Tunable Liquids. <i>Angewandte Chemie</i> , 2021 , 133, 2907-2912	3.6	3
929	Uncertainties associated with laboratory-based predictions of well index and formation damage. Measurement: Journal of the International Measurement Confederation, 2021, 170, 108731	4.6	1

928	Dichlorinated Dithienylethene-Based Copolymers for Air-Stable n-Type Conductivity and Thermoelectricity. <i>Advanced Functional Materials</i> , 2021 , 31, 2005901	15.6	20
927	Surfactant-Induced Interfacial Aggregation of Porphyrins for Structuring Color-Tunable Liquids. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 2871-2876	16.4	7
926	Nanoparticle surfactants and structured liquids. <i>Colloid and Polymer Science</i> , 2021 , 299, 523-536	2.4	15
925	Buried Interfaces in Halide Perovskite Photovoltaics. <i>Advanced Materials</i> , 2021 , 33, e2006435	24	83
924	Manipulating the Crystallization Kinetics by Additive Engineering toward High-Efficient Photovoltaic Performance. <i>Advanced Functional Materials</i> , 2021 , 31, 2009103	15.6	7
923	Ferromagnetic liquid droplets with adjustable magnetic properties. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	6
922	Using Preformed Meisenheimer Complexes as Dopants for n-Type Organic Thermoelectrics with High Seebeck Coefficients and Power Factors. <i>Advanced Functional Materials</i> , 2021 , 31, 2010567	15.6	17
921	Solvent-Induced Assembly of Microbial Protein Nanowires into Superstructured Bundles. <i>Biomacromolecules</i> , 2021 , 22, 1305-1311	6.9	4
920	Nanomechanical and Chemical Mapping of the Structure and Interfacial Properties in Immiscible Ternary Polymer Systems. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2021 , 39, 651	3.5	2
919	Molecular Brush Surfactants: Versatile Emulsifiers for Stabilizing and Structuring Liquids. <i>Angewandte Chemie</i> , 2021 , 133, 19778-19782	3.6	7
918	The Buckling Spectra of Nanoparticle Surfactant Assemblies. <i>Nano Letters</i> , 2021 , 21, 7116-7122	11.5	1
917	Biobased Dynamic Polymer Networks with Rapid Stress Relaxation. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 11091-11099	8.3	8
916	Imidazole-Functionalized Imide Interlayers for High Performance Organic Solar Cells. <i>ACS Energy Letters</i> , 2021 , 6, 3228-3235	20.1	14
915	Optimizing Vertical Crystallization for Efficient Perovskite Solar Cells by Buried Composite Layers. <i>Solar Rrl</i> , 2021 , 5, 2100457	7.1	3
914	3D effects in two-phase steady-state tests. <i>Journal of Petroleum Science and Engineering</i> , 2021 , 208, 10	9543β	1
913	Single-layered organic photovoltaics with double cascading charge transport pathways: 18% efficiencies. <i>Nature Communications</i> , 2021 , 12, 309	17.4	302
912	Hydrolysis-Induced Self-Assembly of High-□ow-N Bottlebrush Copolymers. <i>Macromolecules</i> , 2021 , 54, 11449-11458	5.5	1
911	Epoxy-polyhedral oligomeric silsesquioxanes (POSS) nanocomposite vitrimers with high strength, toughness, and efficient relaxation. <i>Giant</i> , 2020 , 4, 100035	5.6	11

(2020-2020)

910	Understanding Hole Extraction of Inverted Perovskite Solar Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 56068-56075	9.5	6	
909	Surface and grain boundary carbon heterogeneity in CH3NH3PbI3 perovskites and its impact on optoelectronic properties. <i>Applied Physics Reviews</i> , 2020 , 7, 041412	17.3	3	
908	Bimolecular crystal instability and morphology of bulk heterojunction blends in organic and perovskite solar cells. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 11695-11703	7.1	1	
907	Manipulating Film Morphology of All-Polymer Solar Cells by Incorporating Polymer Compatibilizer. <i>Solar Rrl</i> , 2020 , 4, 2000148	7.1	8	
906	Polymer-Modified ZnO Nanoparticles as Electron Transport Layer for Polymer-Based Solar Cells. <i>Advanced Functional Materials</i> , 2020 , 30, 2002932	15.6	26	
905	Naphthalene-Diimide-Based Ionenes as Universal Interlayers for Efficient Organic Solar Cells. <i>Angewandte Chemie</i> , 2020 , 132, 18288-18292	3.6	4	
904	Naphthalene-Diimide-Based Ionenes as Universal Interlayers for Efficient Organic Solar Cells. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 18131-18135	16.4	28	
903	Rapid Multilevel Compartmentalization of Stable All-Aqueous Blastosomes by Interfacial Aqueous-Phase Separation. <i>ACS Nano</i> , 2020 , 14, 11215-11224	16.7	7	
902	Hanging droplets from liquid surfaces. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 8360-8365	11.5	13	
901	Perspective: Ferromagnetic Liquids. <i>Materials</i> , 2020 , 13,	3.5	6	
900	Low-Bandgap Porphyrins for Highly Efficient Organic Solar Cells: Materials, Morphology, and Applications. <i>Advanced Materials</i> , 2020 , 32, e1906129	24	78	
899	Polymer design to promote low work function surfaces in organic electronics. <i>Progress in Polymer Science</i> , 2020 , 103, 101222	29.6	27	
898	Interfacial Assembly and Jamming of Polyelectrolyte Surfactants: A Simple Route To Print Liquids in Low-Viscosity Solution. <i>ACS Applied Materials & Samp; Interfaces</i> , 2020 , 12, 18116-18122	9.5	28	
897	Reconfigurable Liquids Stabilized by DNA Surfactants. <i>ACS Applied Materials & DNA Surfactants</i> , 13551-13557	9.5	14	
896	Janus MXene nanosheets for macroscopic assemblies. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 910-917	7.8	26	
895	Understanding the Morphology of High-Performance Solar Cells Based on a Low-Cost Polymer Donor. <i>ACS Applied Materials & Donor. ACS Applied Materials & Donor. Donor. ACS Applied Materials & Donor. Donor.</i>	9.5	12	
894	Comparison of Fused-Ring Electron Acceptors with One- and Multidimensional Conformations. <i>ACS Applied Materials & Applied & A</i>	9.5	7	

892	Low-Dimensional Contact Layers for Enhanced Perovskite Photodiodes. <i>Advanced Functional Materials</i> , 2020 , 30, 2001692	15.6	15
891	Soft Polymer Janus Nanoparticles at Liquid Interfaces. <i>Angewandte Chemie</i> , 2020 , 132, 12851-12	85,56	3
890	Size-Dependent Interfacial Assembly of Graphene Oxide at Water-Oil Interfaces. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 4835-4842	3.4	2
889	Conformational Entropy as a Means to Control the Behavior of Poly(diketoenamine) Vitrimers In and Out of Equilibrium. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 735-739	16.4	30
888	In Situ Electron Microscopy of Poly(ethylene glycol) Crystals Grown in Thin Ionic Liquids Films. <i>Journal of Polymer Science</i> , 2020 , 58, 478-486	2.4	
887	Enhanced Charge Carrier Transport in 2D Perovskites by Incorporating Single-Walled Carbon Nanotubes or Graphene. <i>ACS Energy Letters</i> , 2020 , 5, 109-116	20.1	8
886	Unraveling the Crystallization Kinetics of 2D Perovskites with Sandwich-Type Structure for High-Performance Photovoltaics. <i>Advanced Materials</i> , 2020 , 32, e2002784	24	25
885	Improving Efficiency and Stability of Perovskite Solar Cells Enabled by A Near-Infrared-Absorbing Moisture Barrier. <i>Joule</i> , 2020 , 4, 1575-1593	27.8	46
884	Stabilizing Aqueous Three-Dimensional Printed Constructs Using Chitosan-Cellulose Nanocrystal Assemblies. <i>ACS Applied Materials & Acs Applied &</i>	9.5	2
883	Direct observation of nanoparticle-surfactant assembly and jamming at the water-oil interface. <i>Science Advances</i> , 2020 , 6,	14.3	13
882	Butterfly Effects Arising from Starting Materials in Fused-Ring Electron Acceptors. <i>Journal of the American Chemical Society</i> , 2020 , 142, 20124-20133	16.4	45
881	Conductive Thin Films over Large Areas by Supramolecular Self-Assembly. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 ,	9.5	1
880	Bidisperse Nanospheres Jammed on a Liquid Surface. ACS Nano, 2020, 14, 10589-10599	16.7	1
879	The Next 100 Years of Polymer Science. <i>Macromolecular Chemistry and Physics</i> , 2020 , 221, 2000216	2.6	36
878	Spontaneous emulsification induced by nanoparticle surfactants. <i>Journal of Chemical Physics</i> , 2020 , 153, 224705	3.9	4
877	Self-Assembly Behavior of PS-b-P2VP Block Copolymers and Carbon Quantum Dots at Water/Oil Interfaces. <i>Macromolecules</i> , 2020 , 53, 10981-10987	5.5	6
876	Surface modification induced by perovskite quantum dots for triple-cation perovskite solar cells. <i>Nano Energy</i> , 2020 , 67, 104189	17.1	49
875	Fullerene-Based Interlayers for Breaking Energy Barriers in Organic Solar Cells. <i>ChemPlusChem</i> , 2020 , 85, 751-759	2.8	5

(2019-2020)

874	Photoresponsive Structured Liquids Enabled by Molecular Recognition at Liquid-Liquid Interfaces. Journal of the American Chemical Society, 2020 , 142, 8591-8595	16.4	35	
873	Stresses in thin sheets at fluid interfaces. <i>Nature Materials</i> , 2020 , 19, 690-693	27	7	
872	Self-Assembly of MXene-Surfactants at LiquidIliquid Interfaces: From Structured Liquids to 3D Aerogels. <i>Angewandte Chemie</i> , 2019 , 131, 18339-18344	3.6	8	
871	Self-Assembly of MXene-Surfactants at Liquid-Liquid Interfaces: From Structured Liquids to 3D Aerogels. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 18171-18176	16.4	95	
870	Configurationally Constrained Crystallization of Brush Polymers with Poly(ethylene oxide) Side Chains. <i>Macromolecules</i> , 2019 , 52, 592-600	5.5	15	
869	Impact of Electron Energy and Dose on Particle Dynamics Imaging in the Scanning Electron Microscope. <i>Microscopy and Microanalysis</i> , 2019 , 25, 1670-1671	0.5		
868	Compartmentalized, All-Aqueous Flow-Through-Coordinated Reaction Systems. <i>CheM</i> , 2019 , 5, 2678-20	5 9 6.2	26	
867	Two-Step Chemical Transformation of Polystyrene-block-poly(solketal acrylate) Copolymers for Increasing [[Macromolecules, 2019, 52, 6458-6466]	5.5	13	
866	Mechanical Properties of Solidifying Assemblies of Nanoparticle Surfactants at the Oil-Water Interface. <i>Langmuir</i> , 2019 , 35, 13340-13350	4	11	
865	High Short-Circuit Current Density via Integrating the Perovskite and Ternary Organic Bulk Heterojunction. <i>ACS Energy Letters</i> , 2019 , 4, 2535-2536	20.1	28	
864	Vapor-induced motion of two pure liquid droplets. Soft Matter, 2019, 15, 2135-2139	3.6	13	
863	Synergistic Effects of Side-Chain Engineering and Fluorination on Small Molecule Acceptors to Simultaneously Broaden Spectral Response and Minimize Voltage Loss for 13.8% Efficiency Organic Solar Cells. <i>Solar Rrl</i> , 2019 , 3, 1900169	7.1	19	
862	Interfacial Activity of Amine-Functionalized Polyhedral Oligomeric Silsesquioxanes (POSS): A Simple Strategy To Structure Liquids. <i>Angewandte Chemie</i> , 2019 , 131, 10248-10253	3.6	7	
861	Interfacial Activity of Amine-Functionalized Polyhedral Oligomeric Silsesquioxanes (POSS): A Simple Strategy To Structure Liquids. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 10142-1014	7 ^{16.4}	16	
860	Hall of Fame Article: Building Reconfigurable Devices Using Complex Liquid Eluid Interfaces (Adv. Mater. 18/2019). <i>Advanced Materials</i> , 2019 , 31, 1970128	24	2	
859	Morphological Evolution of Poly(solketal methacrylate)-block-polystyrene Copolymers in Thin Films. <i>Macromolecules</i> , 2019 , 52, 3592-3600	5.5	12	
858	NanorodBurfactant Assemblies and Their Interfacial Behavior at LiquidDiquid Interfaces. <i>ACS Macro Letters</i> , 2019 , 512-518	6.6	14	
857	Transforming Ionene Polymers into Efficient Cathode Interlayers with Pendent Fullerenes. Angewandte Chemie, 2019 , 131, 5733-5737	3.6	2	

856	Building Reconfigurable Devices Using Complex Liquid-Fluid Interfaces. <i>Advanced Materials</i> , 2019 , 31, e1806370	24	70
855	Contrasting Chemistry of Block Copolymer Films Controls the Dynamics of Protein Self-Assembly at the Nanoscale. <i>ACS Nano</i> , 2019 , 13, 4018-4027	16.7	10
854	Harnessing liquid-in-liquid printing and micropatterned substrates to fabricate 3-dimensional all-liquid fluidic devices. <i>Nature Communications</i> , 2019 , 10, 1095	17.4	55
853	Transforming Ionene Polymers into Efficient Cathode Interlayers with Pendent Fullerenes. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 5677-5681	16.4	15
852	One-Dimensional Anomalous Diffusion of Gold Nanoparticles in a Polymer Melt. <i>Physical Review Letters</i> , 2019 , 122, 107802	7.4	9
851	11.2% Efficiency all-polymer solar cells with high open-circuit voltage. <i>Science China Chemistry</i> , 2019 , 62, 845-850	7.9	114
850	In Situ Structure Characterization in Slot-Die-Printed All-Polymer Solar Cells with Efficiency Over 9%. <i>Solar Rrl</i> , 2019 , 3, 1900032	7.1	14
849	High-Performance Perovskite Solar Cells with a Non-doped Small Molecule Hole Transporting Layer. <i>ACS Applied Energy Materials</i> , 2019 , 2, 1634-1641	6.1	14
848	Poly(oxime-ester) Vitrimers with Catalyst-Free Bond Exchange. <i>Journal of the American Chemical Society</i> , 2019 , 141, 13753-13757	16.4	80
847	Reconfigurable ferromagnetic liquid droplets. <i>Science</i> , 2019 , 365, 264-267	33.3	188
846	Improving the efficiencies of small molecule solar cells by solvent vapor annealing to enhance J-aggregation. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 9618-9624	7.1	9
845	Stabilizing Liquids Using Interfacial Supramolecular Polymerization. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12112-12116	16.4	17
844	Stabilizing Liquids Using Interfacial Supramolecular Polymerization. <i>Angewandte Chemie</i> , 2019 , 131, 12	22 4 6612	2 9 4
843	Sculpting Liquids with Two-Dimensional Materials: The Assembly of TiCT MXene Sheets at Liquid-Liquid Interfaces. <i>ACS Nano</i> , 2019 , 13, 12385-12392	16.7	30
842	Using a Graphene-Polyelectrolyte Complex Reducing Agent To Promote Cracking in Single-Crystalline Gold Nanoplates. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 41602-41610	9.5	4
841	Enhancing the Performance of a Fused-Ring Electron Acceptor by Unidirectional Extension. <i>Journal of the American Chemical Society</i> , 2019 , 141, 19023-19031	16.4	102
840	Probing the structural evolution in deformed isoprene rubber by in situ synchrotron X-ray diffraction and atomic force microscopy. <i>Polymer</i> , 2019 , 185, 121926	3.9	6
839	A randomized trial of a mercaptopurine (6MP) adherence-enhancing intervention in children with acute lymphoblastic leukemia (ALL): A COG ACCL1033 study <i>Journal of Clinical Oncology</i> , 2019 , 37, 10	00 7- 10	 0 ð 7

838	Assessing Pair Interaction Potentials of Nanoparticles on Liquid Interfaces. ACS Nano, 2019, 13, 3075-30	0 8 Ø.7	9
837	Interfacial Broadening Kinetics between a Network and a Linear Polymer and Their Composites Prepared by Melt Blending. <i>Macromolecules</i> , 2019 , 52, 9759-9765	5.5	6
836	Orthogonally Aligned Block Copolymer Line Patterns on Minimal Topographic Patterns. <i>ACS Applied Materials & District Materials & Distr</i>	9.5	11
835	Reconfigurable Microfluidic Droplets Stabilized by Nanoparticle Surfactants. ACS Nano, 2018, 12, 2365-	·2 3 8. 7	40
834	Evidence of tunable macroscopic polarization in perovskite films using photo-Kelvin Probe Force Microscopy. <i>Materials Letters</i> , 2018 , 217, 308-311	3.3	3
833	Wetting, meniscus structure, and capillary interactions of microspheres bound to a cylindrical liquid interface. <i>Soft Matter</i> , 2018 , 14, 2131-2141	3.6	1
832	Cellulose Nanocrystals: Liquid Letters (Adv. Mater. 9/2018). Advanced Materials, 2018, 30, 1870057	24	1
831	Chemical and Morphological Control of Interfacial Self-Doping for Efficient Organic Electronics. <i>Advanced Materials</i> , 2018 , 30, e1705976	24	38
830	Interplay between Ion Transport, Applied Bias, and Degradation under Illumination in Hybrid Perovskite p-i-n Devices. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 13986-13994	3.8	33
829	Energy-effectively printed all-polymer solar cells exceeding 8.61% efficiency. <i>Nano Energy</i> , 2018 , 46, 428-435	17.1	42
828	Bulk and Surface Morphologies of ABC Miktoarm Star Terpolymers Composed of PDMS, PI, and PMMA Arms. <i>Macromolecules</i> , 2018 , 51, 1041-1051	5.5	12
827	Wrapping with a splash: High-speed encapsulation with ultrathin sheets. <i>Science</i> , 2018 , 359, 775-778	33.3	37
826	Directed Self-Assembly of Asymmetric Block Copolymers in Thin Films Driven by Uniaxially Aligned Topographic Patterns. <i>ACS Nano</i> , 2018 , 12, 1642-1649	16.7	12
825	Conformation Locking on Fused-Ring Electron Acceptor for High-Performance Nonfullerene Organic Solar Cells. <i>Advanced Functional Materials</i> , 2018 , 28, 1705095	15.6	88
824	Printed Nonfullerene Organic Solar Cells with the Highest Efficiency of 9.5%. <i>Advanced Energy Materials</i> , 2018 , 8, 1701942	21.8	81
823	Evaluation of the Interaction Parameter for Poly(solketal methacrylate)-block-polystyrene Copolymers. <i>Macromolecules</i> , 2018 , 51, 1031-1040	5.5	30
822	Morphological Behavior of A2B Block Copolymers in Thin Films. <i>Macromolecules</i> , 2018 , 51, 1181-1188	5.5	16
821	Tuning microdomain spacing with light using ortho-nitrobenzyl-linked triblock copolymers. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2018 , 56, 355-361	2.6	1

820	Chemical Stabilization of Perovskite Solar Cells with Functional Fulleropyrrolidines. <i>ACS Central Science</i> , 2018 , 4, 216-222	16.8	10
819	An Unfused-Core-Based Nonfullerene Acceptor Enables High-Efficiency Organic Solar Cells with Excellent Morphological Stability at High Temperatures. <i>Advanced Materials</i> , 2018 , 30, 1705208	24	272
818	Liquid Letters. Advanced Materials, 2018, 30, 1705800	24	61
817	Synergistic effect of fluorination on both donor and acceptor materials for high performance non-fullerene polymer solar cells with 13.5% efficiency. <i>Science China Chemistry</i> , 2018 , 61, 531-537	7.9	302
816	Reconfigurable Printed Liquids. <i>Advanced Materials</i> , 2018 , 30, e1707603	24	89
815	The Interfacial Assembly of Polyoxometalate Nanoparticle Surfactants. <i>Nano Letters</i> , 2018 , 18, 2525-25	2 9 1.5	27
814	Rational design of advanced elastomer nanocomposites towards extremely energy-saving tires based on macromolecular assembly strategy. <i>Nano Energy</i> , 2018 , 48, 180-188	17.1	36
813	Advances in Atomic Force Microscopy for Probing Polymer Structure and Properties. <i>Macromolecules</i> , 2018 , 51, 3-24	5.5	77
812	Reversible Surface Patterning by Dynamic Crosslink Gradients: Controlling Buckling in 2D. <i>Advanced Materials</i> , 2018 , 30, e1803463	24	24
811	Efficient and thermally stable all-polymer solar cells based on a fluorinated wide-bandgap polymer donor with high crystallinity. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 16403-16411	13	23
810	Guiding kinetic trajectories between jammed and unjammed states in 2D colloidal nanocrystal-polymer assemblies with zwitterionic ligands. <i>Science Advances</i> , 2018 , 4, eaap8045	14.3	18
809	Nanoparticle Assembly at Liquid-Liquid Interfaces: From the Nanoscale to Mesoscale. <i>Advanced Materials</i> , 2018 , 30, e1800714	24	116
808	Ternary non-fullerene polymer solar cells with 13.51% efficiency and a record-high fill factor of 78.13%. <i>Energy and Environmental Science</i> , 2018 , 11, 3392-3399	35.4	122
807	Effects of delayed particle detachment on injectivity decline due to fines migration. <i>Journal of Hydrology</i> , 2018 , 564, 1099-1109	6	10
806	Confinement Effects on the Crystallization of Poly(3-hydroxybutyrate). <i>Macromolecules</i> , 2018 , 51, 5732	- 5, 7 , 41	25
805	A low-bandgap dimeric porphyrin molecule for 10% efficiency solar cells with small photon energy loss. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 18469-18478	13	29
804	A Highly Efficient Non-Fullerene Organic Solar Cell with a Fill Factor over 0.80 Enabled by a Fine-Tuned Hole-Transporting Layer. <i>Advanced Materials</i> , 2018 , 30, e1801801	24	299
803	Ternary polymer solar cells based-on two polymer donors with similar HOMO levels and an organic acceptor with absorption extending to 850 nm. <i>Organic Electronics</i> , 2018 , 62, 89-94	3.5	9

802	Thickness Dependence of the Young Modulus of Polymer Thin Films. <i>Macromolecules</i> , 2018 , 51, 6764-6	575750	24
801	High-efficiency quaternary polymer solar cells enabled with binary fullerene additives to reduce nonfullerene acceptor optical band gap and improve carriers transport. <i>Science China Chemistry</i> , 2018 , 61, 1609-1618	7.9	25
800	Adaptive Structured Pickering Emulsions and Porous Materials Based on Cellulose Nanocrystal Surfactants. <i>Angewandte Chemie</i> , 2018 , 130, 13748-13752	3.6	20
799	Adaptive Structured Pickering Emulsions and Porous Materials Based on Cellulose Nanocrystal Surfactants. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 13560-13564	16.4	56
798	Combining Fullerenes and Zwitterions in Non-Conjugated Polymer Interlayers to Raise Solar Cell Efficiency. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 9675-9678	16.4	31
797	Combining Fullerenes and Zwitterions in Non-Conjugated Polymer Interlayers to Raise Solar Cell Efficiency. <i>Angewandte Chemie</i> , 2018 , 130, 9823-9826	3.6	4
796	High-Performance As-Cast Nonfullerene Polymer Solar Cells with Thicker Active Layer and Large Area Exceeding 11% Power Conversion Efficiency. <i>Advanced Materials</i> , 2018 , 30, 1704546	24	210
795	Improved photocurrent and efficiency of non-fullerene organic solar cells despite higher charge recombination. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 957-962	13	13
794	Overcoming the morphological and efficiency limit in all-polymer solar cells by designing conjugated random copolymers containing a naphtho[1,2-c:5,6-c?]bis([1,2,5]thiadiazole)] moiety. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 23295-23300	13	9
793	Fabrication of sub-20 nm patterns using dopamine chemistry in self-aligned double patterning. <i>Nanoscale</i> , 2018 , 10, 20779-20784	7.7	6
792	Guided Assembly of Block Copolymers in Three-Dimensional Woodpile Scaffolds. <i>ACS Applied Materials & Discourse Materials & Discours</i>	9.5	5
791	Ternary non-fullerene polymer solar cells with a high crystallinity n-type organic semiconductor as the second acceptor. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 24814-24822	13	14
790	On the morphological behavior of ABC miktoarm stars containing poly(cis 1,4-isoprene), poly(styrene), and poly(2-vinylpyridine). <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2018 , 56, 1491-1504	2.6	3
789	Conductive Composite Materials Fabricated from Microbially Produced Protein Nanowires. <i>Small</i> , 2018 , 14, e1802624	11	22
788	Highly oriented and ordered microstructures in block copolymer films. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2018 , 56, 1369-1375	2.6	3
787	Multiple Roles of a Non-fullerene Acceptor Contribute Synergistically for High-Efficiency Ternary Organic Photovoltaics. <i>Joule</i> , 2018 , 2, 2154-2166	27.8	66
786	Efficient Electron Mobility in an All-Acceptor Napthalenediimide-Bithiazole Polymer Semiconductor with Large Backbone Torsion. <i>ACS Applied Materials & Empty Interfaces</i> , 2018 , 10, 40070-40077	9.5	12
7 ⁸ 5	Studies on the 3-Lamellar Morphology of Miktoarm Terpolymers. <i>Macromolecules</i> , 2018 , 51, 7491-7499	5.5	9

7 ⁸ 4	Phenylene-bridged perylenediimide-porphyrin acceptors for non-fullerene organic solar cells. Sustainable Energy and Fuels, 2018 , 2, 2616-2624	5.8	20
783	AFM nanomechanical mapping and nanothermal analysis reveal enhanced crystallization at the surface of a semicrystalline polymer. <i>Polymer</i> , 2018 , 146, 188-195	3.9	15
782	Atomic Force Microscopy Nanomechanical Mapping Visualizes Interfacial Broadening between Networks Due to Chemical Exchange Reactions. <i>Journal of the American Chemical Society</i> , 2018 , 140, 6793-6796	16.4	35
781	Applying the heteroatom effect of chalcogen for high-performance small-molecule solar cells. Journal of Materials Chemistry A, 2017 , 5, 3425-3433	13	13
78o	1,3-Bis(thieno[3,4-b]thiophen-6-yl)-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione-Based Small-Molecule Donor for Efficient Solution-Processed Solar Cells. <i>ACS Applied Materials & Donor for Efficient Solution-Processed Solar Cells. ACS Applied Materials & Donor for Efficient Solution-Processed Solar Cells. ACS Applied Materials & Donor for Efficient Solution-Processed Solar Cells. ACS Applied Materials & Donor for Efficient Solution-Processed Solar Cells. ACS Applied Materials & Donor for Efficient Solution-Processed Solar Cells. ACS Applied Materials & Donor for Efficient Solution-Processed Solar Cells.</i>	s- 6 219	19
779	High Efficiency Ternary Nonfullerene Polymer Solar Cells with Two Polymer Donors and an Organic Semiconductor Acceptor. <i>Advanced Energy Materials</i> , 2017 , 7, 1602215	21.8	86
778	Highly Efficient Parallel-Like Ternary Organic Solar Cells. <i>Chemistry of Materials</i> , 2017 , 29, 2914-2920	9.6	140
777	Pendant Chain Effect on the Synthesis, Characterization, and Structure Property Relations of Poly(di-n-alkyl itaconate-co-isoprene) Biobased Elastomers. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 5214-5223	8.3	15
776	Three-dimensional hierarchical metal oxidellarbon electrode materials for highly efficient microbial electrosynthesis. <i>Sustainable Energy and Fuels</i> , 2017 , 1, 1171-1176	5.8	42
775	Orientation transitions during the growth of imine covalent organic framework thin films. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 5090-5095	7.1	26
774	Low band-gap conjugated polymer based on diketopyrrolopyrrole units and its application in organic photovoltaic cells. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 10416-10423	13	21
773	50th Anniversary Perspective: Putting the Squeeze on Polymers: A Perspective on Polymer Thin Films and Interfaces. <i>Macromolecules</i> , 2017 , 50, 4597-4609	5.5	51
772	Efficient and 1,8-diiodooctane-free ternary organic solar cells fabricated via nanoscale morphology tuning using small-molecule dye additive. <i>Nano Research</i> , 2017 , 10, 3765-3774	10	18
771	In situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from [PbI] cage nanoparticles. <i>Nature Communications</i> , 2017 , 8, 15688	17.4	147
770	Fabrication of compact and stable perovskite films with optimized precursor composition in the fast-growing procedure. <i>Science China Materials</i> , 2017 , 60, 608-616	7.1	11
769	Small-Molecule Solar Cells with Simultaneously Enhanced Short-Circuit Current and Fill Factor to Achieve 11% Efficiency. <i>Advanced Materials</i> , 2017 , 29, 1700616	24	79
768	Applying Thienyl Side Chains and Different Bridge to Aromatic Side-Chain Substituted Indacenodithiophene-Based Small Molecule Donors for High-Performance Organic Solar Cells. <i>ACS Applied Materials & Donors and Donor</i>	9.5	9
767	Using block copolymer architecture to achieve sub-10[hm periods. <i>Polymer</i> , 2017 , 121, 297-303	3.9	25

766	Effect of Nanoparticle Surfactants on the Breakup of Free-Falling Water Jets during Continuous Processing of Reconfigurable Structured Liquid Droplets. <i>Nano Letters</i> , 2017 , 17, 3119-3125	11.5	33	
765	Geometry-Driven Folding of a Floating Annular Sheet. <i>Physical Review Letters</i> , 2017 , 118, 048004	7.4	20	
764	In situ grazing incidence small-angle X-ray scattering study of solvent vapor annealing in lamellae-forming block copolymer thin films: Trade-off of defects in deswelling. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2017 , 55, 980-989	2.6	7	
763	Efficient Semitransparent Solar Cells with High NIR Responsiveness Enabled by a Small-Bandgap Electron Acceptor. <i>Advanced Materials</i> , 2017 , 29, 1606574	24	224	
762	Head-to-Head Linkage Containing Dialkoxybithiophene-Based Polymeric Semiconductors for Polymer Solar Cells with Large Open-Circuit Voltages. <i>Macromolecules</i> , 2017 , 50, 137-150	5.5	27	
761	26 mA cml Jsc from organic solar cells with a low-bandgap nonfullerene acceptor. <i>Science Bulletin</i> , 2017 , 62, 1494-1496	10.6	316	
760	Insertion of double bond Ebridges of ADA acceptors for high performance near-infrared polymer solar cells. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 22588-22597	13	50	
759	Donor-Acceptor Conjugated Macrocycles: Synthesis and Host-Guest Coassembly with Fullerene toward Photovoltaic Application. <i>ACS Nano</i> , 2017 , 11, 11701-11713	16.7	44	
758	Bicontinuous structured liquids with sub-micrometre domains using nanoparticle surfactants. <i>Nature Nanotechnology</i> , 2017 , 12, 1060-1063	28.7	94	
757	Macroscopically ordered hexagonal arrays by directed self-assembly of block copolymers with minimal topographic patterns. <i>Nanoscale</i> , 2017 , 9, 14888-14896	7.7	13	
756	Transition in Dynamics as Nanoparticles Jam at the Liquid/Liquid Interface. <i>Nano Letters</i> , 2017 , 17, 685.	5 -68 6 2	21	
755	Isomeric Effects of Solution Processed Ladder-Type Non-Fullerene Electron Acceptors. <i>Solar Rrl</i> , 2017 , 1, 1700107	7.1	41	
754	Carboxylated Fullerene at the Oil/Water Interface. ACS Applied Materials & Camp; Interfaces, 2017, 9, 343	89:343	1 95 5	
753	Fine-Tuning Nanoparticle Packing at Water-Oil Interfaces Using Ionic Strength. <i>Nano Letters</i> , 2017 , 17, 6453-6457	11.5	63	
752	Interfacial Assembly and Jamming Behavior of Polymeric Janus Particles at Liquid Interfaces. <i>ACS Applied Materials & Distriction (Control of Polymeric Janus Particles at Liquid Interfaces)</i> 1, 33327-33332	9.5	42	
751	Realizing 5.4 nm Full Pitch Lamellar Microdomains by a Solid-State Transformation. <i>Macromolecules</i> , 2017 , 50, 7148-7154	5.5	44	
750	Self-Regulated Nanoparticle Assembly at Liquid/Liquid Interfaces: A Route to Adaptive Structuring of Liquids. <i>Langmuir</i> , 2017 , 33, 7994-8001	4	38	
749	Circumventing UV Light Induced Nanomorphology Disorder to Achieve Long Lifetime PTB7-Th:PCBM Based Solar Cells. <i>Advanced Energy Materials</i> , 2017 , 7, 1701201	21.8	54	

748	Printing Fabrication of Bulk Heterojunction Solar Cells and In Situ Morphology Characterization. Journal of Visualized Experiments, 2017,	1.6	1
747	Role of Ionic Functional Groups on Ion Transport at Perovskite Interfaces. <i>Advanced Energy Materials</i> , 2017 , 7, 1701235	21.8	27
746	Liquid Tubule Formation and Stabilization Using Cellulose Nanocrystal Surfactants. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 12594-12598	16.4	54
745	Approaching Intra- and Interchain Charge Transport of Conjugated Polymers Facilely by Topochemical Polymerized Single Crystals. <i>Advanced Materials</i> , 2017 , 29, 1701251	24	84
744	Ternary Solar Cells Based on Two Small Molecule Donors with Same Conjugated Backbone: The Role of Good Miscibility and Hole Relay Process. <i>ACS Applied Materials & Donors & D</i>	- 299 23	38
743	Coassembly Kinetics of Graphene Oxide and Block Copolymers at the Water/Oil Interface. <i>Langmuir</i> , 2017 , 33, 8961-8969	4	17
742	Nanomechanical Imaging of the Diffusion of Fullerene into Conjugated Polymer. <i>ACS Nano</i> , 2017 , 11, 8660-8667	16.7	20
741	Liquid Tubule Formation and Stabilization Using Cellulose Nanocrystal Surfactants. <i>Angewandte Chemie</i> , 2017 , 129, 12768-12772	3.6	38
740	3D Structural Model of High-Performance Non-Fullerene Polymer Solar Cells as Revealed by High-Resolution AFM. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 24451-24455	9.5	1
739	Toward High Efficiency Polymer Solar Cells: Influence of Local Chemical Environment and Morphology. <i>Advanced Energy Materials</i> , 2017 , 7, 1601081	21.8	40
738	Nonfullerene Small Molecular Acceptors with a Three-Dimensional (3D) Structure for Organic Solar Cells. <i>Chemistry of Materials</i> , 2016 , 28, 6770-6778	9.6	52
737	A Polymer Hole Extraction Layer for Inverted Perovskite Solar Cells from Aqueous Solutions. <i>Advanced Energy Materials</i> , 2016 , 6, 1600664	21.8	46
736	Directed Self-Assembly of Block Copolymer Thin Films Using Minimal Topographic Patterns. <i>ACS Nano</i> , 2016 , 10, 7915-25	16.7	32
735	High-Efficiency Nonfullerene Polymer Solar Cells with Medium Bandgap Polymer Donor and Narrow Bandgap Organic Semiconductor Acceptor. <i>Advanced Materials</i> , 2016 , 28, 8288-8295	24	224
734	11% Efficient Ternary Organic Solar Cells with High Composition Tolerance via Integrated Near-IR Sensitization and Interface Engineering. <i>Advanced Materials</i> , 2016 , 28, 8184-8190	24	227
733	Charge-Carrier Balance for Highly Efficient Inverted Planar Heterojunction Perovskite Solar Cells. <i>Advanced Materials</i> , 2016 , 28, 10718-10724	24	170
732	Conjugated Polymer Zwitterions: Efficient Interlayer Materials in Organic Electronics. <i>Accounts of Chemical Research</i> , 2016 , 49, 2478-2488	24.3	83
731	Efficient Naphthalenediimide-Based Hole Semiconducting Polymer with Vinylene Linkers between Donor and Acceptor Units. <i>Chemistry of Materials</i> , 2016 , 28, 8580-8590	9.6	41

(2016-2016)

730	New insight of molecular interaction, crystallization and phase separation in higher performance small molecular solar cells via solvent vapor annealing. <i>Nano Energy</i> , 2016 , 30, 639-648	17.1	58
729	An electron-rich 2-alkylthieno[3,4-b]thiophene building block with excellent electronic and morphological tunability for high-performance small-molecule solar cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 17354-17362	13	32
728	Organic Solar Cells: Multi-Length Scaled Silver Nanowire Grid for Application in Efficient Organic Solar Cells (Adv. Funct. Mater. 27/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 4806-4806	15.6	3
727	A simple small molecule as an acceptor for fullerene-free organic solar cells with efficiency near 8%. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 10409-10413	13	96
726	Tuning charge transport from unipolar (n-type) to ambipolar in bis(naphthalene diimide) derivatives by introducing Etonjugated heterocyclic bridging moieties. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 7230-7240	7.1	20
725	Self-assembly of nanomaterials at fluid interfaces. European Physical Journal E, 2016, 39, 57	1.5	52
724	Measuring the Degree of Crystallinity in Semicrystalline Regioregular Poly(3-hexylthiophene). <i>Macromolecules</i> , 2016 , 49, 4501-4509	5.5	69
723	A simple perylene diimide derivative with a highly twisted geometry as an electron acceptor for efficient organic solar cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 10659-10665	13	97
722	Nanomechanical Mapping of a Deformed Elastomer: Visualizing a Self-Reinforcement Mechanism. <i>ACS Macro Letters</i> , 2016 , 5, 839-843	6.6	19
721	High-Performance Inverted Planar Heterojunction Perovskite Solar Cells Based on Lead Acetate Precursor with Efficiency Exceeding 18%. <i>Advanced Functional Materials</i> , 2016 , 26, 3508-3514	15.6	159
720	Curvature-induced stiffness and the spatial variation of wavelength in wrinkled sheets. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 1144-9	11.5	62
719	Solution-processed bulk heterojunction solar cells based on porphyrin small molecules with very low energy losses comparable to perovskite solar cells and high quantum efficiencies. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 3843-3850	7.1	34
718	Simultaneous Thermoelectric Property Measurement and Incoherent Phonon Transport in Holey Silicon. <i>ACS Nano</i> , 2016 , 10, 124-32	16.7	81
717	Hydrophilic Conjugated Polymers Prepared by Aqueous Horner Wadsworth Emmons Coupling. <i>Macromolecules</i> , 2016 , 49, 2526-2532	5.5	18
716	High Efficiency Tandem Thin-Perovskite/Polymer Solar Cells with a Graded Recombination Layer. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2016 , 8, 7070-6	9.5	94
715	A non-fullerene electron acceptor modified by thiophene-2-carbonitrile for solution-processed organic solar cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 3777-3783	13	67
714	Multicenter Implementation of a Treatment Bundle for Patients with Sepsis and Intermediate Lactate Values. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2016 , 193, 1264-70	10.2	76
713	Alkylthio substituted thiophene modified benzodithiophene-based highly efficient photovoltaic small molecules. <i>Organic Electronics</i> , 2016 , 28, 263-268	3.5	11

712	Fullerene-free small molecule organic solar cells with a high open circuit voltage of 1.15 V. <i>Chemical Communications</i> , 2016 , 52, 465-8	5.8	69
711	Multi-Length Scaled Silver Nanowire Grid for Application in Efficient Organic Solar Cells. <i>Advanced Functional Materials</i> , 2016 , 26, 4822-4828	15.6	42
710	Mesoporous PbI2 Scaffold for High-Performance Planar Heterojunction Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2016 , 6, 1501890	21.8	102
709	The Static Structure and Dynamics of Cadmium Sulfide Nanoparticles within Poly(styrene-block-isoprene) Diblock Copolymer Melts. <i>Macromolecular Chemistry and Physics</i> , 2016 , 217, 591-598	2.6	3
708	Understanding Interface Engineering for High-Performance Fullerene/Perovskite Planar Heterojunction Solar Cells. <i>Advanced Energy Materials</i> , 2016 , 6, 1501606	21.8	156
707	An in situ GISAXS study of selective solvent vapor annealing in thin block copolymer films: Symmetry breaking of in-plane sphere order upon deswelling. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2016 , 54, 331-338	2.6	36
706	Structured Liquids with pH-Triggered Reconfigurability. Advanced Materials, 2016, 28, 6612-8	24	61
705	Evaluation of Small Molecules as Front Cell Donor Materials for High-Efficiency Tandem Solar Cells. <i>Advanced Materials</i> , 2016 , 28, 7008-12	24	41
704	Perovskite Solar Cells: High-Performance Inverted Planar Heterojunction Perovskite Solar Cells Based on Lead Acetate Precursor with Efficiency Exceeding 18% (Adv. Funct. Mater. 20/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 3551-3551	15.6	6
703	Multi-Length-Scale Morphologies Driven by Mixed Additives in Porphyrin-Based Organic Photovoltaics. <i>Advanced Materials</i> , 2016 , 28, 4727-33	24	219
702	Reaction: Polymer Chemistries Enabling Cradle-to-Cradle Life Cycles for Plastics. <i>CheM</i> , 2016 , 1, 816-81	816.2	24
701	All polymer solar cells with diketopyrrolopyrrole-polymers as electron donor and a naphthalenediimide-polymer as electron acceptor. <i>RSC Advances</i> , 2016 , 6, 35677-35683	3.7	20
700	Series of Multifluorine Substituted Oligomers for Organic Solar Cells with Efficiency over 9% and Fill Factor of 0.77 by Combination Thermal and Solvent Vapor Annealing. <i>Journal of the American Chemical Society</i> , 2016 , 138, 7687-97	16.4	176
699	Following the Morphology Formation In Situ in Printed Active Layers for Organic Solar Cells. Advanced Energy Materials, 2016 , 6, 1501580	21.8	72
698	Systematic Fluorination of P3HT: Synthesis of P(3HT-co-3H4FT)s by Direct Arylation Polymerization, Characterization, and Device Performance in OPVs. <i>Macromolecules</i> , 2016 , 49, 3028-3037	5.5	25
698 697	Systematic Fluorination of P3HT: Synthesis of P(3HT-co-3H4FT)s by Direct Arylation Polymerization,	5.5	
	Systematic Fluorination of P3HT: Synthesis of P(3HT-co-3H4FT)s by Direct Arylation Polymerization, Characterization, and Device Performance in OPVs. <i>Macromolecules</i> , 2016 , 49, 3028-3037 Organic Solar Cells: Following the Morphology Formation In Situ in Printed Active Layers for		

(2015-2016)

694	Visualizing the Dynamics of Nanoparticles in Liquids by Scanning Electron Microscopy. <i>ACS Nano</i> , 2016 , 10, 6257-64	16.7	19
693	Ternary Organic Solar Cells Based on Two Compatible Nonfullerene Acceptors with Power Conversion Efficiency >10. <i>Advanced Materials</i> , 2016 , 28, 10008-10015	24	234
692	Interfacial rheology of polymer/carbon nanotube films co-assembled at the oil/water interface. <i>Soft Matter</i> , 2016 , 12, 8701-8709	3.6	13
691	High performance bio-based elastomers: energy efficient and sustainable materials for tires. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 13058-13062	13	39
690	High-Performance Polymer Solar Cells Based on a Wide-Bandgap Polymer Containing Pyrrolo[3,4-]benzotriazole-5,7-dione with a Power Conversion Efficiency of 8.63. <i>Advanced Science</i> , 2016 , 3, 1600032	13.6	57
689	High-Performance Non-Fullerene Organic Solar Cells Based on a Selenium-Containing Polymer Donor and a Twisted Perylene Bisimide Acceptor. <i>Advanced Science</i> , 2016 , 3, 1600117	13.6	72
688	Solid particles adsorbed on capillary-bridge-shaped fluid polystyrene surfaces. <i>Langmuir</i> , 2015 , 31, 5299	- ≱ 05	2
687	A Small Molecule Composed of Dithienopyran and Diketopyrrolopyrrole as Versatile Electron Donor Compatible with Both Fullerene and Nonfullerene Electron Acceptors for High Performance Organic Solar Cells. <i>Chemistry of Materials</i> , 2015 , 27, 4865-4870	9.6	64
686	Using Janus Nanoparticles To Trap Polymer Blend Morphologies during Solvent-Evaporation-Induced Demixing. <i>Macromolecules</i> , 2015 , 48, 4220-4227	5.5	61
685	NDI-Based Small Molecule as Promising Nonfullerene Acceptor for Solution-Processed Organic Photovoltaics. <i>Advanced Energy Materials</i> , 2015 , 5, 1500195	21.8	91
684	The Crystallization of PEDOT:PSS Polymeric Electrodes Probed In Situ during Printing. <i>Advanced Materials</i> , 2015 , 27, 3391-7	24	203
683	Donor-Acceptor Copolymers Based on Thermally Cleavable Indigo, Isoindigo, and DPP Units: Synthesis, Field Effect Transistors, and Polymer Solar Cells. <i>ACS Applied Materials & Description</i> (2015), 7, 9038-51	9.5	57
682	Ethynylene-linked benzo[1,2-b:4,5-b?]dithiophene-alt-diketopyrrolopyrrole alternating copolymer: optoelectronic properties, film morphology and photovoltaic applications. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 12972-12981	13	17
681	Fluoro-Substituted n-Type Conjugated Polymers for Additive-Free All-Polymer Bulk Heterojunction Solar Cells with High Power Conversion Efficiency of 6.71. <i>Advanced Materials</i> , 2015 , 27, 3310-7	24	400
68o	Indentation of ultrathin elastic films and the emergence of asymptotic isometry. <i>Physical Review Letters</i> , 2015 , 114, 014301	7.4	42
679	A series of simple oligomer-like small molecules based on oligothiophenes for solution-processed solar cells with high efficiency. <i>Journal of the American Chemical Society</i> , 2015 , 137, 3886-93	16.4	722
678	Anthracene-Based Medium Bandgap Conjugated Polymers for High Performance Polymer Solar Cells Exceeding 8% PCE Without Additive and Annealing Process. <i>Advanced Energy Materials</i> , 2015 , 5, 1500065	21.8	53
677	Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability. Journal of the American Chemical Society, 2015 , 137, 13130-7	16.4	308

676	Large active layer thickness toleration of high-efficiency small molecule solar cells. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 22274-22279	13	18
675	High-Efficiency Small Molecule-Based Bulk-Heterojunction Solar Cells Enhanced by Additive Annealing. <i>ACS Applied Materials & Interfaces</i> , 2015 , 7, 21495-502	9.5	35
674	Electronic and Morphological Studies of Conjugated Polymers Incorporating a Disk-Shaped Polycyclic Aromatic Hydrocarbon Unit. <i>ACS Applied Materials & Disk-Shaped Materials &</i>	9.5	8
673	Simultaneous spin-coating and solvent annealing: manipulating the active layer morphology to a power conversion efficiency of 9.6% in polymer solar cells. <i>Materials Horizons</i> , 2015 , 2, 592-597	14.4	31
672	A solution-processed high performance organic solar cell using a small molecule with the thieno[3,2-b]thiophene central unit. <i>Chemical Communications</i> , 2015 , 51, 15268-71	5.8	40
671	Optimal wrapping of liquid droplets with ultrathin heets. <i>Nature Materials</i> , 2015 , 14, 1206-9	27	53
670	Systematic Variation of Fluorinated Diketopyrrolopyrrole Low Bandgap Conjugated Polymers: Synthesis by Direct Arylation Polymerization and Characterization and Performance in Organic Photovoltaics and Organic Field-Effect Transistors. <i>Macromolecules</i> , 2015 , 48, 6978-6986	5.5	42
669	Small Molecules Based on Alkyl/Alkylthio-thieno[3,2-b]thiophene-Substituted Benzo[1,2-b:4,5-b?]dithiophene for Solution-Processed Solar Cells with High Performance. <i>Chemistry of Materials</i> , 2015 , 27, 8414-8423	9.6	63
668	Fast printing and in situ morphology observation of organic photovoltaics using slot-die coating. <i>Advanced Materials</i> , 2015 , 27, 886-91	24	99
66 7	Sequential deposition: optimization of solvent swelling for high-performance polymer solar cells. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> , 7, 653-61	9.5	40
666	Effect of Pendant Functionality in Thieno[3,4-b]thiophene-alt-benzodithiophene Polymers for OPVs. <i>Chemistry of Materials</i> , 2015 , 27, 443-449	9.6	18
665	Tuning the energy gap of conjugated polymer zwitterions for efficient interlayers and solar cells. Journal of Polymer Science Part A, 2015, 53, 327-336	2.5	16
664	Small-molecule solar cells with efficiency over 9%. <i>Nature Photonics</i> , 2015 , 9, 35-41	33.9	701
663	Comparison of Two DA Type Polymers with Each Being Fluorinated on D and A Unit for High Performance Solar Cells. <i>Advanced Functional Materials</i> , 2015 , 25, 120-125	15.6	99
662	MRS Communications, Polymers and Soft Matter special issue, Part A The functionality of polymers: fundamentals to technology. <i>MRS Communications</i> , 2015 , 5, 95-95	2.7	2
661	Morphology Evolution in High-Performance Polymer Solar Cells Processed from Nonhalogenated Solvent. <i>Advanced Science</i> , 2015 , 2, 1500095	13.6	56
660	Selective Laser Ablation in Resists and Block Copolymers for High Resolution Lithographic Patterning. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2015 , 28, 663-	668	3
659	Subtle Balance Between Length Scale of Phase Separation and Domain Purification in Small-Molecule Bulk-Heterojunction Blends under Solvent Vapor Treatment. <i>Advanced Materials</i> , 2015, 27, 6296-302	24	141

Finely Tuned Polymer Interlayers Enhance Solar Cell Efficiency. Angewandte Chemie, 2015, 127, 11647-136651 658 Spiro Linkage as an Alternative Strategy for Promising Nonfullerene Acceptors in Organic Solar 657 15.6 123 Cells. Advanced Functional Materials, 2015, 25, 5954-5966 Finely Tuned Polymer Interlayers Enhance Solar Cell Efficiency. Angewandte Chemie - International 656 16.4 93 Edition, 2015, 54, 11485-9 Directed Self-Assembly of Poly(2-vinylpyridine)-b-polystyrene-b-poly(2-vinylpyridine) Triblock Copolymer with Sub-15 nm Spacing Line Patterns Using a Nanoimprinted Photoresist Template. 46 655 24 *Advanced Materials*, **2015**, 27, 4364-70 Dual Functional Zwitterionic Fullerene Interlayer for Efficient Inverted Polymer Solar Cells. 654 21.8 34 Advanced Energy Materials, 2015, 5, 1500405 Optimizing Light-Harvesting Polymers via Side Chain Engineering. Advanced Functional Materials, 653 15.6 32 2015, 25, 6458-6469 Medium Bandgap Conjugated Polymer for High Performance Polymer Solar Cells Exceeding 9% 652 24 73 Power Conversion Efficiency. Advanced Materials, 2015, 27, 7462-8 Observation of dynamical heterogeneities and their time evolution on the surface of an amorphous 651 3.6 21 polymer. Soft Matter, 2015, 11, 1425-33 Nanoscale structure and superhydrophobicity of sp(2)-bonded boron nitride aerogels. *Nanoscale*, 650 7.7 32 **2015**, 7, 10449-58 Highly Crystalline Low Band Gap Polymer Based on Thieno[3,4-c]pyrrole-4,6-dione for High-Performance Polymer Solar Cells with a >400 nm Thick Active Layer. ACS Applied Materials 649 9.5 39 & Interfaces, **2015**, 7, 13666-74 Enhanced crystalline morphology of a ladder-type polymer bulk-heterojunction device by 648 9 7.7 blade-coating. Nanoscale, 2015, 7, 10936-9 Deep absorbing porphyrin small molecule for high-performance organic solar cells with very low 16.4 647 396 energy losses. Journal of the American Chemical Society, 2015, 137, 7282-5 646 Single-junction polymer solar cells with high efficiency and photovoltage. Nature Photonics, 2015, 9, 174-1739 1495 Understanding the Morphology of PTB7:PCBM Blends in Organic Photovoltaics. Advanced Energy 645 21.8 187 Materials, 2014, 4, 1301377 Bistetracene: an air-stable, high-mobility organic semiconductor with extended conjugation. 644 16.4 140 Journal of the American Chemical Society, 2014, 136, 9248-51 A novel complementary absorbing donor ceptor pair in block copolymers based on single 643 13 15 material organic photovoltaics. Journal of Materials Chemistry A, 2014, 2, 2993-2998 Solvent-Assisted Orientation of Poly(3-hexylthiophene)-Functionalized CdSe Nanorods Under an 642 2.6 9 Electric Field. Macromolecular Chemistry and Physics, 2014, 215, 1647-1653 Molecular weight dependence of the morphology in P3HT:PCBM solar cells. ACS Applied Materials 641 85 9.5 & Interfaces, **2014**, 6, 19876-87

640	Interpenetrating morphology based on highly crystalline small molecule and PCBM blends. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 9368-9374	7.1	6
639	Robust polythiophene nanowires cross-linked with functional fullerenes. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 9674-9682	7.1	5
638	Rapid, facile synthesis of conjugated polymer zwitterions in ionic liquids. <i>Chemical Science</i> , 2014 , 5, 236	8924373	15
637	Multi-Length Scale Porous Polymers. <i>Advanced Functional Materials</i> , 2014 , 24, 1483-1489	15.6	24
636	Chain Length Dependence of the Photovoltaic Properties of Monodisperse Donor Acceptor Oligomers as Model Compounds of Polydisperse Low Band Gap Polymers. <i>Advanced Functional Materials</i> , 2014 , 24, 7538-7547	15.6	49
635	Crystallinity and morphology effects on a solvent-processed solar cell using a triarylamine-substituted squaraine. <i>ACS Applied Materials & Distributed Squaraine</i> , 11376-84	9.5	15
634	Reversible, self cross-linking nanowires from thiol-functionalized polythiophene diblock copolymers. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 7705-11	9.5	17
633	Azulene methacrylate polymers: synthesis, electronic properties, and solar cell fabrication. <i>Journal of the American Chemical Society</i> , 2014 , 136, 11043-9	16.4	81
632	Preparation of Low Band Gap Fibrillar Structures by Solvent-Induced Crystallization. <i>ACS Macro Letters</i> , 2014 , 3, 30-34	6.6	22
631	Dynamics of Cadmium Sulfide Nanoparticles within Polystyrene Melts. <i>Macromolecules</i> , 2014 , 47, 6483-	6 4 90	17
630	Multiscale active layer morphologies for organic photovoltaics through self-assembly of nanospheres. <i>Nano Letters</i> , 2014 , 14, 5238-43	11.5	45
629	New form of an old natural dye: bay-annulated indigo (BAI) as an excellent electron accepting unit for high performance organic semiconductors. <i>Journal of the American Chemical Society</i> , 2014 , 136, 150	9 ^{<u>1</u>6} 101	104
628	Guided crystallization of P3HT in ternary blend solar cell based on P3HT:PCPDTBT:PCBM. <i>Energy and Environmental Science</i> , 2014 , 7, 3782-3790	35.4	56
627	Fulleropyrrolidine interlayers: tailoring electrodes to raise organic solar cell efficiency. <i>Science</i> , 2014 , 346, 441-4	33.3	238
626	Solvent vapor annealing of block copolymer thin films: removal of processing history. <i>Colloid and Polymer Science</i> , 2014 , 292, 1795-1802	2.4	18
625	Visualization and Quantification of the Chemical and Physical Properties at a Diffusion-Induced Interface Using AFM Nanomechanical Mapping. <i>Macromolecules</i> , 2014 , 47, 3761-3765	5.5	29
624	Effect of Fluorine Content in Thienothiophene-Benzodithiophene Copolymers on the Morphology and Performance of Polymer Solar Cells. <i>Chemistry of Materials</i> , 2014 , 26, 3009-3017	9.6	128
623	Fluorination of Polythiophene Derivatives for High Performance Organic Photovoltaics. <i>Chemistry of Materials</i> , 2014 , 26, 4214-4220	9.6	122

(2013-2014)

622	Assembly of acid-functionalized single-walled carbon nanotubes at oil/water interfaces. <i>Langmuir</i> , 2014 , 30, 1072-9	4	40
621	New insights into morphology of high performance BHJ photovoltaics revealed by high resolution AFM. <i>Nano Letters</i> , 2014 , 14, 5727-32	11.5	44
620	Dynamic study of polystyrene-block-poly(4-vinylpyridine) copolymer in bulk and confined in cylindrical nanopores. <i>Polymer</i> , 2014 , 55, 4057-4066	3.9	18
619	Demonstration of feasibility of X-ray free electron laser studies of dynamics of nanoparticles in entangled polymer melts. <i>Scientific Reports</i> , 2014 , 4, 6017	4.9	36
618	An in situ grazing incidence X-ray scattering study of block copolymer thin films during solvent vapor annealing. <i>Advanced Materials</i> , 2014 , 26, 273-81	24	133
617	Nanoporous block copolymer membranes for ultrafiltration: a simple approach to size tunability. <i>ACS Nano</i> , 2014 , 8, 11745-52	16.7	78
616	Osmotically Driven Formation of Double Emulsions Stabilized by Amphiphilic Block Copolymers. <i>Angewandte Chemie</i> , 2014 , 126, 8379-8384	3.6	4
615	Osmotically driven formation of double emulsions stabilized by amphiphilic block copolymers. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 8240-5	16.4	47
614	Direct 3-D nanoparticle assemblies in thin films via topographically patterned surfaces. <i>Advanced Materials</i> , 2014 , 26, 2777-81	24	14
613	The good host: formation of discrete one-dimensional fullerene "channels" in well-ordered poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene) oligomers. <i>Journal of the American Chemical Society</i> , 2014 , 136, 18120-30	16.4	36
612	Bulk charge carrier transport in push-pull type organic semiconductor. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 20904-12	9.5	18
611	Solvent-Polarity-Induced Active Layer Morphology Control in Crystalline Diketopyrrolopyrrole-Based Low Band Gap Polymer Photovoltaics. <i>Advanced Energy Materials</i> , 2014 , 4, 1300834	21.8	29
610	Semi-crystalline random conjugated copolymers with panchromatic absorption for highly efficient polymer solar cells. <i>Energy and Environmental Science</i> , 2013 , 6, 3301	35.4	160
609	Efficient polymer solar cells based on benzothiadiazole and alkylphenyl substituted benzodithiophene with a power conversion efficiency over 8%. <i>Advanced Materials</i> , 2013 , 25, 4944-9	24	298
608	Morphologies of ABC triblock terpolymer melts containing poly(cyclohexadiene): effects of conformational asymmetry. <i>Langmuir</i> , 2013 , 29, 1995-2006	4	22
60 7	Macroscopic vertical alignment of nanodomains in thin films of semiconductor amphiphilic block copolymers. <i>ACS Nano</i> , 2013 , 7, 6069-78	16.7	17
606	Solvent-assisted directed self-assembly of spherical microdomain block copolymers to high areal density arrays. <i>Advanced Materials</i> , 2013 , 25, 3677-82	24	20
605	Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 14290-4	3.6	120

604	Curie transitions for attograms of ferroelectric polymers. <i>Nano Letters</i> , 2013 , 13, 577-80	11.5	15
603	Deviations from bulk morphologies in thin films of block copolymer/additive binary blends. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2013 , 31, 1250-1259	3.5	1
602	Efficient charge transport in assemblies of surfactant-stabilized semiconducting nanoparticles. <i>Advanced Materials</i> , 2013 , 25, 6411-5	24	38
601	Characterization of the morphology of solution-processed bulk heterojunction organic photovoltaics. <i>Progress in Polymer Science</i> , 2013 , 38, 1990-2052	29.6	237
600	Atomic Force Microscopy Nanomechanics Visualizes Molecular Diffusion and Microstructure at an Interface. <i>ACS Macro Letters</i> , 2013 , 2, 757-760	6.6	40
599	Synthesis of Semicrystalline/Fluorinated Side-Chain Crystalline Block Copolymers and Their Bulk and Thin Film Nanoordering. <i>Macromolecules</i> , 2013 , 46, 3737-3745	5.5	23
598	Formation of H* Phase in Chiral Block Copolymers: Effects of Solvents and Solution-Cast Conditions. <i>Macromolecules</i> , 2013 , 46, 455-462	5.5	11
597	Synthesis of pyridine-capped diketopyrrolopyrrole and its use as a building block of low band-gap polymers for efficient polymer solar cells. <i>Chemical Communications</i> , 2013 , 49, 8495-7	5.8	58
596	Stabilizing liquid drops in nonequilibrium shapes by the interfacial jamming of nanoparticles. <i>Science</i> , 2013 , 342, 460-3	33.3	255
595	Photocleavable Triblock Copolymers Featuring an Activated Ester Middle Block: "One-Step" Synthesis and Application as Locally Reactive Nanoporous Thin Films <i>ACS Macro Letters</i> , 2013 , 2, 966-9	969 ⁶	29
594	Assembly of graphene oxide at water/oil interfaces: tessellated nanotiles. <i>Langmuir</i> , 2013 , 29, 13407-1	34	106
593	Cross-Linked Block Copolymer/Ionic Liquid Self-Assembled Blends for Polymer Gel Electrolytes with High Ionic Conductivity and Mechanical Strength. <i>Macromolecules</i> , 2013 , 46, 9313-9323	5.5	76
592	On the self-assembly of brush block copolymers in thin films. ACS Nano, 2013, 7, 9684-92	16.7	77
591	Formation of H* Phase in Chiral Block Copolymers: Morphology Evolution As Revealed by Time-Resolved X-ray Scattering. <i>Macromolecules</i> , 2013 , 46, 474-483	5.5	10
590	Relating chemical structure to device performance via morphology control in diketopyrrolopyrrole-based low band gap polymers. <i>Journal of the American Chemical Society</i> , 2013 , 135, 19248-59	16.4	109
589	Directed self-assembly of block copolymers in the extreme: guiding microdomains from the small to the large. <i>Soft Matter</i> , 2013 , 9, 9059	3.6	135
588	Conjugated polymeric zwitterions as efficient interlayers in organic solar cells. <i>Advanced Materials</i> , 2013 , 25, 6868-73	24	82
587	A drop on a floating sheet: boundary conditions, topography and formation of wrinkles. <i>Soft Matter</i> , 2013 , 9, 8289	3.6	18

(2013-2013)

586	Synthesis and morphology investigations of a novel alkyne-functionalized diblock copolymer. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2013 , 51, 78-85	2.6	4
585	Improved cathode materials for microbial electrosynthesis. <i>Energy and Environmental Science</i> , 2013 , 6, 217-224	35.4	260
584	Self-assembly of symmetric brush diblock copolymers. ACS Nano, 2013, 7, 2551-8	16.7	107
583	A route to rapid carbon nanotube growth. <i>Chemical Communications</i> , 2013 , 49, 5159-61	5.8	30
582	Manipulating Backbone Structure to Enhance Low Band Gap Polymer Photovoltaic Performance. <i>Advanced Energy Materials</i> , 2013 , 3, 930-937	21.8	61
581	Capillary deformations of bendable films. <i>Physical Review Letters</i> , 2013 , 111, 014301	7.4	58
580	Triggered in situ disruption and inversion of nanoparticle-stabilized droplets. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 6620-3	16.4	21
579	Functionalized Nanoporous Thin Films and Fibers from Photocleavable Block Copolymers Featuring Activated Esters. <i>Macromolecules</i> , 2013 , 46, 5195-5201	5.5	61
578	Liquid adsorption at surfaces patterned with cylindrical nano-cavities. Soft Matter, 2013, 9, 10550	3.6	1
577	Pattern transfer using block copolymers. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2013 , 371, 20120306	3	51
576	Self-assembly of gold nanoparticles on gallium droplets: controlling charge transport through microscopic devices. <i>Langmuir</i> , 2013 , 29, 13640-6	4	19
575	A Study on the Correlation Between Structure and Hole Transport in Semi-Crystalline Regioregular P3HT. <i>Advanced Energy Materials</i> , 2013 , 3, 263-270	21.8	46
574	Semaphorin 7a+ regulatory T cells are associated with progressive idiopathic pulmonary fibrosis and are implicated in transforming growth factor-#-induced pulmonary fibrosis. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2013 , 187, 180-8	10.2	87
573	Materials science. Polymers find plenty of wiggle room at the bottom. <i>Science</i> , 2013 , 341, 1351-2	33.3	15
572	Lattice deformation and domain distortion in the self-assembly of block copolymer thin films on chemical patterns. <i>Small</i> , 2013 , 9, 779-84	11	6
571	Chirality in block copolymer melts: mesoscopic helicity from intersegment twist. <i>Physical Review Letters</i> , 2013 , 110, 058301	7.4	29
570	Line patterns from cylinder-forming photocleavable block copolymers. <i>Advanced Materials</i> , 2013 , 25, 4690-5	24	17
569	Triggered In situ Disruption and Inversion of Nanoparticle-Stabilized Droplets. <i>Angewandte Chemie</i> , 2013 , 125, 6752-6755	3.6	7

568	The role of additive in diketopyrrolopyrrole-based small molecular bulk heterojunction solar cells. <i>Advanced Materials</i> , 2013 , 25, 6519-25	24	57
567	Charge Transport: Efficient Charge Transport in Assemblies of Surfactant-Stabilized Semiconducting Nanoparticles (Adv. Mater. 44/2013). <i>Advanced Materials</i> , 2013 , 25, 6410-6410	24	
566	Ionic Liquids as Floatation Media for Cryo-Ultramicrotomy of Soft Polymeric Materials. <i>Microscopy and Microanalysis</i> , 2013 , 19, 1554-1557	0.5	2
565	Antibody affinity purification using metallic nickel particles. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2012 , 895-896, 89-93	3.2	5
564	Nanoparticle-Stabilized Double Emulsions and Compressed Droplets. <i>Angewandte Chemie</i> , 2012 , 124, 149-153	3.6	3
563	Nanoparticle-stabilized double emulsions and compressed droplets. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 145-9	16.4	32
562	Orienting block copolymer microdomains with block copolymer brushes. ACS Nano, 2012, 6, 10250-7	16.7	24
561	Fabrication of Co-continuous Nanostructured and Porous Polymer Membranes: Spinodal Decomposition of Homopolymer and Random Copolymer Blends. <i>Angewandte Chemie</i> , 2012 , 124, 4165	-4170	4
560	Probing and repairing damaged surfaces with nanoparticle-containing microcapsules. <i>Nature Nanotechnology</i> , 2012 , 7, 87-90	28.7	52
559	Field Emission Tip Array Fabrication Utilizing Geometrical Hindrance in the Oxidation of Si. <i>IEEE Nanotechnology Magazine</i> , 2012 , 11, 999-1003	2.6	10
558	Lamellar microdomain orientation and phase transition of polystyrene-b-poly(methyl methacrylate) films by controlled interfacial interactions. <i>Soft Matter</i> , 2012 , 8, 3463	3.6	25
557	A low band-gap polymer based on unsubstituted benzo[1,2-b:4,5-b']dithiophene for high performance organic photovoltaics. <i>Chemical Communications</i> , 2012 , 48, 6933-5	5.8	66
556	Disorder-to-order transitions induced by alkyne/azide click chemistry in diblock copolymer thin films. <i>Soft Matter</i> , 2012 , 8, 5273	3.6	3
555	P3HT nanopillars for organic photovoltaic devices nanoimprinted by AAO templates. <i>ACS Nano</i> , 2012 , 6, 1479-85	16.7	121
554	Orientational interactions in block copolymer melts: self-consistent field theory. <i>Journal of Chemical Physics</i> , 2012 , 137, 104911	3.9	17
553	A high mobility conjugated polymer based on dithienothiophene and diketopyrrolopyrrole for organic photovoltaics. <i>Energy and Environmental Science</i> , 2012 , 5, 6857	35.4	164
552	High density and large area arrays of silicon oxide pillars with tunable domain size for mask etch applications. <i>Advanced Materials</i> , 2012 , 24, 5505-11	24	13
551	High aspect ratio sub-15 nm silicon trenches from block copolymer templates. <i>Advanced Materials</i> , 2012 , 24, 5688-94	24	72

550	Morphologies of poly(cyclohexadiene) diblock copolymers: Effect of conformational asymmetry. <i>Polymer</i> , 2012 , 53, 5155-5162	3.9	11
549	Tailoring block copolymer morphologies via alkyne/azide cycloaddition. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2012 , 50, 55-64	2.6	5
548	On the morphology of polymer-based photovoltaics. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2012 , 50, 1018-1044	2.6	285
547	Efficient polymer solar cells based on a low bandgap semi-crystalline DPP polymer-PCBM blends. <i>Advanced Materials</i> , 2012 , 24, 3947-51	24	193
546	Improving the ordering and photovoltaic properties by extending Econjugated area of electron-donating units in polymers with D-A structure. <i>Advanced Materials</i> , 2012 , 24, 3383-9	24	289
545	Controlled orientation of block copolymers on defect-free faceted surfaces. <i>Advanced Materials</i> , 2012 , 24, 4278-83	24	30
544	Multi-Length-Scale Morphologies in PCPDTBT/PCBM Bulk-Heterojunction Solar Cells. <i>Advanced Energy Materials</i> , 2012 , 2, 683-690	21.8	163
543	Fabrication of co-continuous nanostructured and porous polymer membranes: spinodal decomposition of homopolymer and random copolymer blends. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 4089-94	16.4	35
542	Promoting Network Formation in Nanorod-filled Binary Blends. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1411, 75		
541	Unidirectionally aligned line patterns driven by entropic effects on faceted surfaces. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 1402-6	11.5	81
540	Patterning: High Aspect Ratio Sub-15 nm Silicon Trenches From Block Copolymer Templates (Adv. Mater. 42/2012). <i>Advanced Materials</i> , 2012 , 24, 5687-5687	24	1
539	P3HT/PCBM bulk heterojunction organic photovoltaics: correlating efficiency and morphology. <i>Nano Letters</i> , 2011 , 11, 561-7	11.5	511
538	Temperature-triggered micellization of block copolymers on an ionic liquid surface. <i>Langmuir</i> , 2011 , 27, 12443-50	4	12
537	ABC triblock copolymer vesicles with mesh-like morphology. ACS Nano, 2011 , 5, 486-92	16.7	62
536	Photocontrol over the disorder-to-order transition in thin films of polystyrene-block-poly(methyl methacrylate) block copolymers containing photodimerizable anthracene functionality. <i>Journal of the American Chemical Society</i> , 2011 , 133, 17217-24	16.4	21
535	Nanopatterning and Functionality of Block-Copolymer Thin Films 2011 , 401-474		2
534	Defining the nanostructured morphology of triblock copolymers using resonant soft X-ray scattering. <i>Nano Letters</i> , 2011 , 11, 3906-11	11.5	124
533	Phase transition behavior in thin films of block copolymers by use of immiscible solvent vapors. <i>Soft Matter</i> , 2011 , 7, 443-447	3.6	26

532	Room temperature magnetic materials from nanostructured diblock copolymers. <i>Nature Communications</i> , 2011 , 2, 482	17.4	54
531	Thin Films of Semifluorinated Block Copolymers Prepared by ATRP. <i>Macromolecular Chemistry and Physics</i> , 2011 , 212, 2399-2405	2.6	7
530	Fabrication of silicon oxide nanodots with an areal density beyond 1 teradots inch(-2). <i>Advanced Materials</i> , 2011 , 23, 5755-61	24	32
529	Morphological Characterization of a Low-Bandgap Crystalline Polymer:PCBM Bulk Heterojunction Solar Cells. <i>Advanced Energy Materials</i> , 2011 , 1, 870-878	21.8	85
528	Role of semaphorin 7a signaling in transforming growth factor 1 -induced lung fibrosis and scleroderma-related interstitial lung disease. <i>Arthritis and Rheumatism</i> , 2011 , 63, 2484-94		68
527	Block copolymer self-assembly in chemically patterned squares. <i>Soft Matter</i> , 2011 , 7, 3915	3.6	38
526	Highly ordered nanoporous template from triblock copolymer. ACS Nano, 2011, 5, 1207-14	16.7	32
525	Dewetting on Curved Interfaces: A Simple Route to Polymer Nanostructures. <i>Macromolecules</i> , 2011 , 44, 8020-8027	5.5	24
524	Kinetically trapped co-continuous polymer morphologies through intraphase gelation of nanoparticles. <i>Nano Letters</i> , 2011 , 11, 1997-2003	11.5	96
523	A Study on the Kinetics of a Disorder-to-Order Transition Induced by Alkyne/Azide Click Reaction. <i>Macromolecules</i> , 2011 , 44, 4269-4275	5.5	11
522	Highly Ordered Nanoporous Thin Films from Photocleavable Block Copolymers. <i>Macromolecules</i> , 2011 , 44, 6433-6440	5.5	90
521	Circular nanopatterns over large areas from the self-assembly of block copolymers guided by shallow trenches. <i>ACS Nano</i> , 2011 , 5, 2855-60	16.7	32
520	UV-enhanced Ordering in Azobenzene-Containing Polystyrene-block-Poly(n-Butyl Methacrylate) Copolymer Blends. <i>Macromolecules</i> , 2011 , 44, 278-285	5.5	8
519	Bulk heterojunction photovoltaic active layers via bilayer interdiffusion. <i>Nano Letters</i> , 2011 , 11, 2071-8	11.5	264
518	Phase Behavior and Photoresponse of Azobenzene-Containing Polystyrene-block-poly(n-butyl methacrylate) Block Copolymers. <i>Macromolecules</i> , 2011 , 44, 1125-1131	5.5	16
517	Aligned nanowires and nanodots by directed block copolymer assembly. <i>Nanotechnology</i> , 2011 , 22, 305	3904	22
516	NANOSCALE PATTERNING IN BLOCK COPOLYMER THIN FILMS. <i>Nano</i> , 2010 , 05, 1-11	1.1	4
515	Morphology control of a polythiophene-fullerene bulk heterojunction for enhancement of the high-temperature stability of solar cell performance by a new donor-acceptor diblock copolymer. Nanotechnology, 2010, 21, 105201	3.4	89

(2010-2010)

514	Multiple-level threshold switching behavior of In2Se3 confined in a nanostructured silicon substrate. <i>Applied Physics Letters</i> , 2010 , 97, 092114	3.4	9
513	Temperature tunable micellization of polystyrene-block-poly(2-vinylpyridine) at Si-ionic liquid interface. <i>Langmuir</i> , 2010 , 26, 17126-32	4	11
512	Adsorption energy of nano- and microparticles at liquid-liquid interfaces. <i>Langmuir</i> , 2010 , 26, 12518-22	4	206
511	Fabrication of Pt/Au concentric spheres from triblock copolymer. <i>ACS Nano</i> , 2010 , 4, 1124-30	16.7	41
510	Solvent-Driven Evolution of Block Copolymer Morphology under 3D Confinement. <i>Macromolecules</i> , 2010 , 43, 7807-7812	5.5	121
509	Disorder-to-Order Transition of Diblock Copolymers Induced by Alkyne/Azide Click Chemistry. <i>Macromolecules</i> , 2010 , 43, 6234-6236	5.5	23
508	Ordering in Mixtures of a Triblock Copolymer with a Room Temperature Ionic Liquid. <i>Macromolecules</i> , 2010 , 43, 10528-10535	5.5	48
507	Using nanoparticle-filled microcapsules for site-specific healing of damaged Substrates: creating a "repair-and-go" system. <i>ACS Nano</i> , 2010 , 4, 1115-23	16.7	49
506	Dissolution and dissolved state of cytochrome C in a neat, hydrophilic ionic liquid. <i>Biomacromolecules</i> , 2010 , 11, 2944-8	6.9	67
505	Holey silicon as an efficient thermoelectric material. <i>Nano Letters</i> , 2010 , 10, 4279-83	11.5	559
504	Synthesis of C60-end capped P3HT and its application for high performance of P3HT/PCBM bulk heterojunction solar cells. <i>Journal of Materials Chemistry</i> , 2010 , 20, 3287		110
503	Confinement Effects on Crystallization and Curie Transitions of Poly(vinylidene fluoride-co-trifluoroethylene). <i>Macromolecules</i> , 2010 , 43, 3844-3850	5.5	135
502	Smooth cascade of wrinkles at the edge of a floating elastic film. <i>Physical Review Letters</i> , 2010 , 105, 038	33702	88
501	Segmental dynamics of polymers during capillary flow into nanopores. <i>Soft Matter</i> , 2010 , 6, 1111	3.6	30
500	Preparation of 1 inch gold nanowires from PS-b-P4VP block copolymers. <i>Journal of Materials Chemistry</i> , 2010 , 20, 1198-1202		11
499	Precise placements of metal nanoparticles from reversible block copolymer nanostructures. Journal of Materials Chemistry, 2010 , 20, 5047		39
498	Ferritin P olymer Conjugates: Grafting Chemistry and Integration into Nanoscale Assemblies. <i>Advanced Functional Materials</i> , 2010 , 20, 3603-3612	15.6	35
497	Self-assembly of block copolymers on flexible substrates. <i>Advanced Materials</i> , 2010 , 22, 1882-4	24	22

496	Guided assemblies of ferritin nanocages: highly ordered arrays of monodisperse nanoscopic elements. <i>Advanced Materials</i> , 2010 , 22, 2583-7	24	26
495	Directed self-assembly of block copolymers on two-dimensional chemical patterns fabricated by electro-oxidation nanolithography. <i>Advanced Materials</i> , 2010 , 22, 2268-72	24	52
494	Synthese von Nano-/Mikrostrukturen an fluiden Grenzf Wilhen. Angewandte Chemie, 2010 , 122, 10250-10	1266	26
493	Synthesis of nano/microstructures at fluid interfaces. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 10052-66	16.4	174
492	Spatial control of dewetting: highly ordered Teflon nanospheres. <i>Journal of Colloid and Interface Science</i> , 2010 , 348, 416-23	9.3	20
491	Synthesis and photovoltaic properties of low-bandgap alternating copolymers consisting of 3-hexylthiophene and [1,2,5]thiadiazolo[3,4-g]quinoxaline derivatives. <i>Organic Electronics</i> , 2010 , 11, 84	6 <i>-</i> 853	38
490	Transition behavior of PS-b-PMMA films on the balanced interfacial interactions. <i>Polymer</i> , 2010 , 51, 631	133:63318	8 27
489	Density fluctuations and phase transitions of ferroelectric polymer nanowires. <i>Small</i> , 2010 , 6, 1822-6	11	26
488	Dual-Tone Patterned Mesoporous Silicate Films Templated From Chemically Amplified Block Copolymers. <i>Advanced Functional Materials</i> , 2009 , 19, 2728-2734	15.6	14
487	A Novel Approach to Addressable 4 Teradot/in.2 Patterned Media. <i>Advanced Materials</i> , 2009 , 21, 2516-3	2 5 49	90
486	Block copolymer nanolithography: translation of molecular level control to nanoscale patterns. <i>Advanced Materials</i> , 2009 , 21, 4769-92	24	585
485	Synthesis of Photoisomerizable Block Copolymers by Atom Transfer Radical Polymerization. <i>Macromolecular Chemistry and Physics</i> , 2009 , 210, 1484-1492	2.6	10
484	Thin Film Instabilities in Blends under Cylindrical Confinement. <i>Macromolecular Rapid Communications</i> , 2009 , 30, 377-83	4.8	50
483	Controlling orientation and functionalization in thin films of block copolymers. <i>Macromolecular Rapid Communications</i> , 2009 , 30, 1674-8	4.8	14
482	Synthesis and characterization of bionanoparticleBilica composites and mesoporous silica with large pores. <i>Nano Research</i> , 2009 , 2, 474-483	10	32
481	Study of growth behaviour and microstructure of epitaxially grown self-assembled Ge quantum dots on nanometer-scale patterned SiO2/Si(001) substrates. <i>Physica Status Solidi (B): Basic Research</i> , 2009 , 246, 721-724	1.3	5
480	Preparation of metallic line patterns from functional block copolymers. <i>Small</i> , 2009 , 5, 1343-8	11	32
479	A simple top-down/bottom-up approach to sectored, ordered arrays of nanoscopic elements using block copolymers. <i>Small</i> , 2009 , 5, 1064-9	11	28

(2009-2009)

478	Self-assembled electrical contact to nanoparticles using metallic droplets. Small, 2009, 5, 1974-7	11	38
477	Polymers: performing under pressure. <i>Nature Nanotechnology</i> , 2009 , 4, 703-4	28.7	3
476	Polymeric gate dielectric interlayer of cross-linkable poly(styrene-r-methylmethacrylate) copolymer for ferroelectric PVDF-TrFE field effect transistor memory. <i>Organic Electronics</i> , 2009 , 10, 849-856	3.5	35
475	DonorAcceptor Poly(thiophene-block-perylene diimide) Copolymers: Synthesis and Solar Cell Fabrication. <i>Macromolecules</i> , 2009 , 42, 1079-1082	5.5	286
474	Cylindrically Confined Diblock Copolymers. <i>Macromolecules</i> , 2009 , 42, 9082-9088	5.5	163
473	Relaxation of Thin Films of Polystyrene Floating on Ionic Liquid Surface. <i>Macromolecules</i> , 2009 , 42, 911	1 -9 . † 17	55
472	Fabrication of hierarchical structures by wetting porous templates with polymer microspheres. <i>Langmuir</i> , 2009 , 25, 4331-5	4	36
471	Fabrication of Nanoporous Block Copolymer Thin Films through Mediation of Interfacial Interactions with UV Cross-Linked Polystyrene. <i>Macromolecules</i> , 2009 , 42, 7213-7216	5.5	9
470	A simple route for the preparation of mesoporous nanostructures using block copolymers. <i>ACS Nano</i> , 2009 , 3, 2827-33	16.7	52
469	Block-copolymer-based plasmonic nanostructures. <i>ACS Nano</i> , 2009 , 3, 3987-92	16.7	97
468	Synthesis and photophysical property of well-defined donordicceptor diblock copolymer based on regioregular poly(3-hexylthiophene) and fullerene. <i>Journal of Materials Chemistry</i> , 2009 , 19, 1483		119
467	Self-assembly of tobacco mosaic virus at oil/water interfaces. <i>Langmuir</i> , 2009 , 25, 4979-87	4	91
466	Lateral Ordering of Cylindrical Microdomains Under Solvent Vapor. <i>Macromolecules</i> , 2009 , 42, 1278-128	84 5.5	107
465	Interfacial assembly of turnip yellow mosaic virus nanoparticles. <i>Langmuir</i> , 2009 , 25, 5168-76	4	59
465 464	Interfacial assembly of turnip yellow mosaic virus nanoparticles. <i>Langmuir</i> , 2009 , 25, 5168-76 Cylindrical Microdomain Orientation of PS-b-PMMA on the Balanced Interfacial Interactions: Composition Effect of Block Copolymers. <i>Macromolecules</i> , 2009 , 42, 4902-4906	4 5·5	59 60
	Cylindrical Microdomain Orientation of PS-b-PMMA on the Balanced Interfacial Interactions:		
464	Cylindrical Microdomain Orientation of PS-b-PMMA on the Balanced Interfacial Interactions: Composition Effect of Block Copolymers. <i>Macromolecules</i> , 2009 , 42, 4902-4906 Connecting quantum dots and bionanoparticles in hybrid nanoscale ultra-thin films. <i>Soft Matter</i> ,	5.5	60 27

460	Burnout and career satisfaction among American surgeons. <i>Annals of Surgery</i> , 2009 , 250, 463-71	7.8	715
459	Microdomain Orientation of PS-b-PMMA by Controlled Interfacial Interactions. <i>Macromolecules</i> , 2008 , 41, 6431-6437	5.5	187
458	From nanorings to nanodots by patterning with block copolymers. <i>Nano Letters</i> , 2008 , 8, 1667-72	11.5	96
457	Ordering of PS-b-P4VP on patterned silicon surfaces. <i>ACS Nano</i> , 2008 , 2, 1363-70	16.7	50
456	Influence of Interfacial Energy on Electric-Field-Induced Sphere-to-Cylinder Transition in Block Copolymer Thin Films. <i>Macromolecules</i> , 2008 , 41, 7227-7231	5.5	18
455	Lamellae orientation in block copolymer films with ionic complexes. <i>Langmuir</i> , 2008 , 24, 3545-50	4	21
454	A simple route to highly oriented and ordered nanoporous block copolymer templates. <i>ACS Nano</i> , 2008 , 2, 766-72	16.7	188
453	Highly aligned ultrahigh density arrays of conducting polymer nanorods using block copolymer templates. <i>Nano Letters</i> , 2008 , 8, 2315-20	11.5	207
452	Controlling the Morphologies of Organometallic Block Copolymers in the 3-Dimensional Spatial Confinement of Colloidal and Inverse Colloidal Crystals. <i>Macromolecules</i> , 2008 , 41, 2250-2259	5.5	74
451	Size control and registration of nano-structured thin films by cross- units. <i>Soft Matter</i> , 2008 , 4, 475-479	3.6	31
450	Separating membrane and surface tension contributions in Pickering droplet deformation. <i>Soft Matter</i> , 2008 , 4, 2259	3.6	39
449	Simple Fabrication of Micropatterned Mesoporous Silica Films Using Photoacid Generators in Block Copolymers <i>Chemistry of Materials</i> , 2008 , 20, 604-606	9.6	19
448	Transition Behavior of Block Copolymer Thin Films on Preferential Surfaces. <i>Macromolecules</i> , 2008 , 41, 9140-9145	5.5	41
447	Ion-Complexation-Induced Changes in the Interaction Parameter and the Chain Conformation of PS-b-PMMA Copolymers. <i>Macromolecules</i> , 2008 , 41, 4904-4907	5.5	64
446	Influence of Ionic Complexes on Phase Behavior of Polystyrene-b-poly(methyl methacrylate) Copolymers. <i>Macromolecules</i> , 2008 , 41, 963-969	5.5	70
445	Amorphous Diblock Copolymers with a High Organometallic Block Volume Fraction: Synthesis, Characterization and Self-Assembly of Polystyrene-block-Poly(ferrocenylethylmethylsilane) in the Bulk State. <i>Macromolecules</i> , 2008 , 41, 9474-9479	5.5	24
444	Effect of Nanoparticles on the Electrohydrodynamic Instabilities of Polymer/Nanoparticle Thin Films. <i>Macromolecules</i> , 2008 , 41, 2722-2726	5.5	38
443	Morphological Study on an Azobenzene-Containing Liquid Crystalline Diblock Copolymer. <i>Macromolecules</i> , 2008 , 41, 1897-1900	5.5	20

(2007-2008)

442	Nanostructured magnetic thin films from organometallic block copolymers: pyrolysis of self-assembled polystyrene-block-poly(ferrocenylethylmethylsilane). <i>ACS Nano</i> , 2008 , 2, 263-70	16.7	119
441	Arrays of ultrasmall metal rings. <i>Nanotechnology</i> , 2008 , 19, 245305	3.4	13
440	Anomalous suppression of the transition temperature of superconducting nanostructured honeycomb films: Electrical transport measurements and Maekawa-Fukuyama model. <i>Physical Review B</i> , 2008 , 77,	3.3	2
439	BLOCK COPOLYMER THIN FILMS. Series in Sof Condensed Matter, 2008, 1-25		3
438	Core/shell biocomposites from the hierarchical assembly of bionanoparticles and polymer. <i>Small</i> , 2008 , 4, 1624-9	11	47
437	Self-assembly of metallo-supramolecular block copolymers in thin films. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 4719-4724	2.5	28
436	Surface modification of tobacco mosaic virus with "click" chemistry. ChemBioChem, 2008, 9, 519-23	3.8	176
435	Controlling Orientation and Order in Block Copolymer Thin Films. Advanced Materials, 2008, 20, 4851-4	ŀ8 5 ∳	40
434	An Efficient Route to Mesoporous Silica Films with Perpendicular Nanochannels. <i>Advanced Materials</i> , 2008 , 20, 246-251	24	48
433	Fabrication of Highly Ordered Silicon Oxide Dots and Stripes from Block Copolymer Thin Films. <i>Advanced Materials</i> , 2008 , 20, 681-685	24	120
432	Responsive Assemblies: Gold Nanoparticles with Mixed Ligands in Microphase Separated Block Copolymers. <i>Advanced Materials</i> , 2008 , 20, 1462-1466	24	116
431	Polymer Thin Films. Series in Sof Condensed Matter, 2008,		42
430	Globular Organization of Multifunctional Linear Homopolymer Using Trifunctional Molecules. <i>Macromolecules</i> , 2007 , 40, 4267-4275	5.5	5
429	Effective Interaction Parameter for Homologous Series of Deuterated Polystyrene-block-Poly(n-alkyl methacrylate) Copolymers. <i>Macromolecules</i> , 2007 , 40, 7644-7655	5.5	48
428	Solvent Annealed Thin Films of Asymmetric Polyisoprene B olylactide Diblock Copolymers. <i>Macromolecules</i> , 2007 , 40, 1181-1186	5.5	116
427	Solvent-Induced Transition from Micelles in Solution to Cylindrical Microdomains in Diblock Copolymer Thin Films. <i>Macromolecules</i> , 2007 , 40, 9059-9063	5.5	135
426	Ordered arrays of -oriented silicon nanorods by CMOS-compatible block copolymer lithography. <i>Nano Letters</i> , 2007 , 7, 1516-20	11.5	104
425	Orientationally Controlled Nanoporous Cylindrical Domains in Polystyrene-b-poly(ferrocenylethylmethylsilane) Block Copolymer Films. <i>Macromolecules</i> , 2007 , 40, 37	90 ⁵ -3 ⁵ 79	6 ³⁶

424	Instabilities in nanoporous media. <i>Nano Letters</i> , 2007 , 7, 183-7	11.5	119
423	Effect of Humidity on the Ordering of PEO-Based Copolymer Thin Films. <i>Macromolecules</i> , 2007 , 40, 70	19 ₅ 7 9 025	5 103
422	Sizing nanoparticle-covered droplets by extrusion through track-etch membranes. <i>Langmuir</i> , 2007 , 23, 965-9	4	21
421	Surface Modification with Cross-Linked Random Copolymers: Minimum Effective Thickness. <i>Macromolecules</i> , 2007 , 40, 4296-4300	5.5	63
420	Self-assembly of nanoparticles at interfaces. <i>Soft Matter</i> , 2007 , 3, 1231-1248	3.6	466
419	On the kinetics of nanoparticle self-assembly at liquid/liquid interfaces. <i>Physical Chemistry Chemical Physics</i> , 2007 , 9, 6351-8	3.6	132
418	Self-Assembly of Nanoparticle Lopolymer Mixtures: A Kinetic Point of View. <i>Advanced Materials</i> , 2007 , 19, 381-385	24	49
417	Highly Ordered Nanoporous Thin Films from Cleavable Polystyrene-block-poly(ethylene oxide). <i>Advanced Materials</i> , 2007 , 19, 1571-1576	24	112
416	On the Influence of Ion Incorporation in Thin Films of Block Copolymers. <i>Advanced Materials</i> , 2007 , 19, 4370-4374	24	18
415	Facile Routes to Patterned Surface Neutralization Layers for Block Copolymer Lithography. <i>Advanced Materials</i> , 2007 , 19, 4552-4557	24	142
414	Novel transparent nano- to micro-heterogeneous substrates for in-situ cell migration study. <i>Journal of Biomedical Materials Research - Part A</i> , 2007 , 80, 509-12	5.4	
413	Intersubband absorption in p-type Si1NGex quantum dots on pre-patterned Si substrates made by a diblock copolymer process. <i>Journal of Crystal Growth</i> , 2007 , 301-302, 833-836	1.6	6
412	Drying droplets: a window into the behavior of nanorods at interfaces. Small, 2007, 3, 1214-7	11	86
411	Fabrication of ordered anodic aluminum oxide using a solvent-induced array of block-copolymer micelles. <i>Small</i> , 2007 , 3, 1869-72	11	43
410	Templated nanostructured PS-b-PEO nanotubes. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2007 , 45, 2912-2917	2.6	33
409	Enhanced mobility of confined polymers. <i>Nature Materials</i> , 2007 , 6, 961-5	27	254
408	Microcapsules of PEGylated gold nanoparticles prepared by fluid-fluid interfacial assembly. <i>Nano Letters</i> , 2007 , 7, 389-93	11.5	86
407	Capillary wrinkling of floating thin polymer films. <i>Science</i> , 2007 , 317, 650-3	33.3	385

406	Surface patterning. Methods in Cell Biology, 2007, 83, 67-87	1.8	13
405	Alvine et al. Reply:. <i>Physical Review Letters</i> , 2007 , 98,	7.4	1
404	Microstructure analysis of epitaxially grown self-assembled Ge islands on nanometer-scale patterned SiO2Bi substrates by high-resolution transmission electron microscopy. <i>Journal of Applied Physics</i> , 2007 , 102, 104306	2.5	8
403	A Photoactive Polymer with Azobenzene Chromophore in the Side Chains. <i>Macromolecules</i> , 2007 , 40, 2267-2270	5.5	40
402	Synthesis and Characterization of CdSe Nanorods Functionalized with Regioregular Poly(3-hexylthiophene). <i>Chemistry of Materials</i> , 2007 , 19, 3712-3716	9.6	104
401	The challenges in guided self-assembly of Ge and InAs quantum dots on Si. <i>Thin Solid Films</i> , 2006 , 508, 195-199	2.2	17
400	Amorphous Carbon Nanotubes with Tunable Properties via Template Wetting. <i>Advanced Functional Materials</i> , 2006 , 16, 1476-1480	15.6	93
399	Nanoporous Membranes with Ultrahigh Selectivity and Flux for the Filtration of Viruses. <i>Advanced Materials</i> , 2006 , 18, 709-712	24	497
398	Solvent mediated assembly of nanoparticles confined in mesoporous alumina. <i>Physical Review B</i> , 2006 , 73,	3.3	11
397	Using a ferrocenylsilane-based block copolymer as a template to produce nanotextured Ag surfaces: uniformly enhanced surface enhanced Raman scattering active substrates. <i>Nanotechnology</i> , 2006 , 17, 5792-5797	3.4	82
396	Ion complexation: a route to enhanced block copolymer alignment with electric fields. <i>Physical Review Letters</i> , 2006 , 96, 128301	7.4	58
395	High-temperature resistant, ordered gold nanoparticle arrays. <i>Nanotechnology</i> , 2006 , 17, 2122-2126	3.4	32
394	Defect-free nanoporous thin films from ABC triblock copolymers. <i>Journal of the American Chemical Society</i> , 2006 , 128, 7622-9	16.4	269
393	Closed-Loop Phase Behavior for Weakly Interacting Block Copolymers. <i>Macromolecules</i> , 2006 , 39, 5926	-5930	15
392	Phase Behavior of a Weakly Interacting Block Copolymer by Temperature-Dependent FTIR Spectroscopy. <i>Macromolecules</i> , 2006 , 39, 408-412	5.5	31
391	Influence of Carbon Dioxide Swelling on the Closed-Loop Phase Behavior of Block Copolymers. <i>Macromolecules</i> , 2006 , 39, 6580-6583	5.5	12
390	Graft Copolymers from Poly(vinylidene fluoride-co-chlorotrifluoroethylene) via Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2006 , 39, 3531-3539	5.5	128
389	Selective growth of Ge islands on nanometer-scale patterned SiO2Bi substrate by molecular beam epitaxy. <i>Applied Physics Letters</i> , 2006 , 89, 063107	3.4	20

388	Study and characterization of tobacco mosaic virus head-to-tail assembly assisted by aniline polymerization. <i>Chemical Communications</i> , 2006 , 3019-21	5.8	73
387	Capillary filling of anodized alumina nanopore arrays. <i>Physical Review Letters</i> , 2006 , 97, 175503	7.4	40
386	Cellular responses to substrate topography: role of myosin II and focal adhesion kinase. <i>Biophysical Journal</i> , 2006 , 90, 3774-82	2.9	148
385	An optical waveguide study on the nanopore formation in block copolymer/homopolymer thin films by selective solvent swelling. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 15381-8	3.4	34
384	Surface-functionalized CdSe nanorods for assembly in diblock copolymer templates. <i>Journal of the American Chemical Society</i> , 2006 , 128, 3898-9	16.4	189
383	Synthesis and Microphase Separation of Poly(styrene-b-acrylonitrile) Prepared by Sequential Anionic and ATRP Techniques. <i>Macromolecules</i> , 2006 , 39, 1766-1770	5.5	40
382	Photophysical Properties of Perdeuterated trans-Stilbene Grafted Polystyrene. <i>Macromolecules</i> , 2006 , 39, 6776-6780	5.5	6
381	Salt Complexation in Block Copolymer Thin Films. <i>Macromolecules</i> , 2006 , 39, 8473-8479	5.5	130
380	Novel 3-D structures in polymer films by coupling external and internal fields. <i>Langmuir</i> , 2006 , 22, 4315	-84	47
379	Grain Rotation in Ion-Complexed Symmetric Diblock Copolymer Thin Films under an Electric Field. <i>Macromolecules</i> , 2006 , 39, 8487-8491	5.5	38
378	"Self-corralling" nanorods under an applied electric field. <i>Nano Letters</i> , 2006 , 6, 2066-9	11.5	203
377	Nanoparticle polymer composites: where two small worlds meet. <i>Science</i> , 2006 , 314, 1107-10	33.3	2117
376	Functionalization of nanoparticles for dispersion in polymers and assembly in fluids. <i>Journal of Polymer Science Part A</i> , 2006 , 44, 5076-5086	2.5	69
375	Entropy-driven segregation of nanoparticles to cracks in multilayered composite polymer structures. <i>Nature Materials</i> , 2006 , 5, 229-233	27	297
374	Growth behavior and microstructure of Ge self-assembled islands on nanometer-scale patterned Si substrate. <i>Journal of Crystal Growth</i> , 2006 , 290, 369-373	1.6	6
373	Fabrication of densely packed, well-ordered, high-aspect-ratio silicon nanopillars over large areas using block copolymer lithography. <i>Thin Solid Films</i> , 2006 , 513, 289-294	2.2	69
372	Wetting Transition in Cylindrical Alumina Nanopores with Polymer Melts. <i>Nano Letters</i> , 2006 , 6, 1075-10	0 79 .5	210
371	The effect of molecular architecture on the grain growth kinetics of AnBn star block copolymers. <i>Faraday Discussions</i> , 2005 , 128, 103-12; Discussion 211-29	3.6	10

(2005-2005)

370	High-Quality Single-Walled Carbon Nanotubes with Small Diameter, Controlled Density, and Ordered Locations Using a Polyferrocenylsilane Block Copolymer Catalyst Precursor. <i>Chemistry of Materials</i> , 2005 , 17, 2227-2231	9.6	114
369	A Morphological Study of a Semicrystalline Poly(l-lactic acid-b-ethylene oxide-b-l-lactic acid) Triblock Copolymer. <i>Macromolecules</i> , 2005 , 38, 104-109	5.5	90
368	Controlling the location and spatial extent of nanobubbles using hydrophobically nanopatterned surfaces. <i>Nano Letters</i> , 2005 , 5, 1751-6	11.5	118
367	Early Stages in the Growth of Electric Field-Induced Surface Fluctuations. <i>Macromolecules</i> , 2005 , 38, 48	86 8.4 87	340
366	From Cylinders to Helices upon Confinement. <i>Macromolecules</i> , 2005 , 38, 1055-1056	5.5	184
365	Diblock Copolymers with Amorphous Atactic Polyferrocenylsilane Blocks: Synthesis, Characterization, and Self-Assembly of Polystyrene-block-poly (ferrocenylethylmethylsilane) in the Bulk State. <i>Macromolecules</i> , 2005 , 38, 6931-6938	5.5	104
364	Interfacial Interaction Dependence of Microdomain Orientation in Diblock Copolymer Thin Films. <i>Macromolecules</i> , 2005 , 38, 2802-2805	5.5	98
363	Controlled Structure in Artificial Protein Hydrogels. <i>Macromolecules</i> , 2005 , 38, 7470-7475	5.5	26
362	Grain Growth Kinetics of AnBnStar Block Copolymers in Supercritical Carbon Dioxide. <i>Macromolecules</i> , 2005 , 38, 4719-4728	5.5	7
361	A Thermal and Manufacturable Approach to Stabilized Diblock Copolymer Templates. <i>Macromolecules</i> , 2005 , 38, 7676-7683	5.5	79
360	Electric Field Alignment of Asymmetric Diblock Copolymer Thin Films. <i>Macromolecules</i> , 2005 , 38, 1078	8-150579	8 140
359	Nanoparticle assembly at fluid interfaces: structure and dynamics. <i>Langmuir</i> , 2005 , 21, 191-4	4	223
358	Orthogonal approaches to the simultaneous and cascade functionalization of macromolecules using click chemistry. <i>Journal of the American Chemical Society</i> , 2005 , 127, 14942-9	16.4	311
357	Structurally Diverse Dendritic Libraries: A Highly Efficient Functionalization Approach Using Click Chemistry. <i>Macromolecules</i> , 2005 , 38, 3663-3678	5.5	338
356	Selective Solvent-Induced Reversible Surface Reconstruction of Diblock Copolymer Thin Films. <i>ACS Symposium Series</i> , 2005 , 158-170	0.4	3
355	Controlled placement of CdSe nanoparticles in diblock copolymer templates by electrophoretic deposition. <i>Nano Letters</i> , 2005 , 5, 357-61	11.5	145
354	Silica Nanostructures Templated by Oriented Block Copolymer Thin Films Using Pore-Filling and Selective-Mineralization Routes. <i>Chemistry of Materials</i> , 2005 , 17, 4743-4749	9.6	56
353	Mixed monolayer coverage on gold nanoparticles for interfacial stabilization of immiscible fluids. <i>Chemical Communications</i> , 2005 , 4050-2	5.8	62

352	Block Copolymer Lithography: Merging B ottom-Up[with T op-Down[Processes. <i>MRS Bulletin</i> , 2005 , 30, 952-966	3.2	569
351	A generalized approach to the modification of solid surfaces. <i>Science</i> , 2005 , 308, 236-9	33.3	467
350	Self-directed self-assembly of nanoparticle/copolymer mixtures. <i>Nature</i> , 2005 , 434, 55-9	50.4	861
349	Self-assembly and cross-linking of bionanoparticles at liquid-liquid interfaces. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 2420-6	16.4	225
348	Self-Assembly and Cross-Linking of Bionanoparticles at Liquidliquid Interfaces. <i>Angewandte Chemie</i> , 2005 , 117, 2472-2478	3.6	27
347	OrganicIhorganic Nanohybridization by Block Copolymer Thin Films. <i>Advanced Functional Materials</i> , 2005 , 15, 1160-1164	15.6	76
346	Thin Films of Block Copolymers as Planar Optical Waveguides. <i>Advanced Materials</i> , 2005 , 17, 2442-2446	24	41
345	Crosslinked Capsules of Quantum Dots by Interfacial Assembly and Ligand Crosslinking. <i>Advanced Materials</i> , 2005 , 17, 2082-2086	24	119
344	Solvent annealing thin films of poly(isoprene-b-lactide). <i>Polymer</i> , 2005 , 46, 11635-11639	3.9	98
343	The influence of confinement and curvature on the morphology of block copolymers. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2005 , 43, 3377-3383	2.6	123
342	Covalent stabilization of nanostructures: Robust block copolymer templates from novel thermoreactive systems. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 1028-1037	2.5	82
341	Electric field and dewetting induced hierarchical structure formation in polymer/polymer/air trilayers. <i>Chaos</i> , 2005 , 15, 047506	3.3	54
340	Pulse electrodeposition and electrochemical quartz crystal microbalance techniques for high perpendicular magnetic anisotropy cobalt nanowire arrays. <i>Journal of Applied Physics</i> , 2005 , 97, 10J322	2.5	23
339	Nano-patterned Growth of Ge Quantum Dots for Infrared Detector Applications. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 891, 1		1
338	Symmetric-to-asymmetric transition in triblock copolymer-homopolymer blends. <i>Physical Review Letters</i> , 2004 , 93, 145701	7.4	16
337	Block Copolymers under Cylindrical Confinement. <i>Macromolecules</i> , 2004 , 37, 5660-5664	5.5	257
336	Curving and frustrating flatland. <i>Science</i> , 2004 , 306, 76	33.3	326
335	Effect of Polymer-Substrate Interactions on the Glass Transition of Polymer Thin Films. <i>AIP</i> Conference Proceedings, 2004,	О	1

(2004-2004)

334	Hierarchical nanoparticle assemblies formed by decorating breath figures. <i>Nature Materials</i> , 2004 , 3, 302-6	27	323
333	Effect of ionic impurities on the electric field alignment of diblock copolymer thin films. <i>Colloid and Polymer Science</i> , 2004 , 282, 927-931	2.4	21
332	The effects of varied imidization conditions on rubbed polyimide film surface morphology. <i>Journal of Applied Polymer Science</i> , 2004 , 93, 1192-1197	2.9	4
331	Highly Oriented and Ordered Arrays from Block Copolymers via Solvent Evaporation. <i>Advanced Materials</i> , 2004 , 16, 226-231	24	831
330	Enhancement in the Orientation of the Microdomain in Block Copolymer Thin Films upon the Addition of Homopolymer. <i>Advanced Materials</i> , 2004 , 16, 533-536	24	126
329	Solvent-Induced Ordering in Thin Film Diblock Copolymer/Homopolymer Mixtures. <i>Advanced Materials</i> , 2004 , 16, 2119-2123	24	234
328	Growth of Silicon Oxide in Thin Film Block Copolymer Scaffolds. <i>Advanced Materials</i> , 2004 , 16, 702-706	24	55
327	Fibroblast adhesion to micro- and nano-heterogeneous topography using diblock copolymers and homopolymers. <i>Journal of Biomedical Materials Research Part B</i> , 2004 , 71, 462-9		25
326	Block Copolymer Domain Reorientation in an Electric Field: An in-Situ Small-Angle X-ray Scattering Study. <i>Macromolecules</i> , 2004 , 37, 2538-2543	5.5	45
325	Nano- to Macro-Sized Heterogeneities Using Cleavable Diblock Copolymers. <i>Macromolecules</i> , 2004 , 37, 9639-9645	5.5	44
324	Electric Field Alignment of Symmetric Diblock Copolymer Thin Films. <i>Macromolecules</i> , 2004 , 37, 2625-26	5 3 95	108
323	Electrically Induced Patterning in Block Copolymer Films. <i>Macromolecules</i> , 2004 , 37, 5358-5363	5.5	71
322	Inorganic Nanodots from Thin Films of Block Copolymers. <i>Nano Letters</i> , 2004 , 4, 1841-1844	11.5	112
321	Scattering Study on the Selective Solvent Swelling Induced Surface Reconstruction. <i>Macromolecules</i> , 2004 , 37, 2972-2977	5.5	76
320	Electric Field Induced Sphere-to-Cylinder Transition in Diblock Copolymer Thin Films. <i>Macromolecules</i> , 2004 , 37, 6980-6984	5.5	91
319	Fabrication of a gradient heterogeneous surface using homopolymers and diblock copolymers. <i>Langmuir</i> , 2004 , 20, 5952-7	4	22
318	Complex Phase Behavior of a Weakly Interacting Binary Polymer Blend. <i>Macromolecules</i> , 2004 , 37, 5851	-5855	27
317	Closed-Loop Phase Behavior of Polystyrene-block-poly(n-pentyl methacrylate) Copolymers with Various Block Length Ratios. <i>Macromolecules</i> , 2004 , 37, 3717-3724	5.5	45

316	Aspects of electrohydrodynamic instabilities at polymer interfaces. Fibers and Polymers, 2003, 4, 1-7	2	13
315	Block Copolymer Surface Reconstuction: A Reversible Route to Nanoporous Films. <i>Advanced Functional Materials</i> , 2003 , 13, 698-702	15.6	168
314	Volume Contractions Induced by Crosslinking: A Novel Route to Nanoporous Polymer Films. <i>Advanced Materials</i> , 2003 , 15, 1247-1250	24	81
313	On the Replication of Block Copolymer Templates by Poly(dimethylsiloxane) Elastomers. <i>Advanced Materials</i> , 2003 , 15, 811-814	24	56
312	Directed Deposition of Nanoparticles Using Diblock Copolymer Templates. <i>Advanced Materials</i> , 2003 , 15, 221-224	24	133
311	Spontaneous Vertical Ordering and Pyrolytic Formation of Nanoscopic Ceramic Patterns from Poly(styrene-b-ferrocenylsilane). <i>Advanced Materials</i> , 2003 , 15, 297-300	24	123
310	Macromolecules at surfaces: Research challenges and opportunities from tribology to biology. Journal of Polymer Science, Part B: Polymer Physics, 2003 , 41, 2755-2793	2.6	144
309	Hierarchical structure formation and pattern replication induced by an electric field. <i>Nature Materials</i> , 2003 , 2, 48-52	27	244
308	Phase Behavior of Polystyrene-block-poly(n-alkyl methacrylate)s Dilated with Carbon Dioxide. <i>Macromolecules</i> , 2003 , 36, 4029-4036	5.5	45
307	Sequential, Orthogonal Fields: A Path to Long-Range, 3-D Order in Block Copolymer Thin Films. <i>Macromolecules</i> , 2003 , 36, 7296-7300	5.5	48
306	Structure of End-Grafted Polymer Brushes in Liquid and Supercritical Carbon Dioxide: A Neutron Reflectivity Study. <i>Macromolecules</i> , 2003 , 36, 3365-3373	5.5	54
305	Development of Poly(imide-b-amic acid) Multiblock Copolymer Thin Film. <i>Macromolecules</i> , 2003 , 36, 49	7 6.4 98	23
304	Precise Control of Nanopore Size in Thin Film Using Mixtures of Asymmetric Block Copolymer and Homopolymer. <i>Macromolecules</i> , 2003 , 36, 10126-10129	5.5	81
303	Pressure Effects on the Phase Behavior of Styrene/n-Alkyl Methacrylate Block Copolymers. <i>Macromolecules</i> , 2003 , 36, 3351-3356	5.5	69
302	Ultrathin cross-linked nanoparticle membranes. <i>Journal of the American Chemical Society</i> , 2003 , 125, 12690-1	16.4	253
301	Photolysis of Compressed Sodium Azide (NaN3) as a Synthetic Pathway to Nitrogen Materials. Journal of Physical Chemistry A, 2003 , 107, 944-947	2.8	22
300	Long-Range Ordering of Diblock Copolymers Induced by Droplet Pinning. <i>Langmuir</i> , 2003 , 19, 9910-991	34	151
299	Nanoparticle assembly and transport at liquid-liquid interfaces. <i>Science</i> , 2003 , 299, 226-9	33.3	858

(2002-2003)

298	Self-Diffusion of Polystyrene in a CO2-Swollen Polystyrene Matrix: A Real Time Study Using Neutron Reflectivity. <i>Macromolecules</i> , 2003 , 36, 346-352	5.5	42
297	Interfacial Energy Effects on the Electric Field Alignment of Symmetric Diblock Copolymers. <i>Macromolecules</i> , 2003 , 36, 6178-6182	5.5	88
296	Phase Behavior of Mixtures of Block Copolymer and Homopolymers in Thin Films and Bulk. <i>Macromolecules</i> , 2003 , 36, 3626-3634	5.5	108
295	Effect of hydrostatic pressure on closed-loop phase behavior of block copolymers. <i>Physical Review Letters</i> , 2003 , 90, 235501	7.4	79
294	Controlling Subcritical Crack Growth at Epoxy/Glass Interfaces. <i>Journal of Electronic Packaging, Transactions of the ASME</i> , 2002 , 124, 328-333	2	5
293	A Rapid Route to Arrays of Nanostructures in Thin Films. <i>Advanced Materials</i> , 2002 , 14, 1373-1376	24	217
292	Closed-loop phase behaviour in block copolymers. <i>Nature Materials</i> , 2002 , 1, 114-7	27	97
291	Crystalline structure of a liquid crystal forming ligated twin. <i>Journal of Materials Science</i> , 2002 , 37, 389-3	32/5	
290	Fatigue resistance of silane-bonded epoxy/glass interfaces using neat and rubber-toughened epoxies. <i>Journal of Materials Science</i> , 2002 , 37, 3269-3276	4.3	6
289	Nanofabrication of integrated magnetoelectronic devices using patterned self-assembled copolymer templates. <i>Applied Physics Letters</i> , 2002 , 81, 3479-3481	3.4	63
288	Nanostructures and the proximity effect. <i>Journal Physics D: Applied Physics</i> , 2002 , 35, 2398-2402	3	25
287	Pathways toward Electric Field Induced Alignment of Block Copolymers. <i>Macromolecules</i> , 2002 , 35, 810	6 ₅ 85110	137
286	Influence of Dendrimer Additives on the Dewetting of Thin Polystyrene Films. <i>Langmuir</i> , 2002 , 18, 1877	-4882	81
285	Electric Field Induced Dewetting at Polymer/Polymer Interfaces. <i>Macromolecules</i> , 2002 , 35, 6255-6262	5.5	89
284	Synthesis and Thin Film Characterization of Poly(styrene-block-methyl methacrylate) Containing an Anthracene Dimer Photocleavable Junction Point. <i>Macromolecules</i> , 2002 , 35, 4271-4276	5.5	79
283	Structure Formation at the Interface of Liquid/Liquid Bilayer in Electric Field. <i>Macromolecules</i> , 2002 , 35, 3971-3976	5.5	146
282	Surface-responsive materials. <i>Science</i> , 2002 , 297, 964-7	33.3	451
281	Phase Behavior of Polystyrene and Poly(n-pentyl methacrylate) Blend. <i>Macromolecules</i> , 2002 , 35, 8676-	8680	39

280	A Simple Route to Metal Nanodots and Nanoporous Metal Films. <i>Nano Letters</i> , 2002 , 2, 933-936	11.5	221
279	Terabit Density Cobalt Nanowire Arrays With Tunable Magnetic Properties. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 721, 1		5
278	Fatigue and Durability of Silane-Bonded Epoxy/Glass Interfaces 2001 , 76, 335-351		4
277	The influence of molecular weight on nanoporous polymer films. <i>Polymer</i> , 2001 , 42, 9091-9095	3.9	144
276	Contact of elastic solids with rough surfaces. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2001 , 39, 1848-1854	2.6	36
275	Atomic force microscopy study of rubbed polyimide films. <i>Journal of Applied Polymer Science</i> , 2001 , 80, 1470-1477	2.9	9
274	Ordering in thin films of asymmetric diblock copolymers. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2001 , 39, 663-668	2.6	72
273	A Route to Nanoscopic SiO2 Posts via Block Copolymer Templates. <i>Advanced Materials</i> , 2001 , 13, 795-79	974	170
272	On exfoliation of montmorillonite in epoxy. <i>Polymer</i> , 2001 , 42, 5947-5952	3.9	290
271	Electrohydrodynamic instabilities in polymer films. <i>Europhysics Letters</i> , 2001 , 53, 518-524	1.6	251
270	Tailoring exchange bias with magnetic nanostructures. <i>Physical Review B</i> , 2001 , 63,	3.3	127
269	A simple model for baroplastic behavior in block copolymer melts. <i>Journal of Chemical Physics</i> , 2001 , 114, 8205-8209	3.9	53
268	Integration of self-assembled diblock copolymers for semiconductor capacitor fabrication. <i>Applied Physics Letters</i> , 2001 , 79, 409-411	3.4	317
267	Confined thin film diblock copolymer in the presence of an electric field. <i>Journal of Chemical Physics</i> , 2001 , 115, 1559-1564	3.9	69
266	Electric field induced instabilities at liquid/liquid interfaces. <i>Journal of Chemical Physics</i> , 2001 , 114, 2377	7-923381	171
265	Fabrication and Characterization of Nanoelectrode Arrays Formed via Block Copolymer Self-Assembly. <i>Langmuir</i> , 2001 , 17, 6396-6398	4	124
264	Effect of Interfacial Interactions on the Glass Transition of Polymer Thin Films. <i>Macromolecules</i> , 2001 , 34, 5535-5539	5.5	250
263	Enhancement of Diblock Copolymer Ordering Kinetics by Supercritical Carbon Dioxide Annealing. <i>Macromolecules</i> , 2001 , 34, 7923-7925	5.5	33

(2000-2001)

262	Chain Conformation in Ultrathin Polymer Films Using Small-Angle Neutron Scattering. <i>Macromolecules</i> , 2001 , 34, 559-567	5.5	93
261	Orientationally Registered Crystals in Thin Film Crystalline/Amorphous Block Copolymers. <i>Macromolecules</i> , 2001 , 34, 2398-2399	5.5	41
260	Controlled Adsorption of End-Functionalized Polystyrene to Silicon-Supported Tris(trimethylsiloxy)silyl Monolayers. <i>Langmuir</i> , 2001 , 17, 6547-6552	4	26
259	Dynamic Structure of a Protein Hydrogel: A Solid-State NMR Study. <i>Macromolecules</i> , 2001 , 34, 8675-86	85 .5	47
258	Propagation of Nanopatterned Substrate Templated Ordering of Block Copolymers in Thick Films. <i>Macromolecules</i> , 2001 , 34, 1487-1492	5.5	122
257	Mobility of Polymers at the Air/Polymer Interface. <i>Macromolecules</i> , 2001 , 34, 3484-3492	5.5	116
256	Structural Evolution of Multilayered, CrystallineAmorphous Diblock Copolymer Thin Films. <i>Macromolecules</i> , 2001 , 34, 2876-2883	5.5	64
255	Nanoparticles and Polymers. Bricks and Mortar Self-Assembly of Nanostructures. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 635, C1.3.1		
254	Polymer dynamics. Chance encounters. <i>Science</i> , 2001 , 293, 446-7	33.3	10
253	Teflon and Teflon/Al (nanocrystalline) decomposition chemistry at high pressures. <i>AIP Conference Proceedings</i> , 2000 ,	О	20
252	Block copolymers as nanoscopic templates. <i>Macromolecular Symposia</i> , 2000 , 159, 77-88	0.8	25
251	Nanoscopic Templates from Oriented Block Copolymer Films. <i>Advanced Materials</i> , 2000 , 12, 787-791	24	565
250	Electrically induced structure formation and pattern transfer. <i>Nature</i> , 2000 , 403, 874-7	50.4	677
249	Self-assembly of nanoparticles into structured spherical and network aggregates. <i>Nature</i> , 2000 , 404, 746-8	50.4	1010
248	Structures of dinitroazetidine and three of its carbonyl derivatives. <i>Journal of Chemical Crystallography</i> , 2000 , 30, 647-653	0.5	
247	Temperature measurements of a thermal wave at static high pressures. <i>Applied Physics Letters</i> , 2000 , 76, 2460-2462	3.4	1
246	Underwater shock measurements using a ruby pressure gauge. <i>Applied Physics Letters</i> , 2000 , 77, 684-68	363.4	3
245	All-optical technique for measuring thermal properties of materials at static high pressure. <i>Review of Scientific Instruments</i> , 2000 , 71, 3846	1.7	14

244	Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. <i>Science</i> , 2000 , 290, 2126-9	33.3	1876
243	Mixed Lamellar Films: Evolution, Commensurability Effects, and Preferential Defect Formation. <i>Macromolecules</i> , 2000 , 33, 80-88	5.5	104
242	Reducing Substrate Pinning of Block Copolymer Microdomains with a Buffer Layer of Polymer Brushes. <i>Macromolecules</i> , 2000 , 33, 857-865	5.5	102
241	Overcoming Interfacial Interactions with Electric Fields. <i>Macromolecules</i> , 2000 , 33, 3250-3253	5.5	262
240	One-Step Formation of Functionalized Block Copolymers. <i>Macromolecules</i> , 2000 , 33, 1505-1507	5.5	182
239	Structural Properties of Ammonium Perchlorate Compressed to 5.6 GPa. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 11188-11193	2.8	52
238	Computational and Experimental Infrared Spectra of 1,4-Dinitropiperazine and Vibrational Mode Assignment. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 8898-8907	2.8	1
237	The laser-induced decomposition of TATB at static high pressure. AIP Conference Proceedings, 2000,	Ο	1
236	Phase Transitions in Polymer Blends and Block Copolymers Induced by Selective Dilation with Supercritical CO2 2000 , 277-289		2
235	Nanoscopic Templates from Oriented Block Copolymer Films 2000 , 12, 787		1
235 234	Nanoscopic Templates from Oriented Block Copolymer Films 2000 , 12, 787 Nanoscopic Templates from Oriented Block Copolymer Films 2000 , 12, 787		16
		0.4	
234	Nanoscopic Templates from Oriented Block Copolymer Films 2000 , 12, 787 Some Thermodynamic Considerations of the Lower Disorder-to-Order Transition of Diblock	0.4	
² 34	Nanoscopic Templates from Oriented Block Copolymer Films 2000 , 12, 787 Some Thermodynamic Considerations of the Lower Disorder-to-Order Transition of Diblock Copolymers. <i>ACS Symposium Series</i> , 1999 , 261-269 Role of AlD2 chemistry in the laser-induced vaporization of Al films in air. <i>Journal of Chemical</i>		16
234 233 232	Nanoscopic Templates from Oriented Block Copolymer Films 2000 , 12, 787 Some Thermodynamic Considerations of the Lower Disorder-to-Order Transition of Diblock Copolymers. <i>ACS Symposium Series</i> , 1999 , 261-269 Role of AlD2 chemistry in the laser-induced vaporization of Al films in air. <i>Journal of Chemical Physics</i> , 1999 , 111, 445-448 Resistance heating of the gasket in a gem-anvil high pressure cell. <i>Review of Scientific Instruments</i> ,	3.9	16
234 233 232 231	Nanoscopic Templates from Oriented Block Copolymer Films 2000, 12, 787 Some Thermodynamic Considerations of the Lower Disorder-to-Order Transition of Diblock Copolymers. <i>ACS Symposium Series</i> , 1999, 261-269 Role of AlD2 chemistry in the laser-induced vaporization of Al films in air. <i>Journal of Chemical Physics</i> , 1999, 111, 445-448 Resistance heating of the gasket in a gem-anvil high pressure cell. <i>Review of Scientific Instruments</i> , 1999, 70, 4316-4323	3.9	16 24 8
234 233 232 231 230	Nanoscopic Templates from Oriented Block Copolymer Films 2000, 12, 787 Some Thermodynamic Considerations of the Lower Disorder-to-Order Transition of Diblock Copolymers. ACS Symposium Series, 1999, 261-269 Role of AlD2 chemistry in the laser-induced vaporization of Al films in air. Journal of Chemical Physics, 1999, 111, 445-448 Resistance heating of the gasket in a gem-anvil high pressure cell. Review of Scientific Instruments, 1999, 70, 4316-4323 Nanoporous Polyimides 1999, 1-43	3.9	16 24 8 70

226	MATERIALS SCIENCE:Tacka Sticky Subject. <i>Science</i> , 1999 , 285, 1219-1220	33.3	25
225	Neutrality Conditions for Block Copolymer Systems on Random Copolymer Brush Surfaces. <i>Macromolecules</i> , 1999 , 32, 5299-5303	5.5	115
224	Controlled Synthesis of Polymer Brushes by LivinglFree Radical Polymerization Techniques. <i>Macromolecules</i> , 1999 , 32, 1424-1431	5.5	825
223	Structure Development during Crystallization of Homogeneous Copolymers of Ethene and 1-Octene: Time-Resolved Synchrotron X-ray and SALS Measurements. <i>Macromolecules</i> , 1999 , 32, 765-7	7 5 ·5	65
222	Adhesion of Polymer Interfaces Reinforced with Random and Diblock Copolymers as a Function of Geometry. <i>Macromolecules</i> , 1999 , 32, 6254-6260	5.5	38
221	Phase Separation in Polymer Blends and Diblock Copolymers Induced by Compressible Solvents. <i>Macromolecules</i> , 1999 , 32, 7737-7740	5.5	47
220	Phase Coherence and Microphase Separation Transitions in Diblock Copolymer Thin Films. <i>Macromolecules</i> , 1999 , 32, 4832-4837	5.5	45
219	Expansion of Polystyrene Using Supercritical Carbon Dioxide: Effects of Molecular Weight, Polydispersity, and Low Molecular Weight Components. <i>Macromolecules</i> , 1999 , 32, 7610-7616	5.5	128
218	Manipulating Copolymers with Confinement and Interfacial Interactions. <i>ACS Symposium Series</i> , 1999 , 140-152	0.4	
217	Fatigue of Silane Bonded Epoxy/Glass Interfaces. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 563, 291		2
217		50.4	
	1999 , 563, 291	50.4	272
216	Nanodomain control in copolymer thin films. <i>Nature</i> , 1998 , 395, 757-758 Imidization and interdiffusion of poly(amic ethyl ester) precursors of PMDA/3,4?-ODA. <i>Journal of</i>		272
216 215	Nanodomain control in copolymer thin films. <i>Nature</i> , 1998 , 395, 757-758 Imidization and interdiffusion of poly(amic ethyl ester) precursors of PMDA/3,4?-ODA. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1998 , 36, 2247-2258 Small-Angle Neutron Scattering Studies on Thin Films of Isotopic Polystyrene Blends.	2.6 5·5	272
216 215 214	Nanodomain control in copolymer thin films. <i>Nature</i> , 1998 , 395, 757-758 Imidization and interdiffusion of poly(amic ethyl ester) precursors of PMDA/3,4?-ODA. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1998 , 36, 2247-2258 Small-Angle Neutron Scattering Studies on Thin Films of Isotopic Polystyrene Blends. <i>Macromolecules</i> , 1998 , 31, 9247-9252	2.6 5·5	272 9 15
216 215 214 213	Nanodomain control in copolymer thin films. <i>Nature</i> , 1998 , 395, 757-758 Imidization and interdiffusion of poly(amic ethyl ester) precursors of PMDA/3,4?-ODA. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1998 , 36, 2247-2258 Small-Angle Neutron Scattering Studies on Thin Films of Isotopic Polystyrene Blends. <i>Macromolecules</i> , 1998 , 31, 9247-9252 Polyimide Nanofoams from Aliphatic Polyester-Based Copolymers. <i>Chemistry of Materials</i> , 1998 , 10, 39 Large-Area Domain Alignment in Block Copolymer Thin Films Using Electric Fields. <i>Macromolecules</i> ,	2.6 5·5 -49.6	27291557
216 215 214 213 212	Nanodomain control in copolymer thin films. <i>Nature</i> , 1998 , 395, 757-758 Imidization and interdiffusion of poly(amic ethyl ester) precursors of PMDA/3,4?-ODA. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1998 , 36, 2247-2258 Small-Angle Neutron Scattering Studies on Thin Films of Isotopic Polystyrene Blends. <i>Macromolecules</i> , 1998 , 31, 9247-9252 Polyimide Nanofoams from Aliphatic Polyester-Based Copolymers. <i>Chemistry of Materials</i> , 1998 , 10, 39 Large-Area Domain Alignment in Block Copolymer Thin Films Using Electric Fields. <i>Macromolecules</i> , 1998 , 31, 4399-4401 The Effect of Hydrostatic Pressure on the Lower Critical Ordering Transition in Diblock Copolymers.	2.6 5·5 -49.6	272 9 15 57 149

208	Using Surface Active Random Copolymers To Control the Domain Orientation in Diblock Copolymer Thin Films. <i>Macromolecules</i> , 1998 , 31, 7641-7650	5.5	280
207	Phase-Separation-Induced Surface Patterns in Thin Polymer Blend Films. <i>Macromolecules</i> , 1998 , 31, 857	7-862	176
206	Phase Behavior of Diblock Copolymers between Styrene and n-Alkyl Methacrylates. <i>Macromolecules</i> , 1998 , 31, 8509-8516	5.5	98
205	Atomic structure of solid and liquid polyethylene oxide. <i>Journal of Chemical Physics</i> , 1998 , 109, 7005-70)1 9 9	48
204	Interfacial Segregation in Disordered Block Copolymers: Effect of Tunable Surface Potentials. <i>Physical Review Letters</i> , 1997 , 79, 237-240	7.4	223
203	A high pressure optical cell utilizing single crystal cubic zirconia anvil windows. <i>Review of Scientific Instruments</i> , 1997 , 68, 1835-1840	1.7	12
202	Polyimide Nanofoams Based on Ordered Polyimides Derived from Poly(amic alkyl esters): PMDA/4-BDAF. <i>Chemistry of Materials</i> , 1997 , 9, 105-118	9.6	49
201	Ordered Diblock Copolymer Films on Random Copolymer Brushes. <i>Macromolecules</i> , 1997 , 30, 6810-681	3 5.5	237
200	Pressure/Temperature and Reaction Phase Diagram for Dinitro Azetidinium Dinitramide. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 3566-3570	3.4	7
199	Surface Relaxations in Polymers. <i>Macromolecules</i> , 1997 , 30, 7768-7771	5.5	144
198	Controlling Polymer-Surface Interactions with Random Copolymer Brushes. <i>Science</i> , 1997 , 275, 1458-14	169 3.3	1117
197	The one that got away. <i>Nature</i> , 1997 , 386, 771-772	50.4	15
196	Forward recoil spectrometry study of the diffusion of PMDA/ODA-based poly(amic ethyl esters). <i>Polymer</i> , 1997 , 38, 5073-5078	3.9	9
195	Transmission electron microscopy of 3F/PMDA-polypropylene oxide triblock copolymer based nanofoams. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1997 , 35, 1067-1076	2.6	10
194	Time resolved optical spectroscopy to examine chemical decomposition of energetic materials under static high pressure and pulsed heating conditions. <i>Chemical Physics Letters</i> , 1997 , 267, 351-358	2.5	10
193	Polyimide Nanofoams from Phase Separated Triblock Copolymers 1997 , 529-542		
192	Interphase Mixing in Symmetric Diblock Copolymers Determined by ProtonDeuterium CP/MAS NMR. <i>Macromolecules</i> , 1996 , 29, 2201-2204	5.5	18
191	Pressure, Temperature Reaction Phase Diagram for Ammonium Dinitramide. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 3248-3251		38

190	High-Resolution Profiling of the Polyimide Polyimide Interface. <i>Macromolecules</i> , 1996 , 29, 6880-6891	5.5	19
189	Well-Defined Random Copolymers by a l livinglFree-Radical Polymerization Process. <i>Macromolecules</i> , 1996 , 29, 2686-2688	5.5	171
188	Nanofoam Porosity Measured by Infrared Spectroscopy and Refractive Index. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 431, 475		
187	A Monte Carlo Simulation of Asymmetric Random Copolymers at an Immiscible Interface. <i>Macromolecules</i> , 1996 , 29, 4120-4124	5.5	13
186	Reactions of Benzotriazolo[2,1-a]benzotriazole Derivatives. 2. An Unusual Hydrolysis-Oxidation Reaction. <i>Journal of Organic Chemistry</i> , 1996 , 61, 1898-1900	4.2	12
185	Homopolymer Interfaces Reinforced with Random Copolymers. <i>Macromolecules</i> , 1996 , 29, 5493-5496	5.5	77
184	Polyimide Nanofoams from Caprolactone-Based Copolymers. <i>Macromolecules</i> , 1996 , 29, 3642-3646	5.5	33
183	Polymer Mobility in Thin Films. <i>Macromolecules</i> , 1996 , 29, 6531-6534	5.5	300
182	Observed surface energy effects in confined diblock copolymers. <i>Physical Review Letters</i> , 1996 , 76, 250	3 7 24506	5 303
181	Entanglements at Polymer Surfaces and Interfaces. <i>Macromolecules</i> , 1996 , 29, 798-800	5.5	222
181	Entanglements at Polymer Surfaces and Interfaces. <i>Macromolecules</i> , 1996 , 29, 798-800 Characterization of thin Polymeric Nanofoam films by Transmission Electron Microscopy and Small Angle Neutron Scattering. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 461, 103	5.5	222
	Characterization of thin Polymeric Nanofoam films by Transmission Electron Microscopy and Small	5.5	
180	Characterization of thin Polymeric Nanofoam films by Transmission Electron Microscopy and Small Angle Neutron Scattering. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 461, 103 Electric Field Induced Control of Thin Film Diblock Copolymer Domain Orientation. <i>Materials</i>		
180 179	Characterization of thin Polymeric Nanofoam films by Transmission Electron Microscopy and Small Angle Neutron Scattering. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 461, 103 Electric Field Induced Control of Thin Film Diblock Copolymer Domain Orientation. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 461, 109		1
180 179 178	Characterization of thin Polymeric Nanofoam films by Transmission Electron Microscopy and Small Angle Neutron Scattering. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 461, 103 Electric Field Induced Control of Thin Film Diblock Copolymer Domain Orientation. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 461, 109 NEXAFS Studies on the Surface Orientation of Buffed Polyimides. <i>Macromolecules</i> , 1996 , 29, 8334-8342 Local Control of Microdomain Orientation in Diblock Copolymer Thin Films with Electric Fields.	² 5.5	1 120
180 179 178	Characterization of thin Polymeric Nanofoam films by Transmission Electron Microscopy and Small Angle Neutron Scattering. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 461, 103 Electric Field Induced Control of Thin Film Diblock Copolymer Domain Orientation. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 461, 109 NEXAFS Studies on the Surface Orientation of Buffed Polyimides. <i>Macromolecules</i> , 1996 , 29, 8334-8342 Local Control of Microdomain Orientation in Diblock Copolymer Thin Films with Electric Fields. <i>Science</i> , 1996 , 273, 931-3 Interdiffusion of polymers across interfaces. <i>Journal of Polymer Science, Part B: Polymer Physics</i> ,	2 5.5 33.3 2.6	1 120 677
180 179 178 177	Characterization of thin Polymeric Nanofoam films by Transmission Electron Microscopy and Small Angle Neutron Scattering. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 461, 103 Electric Field Induced Control of Thin Film Diblock Copolymer Domain Orientation. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 461, 109 NEXAFS Studies on the Surface Orientation of Buffed Polyimides. <i>Macromolecules</i> , 1996 , 29, 8334-8342 Local Control of Microdomain Orientation in Diblock Copolymer Thin Films with Electric Fields. <i>Science</i> , 1996 , 273, 931-3 Interdiffusion of polymers across interfaces. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1996 , 34, 2919-2940	2 5.5 33.3 2.6	1 120 677 45

172	Characterizing Polymer Surfaces and Interfaces. MRS Bulletin, 1996, 21, 49-53	3.2	11
171	Nanofoam porosity by infrared spectroscopy. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1995 , 33, 253-257	2.6	20
170	Near-surface alignment of polymers in rubbed films. <i>Nature</i> , 1995 , 374, 709-711	50.4	332
169	High temperature polymer nanofoams based on amorphous, high Tg polyimides. <i>Polymer</i> , 1995 , 36, 987	-3.902	47
168	Crosslinked polyimide foams derived from pyromellitic dianhydride and 1,1-bis(4-aminophenyl)-1-phenyl-2,2,3-trifluoroethane with poly(#methylstyrene). <i>Polymer</i> , 1995 , 36, 1315-1320	3.9	19
167	Polyimide foams prepared from homopolymer/copolymer mixtures. <i>Polymer</i> , 1995 , 36, 4529-4534	3.9	12
166	Bassereau et al. reply. <i>Physical Review Letters</i> , 1995 , 74, 4961	7.4	5
165	Thick film positive photoresist: Development and resolution enhancement technique. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 1995 , 13, 3000		7
164	Solvent Penetration into Ordered Thin Films of Diblock Copolymers. <i>Macromolecules</i> , 1995 , 28, 1470-14	754 5	18
163	Synchrotron X-ray Scattering Studies of Crystallization of Poly(ether-ether-ketone) from the Glass and Structural Changes during Subsequent Heating-Cooling Processes. <i>Macromolecules</i> , 1995 , 28, 8491-	·8̄5̄03	104
162	Rheology of the Lower Critical Ordering Transition. <i>Macromolecules</i> , 1995 , 28, 1129-1134	5.5	47
161	Small Angle Neutron Scattering Studies on Ultrathin Films. <i>Macromolecules</i> , 1995 , 28, 787-789	5.5	25
160	Polyimide Nanofoams Prepared from Styrenic Block Copolymers. ACS Symposium Series, 1995, 425-438	0.4	2
159	Free Structure Confinement of Diblock Copolymer Multilayers. <i>Macromolecules</i> , 1995 , 28, 8092-8095	5.5	20
158	Polyimide Nanofoams For Low Dielectric Applications. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 381, 79		30
157	Time Resolved Optical Spectroscopy to Examine Chemical Decomposition of Energetic Materials Under Static High Pressure and Pulsed Heating Conditions. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 418, 385		2
156	Time Resolved Emission Studies of Aluminum and Water High Pressure Reactions. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 418, 391		1
155	Surface orientation of liquid crystalline poly(alkylsilanes). <i>Acta Polymerica</i> , 1995 , 46, 60-63		6

154	High-pressure matrix isolation of heterogeneous condensed phase chemical reactions under extreme conditions. <i>Chemical Physics Letters</i> , 1995 , 234, 195-202	2.5	11
153	High temperature nanofoams derived from rigid and semi-rigid polyimides. <i>Polymer</i> , 1995 , 36, 2685-269	93.9	56
152	Topology of forward scattering of neutrons from imperfect multilayers. <i>Physical Review B</i> , 1994 , 50, 95	6 § . · 956	i 8 10
151	Observed frustration in confined block copolymers. <i>Physical Review Letters</i> , 1994 , 72, 2899-2902	7.4	235
150	Grazing incidence prompt gamma emissions and resonance-enhanced neutron standing waves in a thin film. <i>Physical Review Letters</i> , 1994 , 72, 3044-3047	7.4	41
149	Observation of x-ray speckle by coherent scattering at grazing incidence. <i>Physical Review Letters</i> , 1994 , 73, 82-85	7.4	48
148	Swelling effects in semidilute block copolymer solutions. <i>Journal of Chemical Physics</i> , 1994 , 101, 5213-5	231.8	11
147	Photon tunnelling microscopy of polyethylene single crystals. <i>Polymer</i> , 1994 , 35, 1137-1141	3.9	2
146	Monte Carlo simulations of the free surface of polymer melts. <i>Chemical Engineering Science</i> , 1994 , 49, 2899-2906	4.4	23
145	Time-resolved SAXS studies of morphological changes in cold crystallized poly(ethylene terephthalate) during annealing and heating. <i>Colloid and Polymer Science</i> , 1994 , 272, 1344-1351	2.4	45
144	On the microphase separation kinetics of symmetric diblock copolymers. <i>Colloid and Polymer Science</i> , 1994 , 272, 1373-1379	2.4	7
143	A method to confine thin solid organic films between flat rigid walls. <i>Thin Solid Films</i> , 1994 , 252, 75-77	2.2	10
142	Thermoplastic toughened styrenic thermosets: synthesis, properties and consequences of radical based cure chemistry. <i>Polymer</i> , 1994 , 35, 291-299	3.9	4
141	A lower critical ordering transition in a diblock copolymer melt. <i>Nature</i> , 1994 , 368, 729-731	50.4	154
140	A Free Energy Model for Confined Diblock Copolymers. <i>Macromolecules</i> , 1994 , 27, 6225-6228	5.5	265
139	Evolution of order in thin block copolymer films. <i>Macromolecules</i> , 1994 , 27, 749-755	5.5	78
138	Interdiffusion of Polymers at Short Times. <i>Macromolecules</i> , 1994 , 27, 6973-6979	5.5	61
137	Block Copolymer Mixtures As Revealed By Neutron Reflectivity. <i>Macromolecules</i> , 1994 , 27, 7447-7453	5.5	55

136	Short-Time Interdiffusion at Polymer Interfaces. <i>Macromolecules</i> , 1994 , 27, 4407-4409	5.5	27
135	Small-Angle Neutron Scattering from Deuterated Polystyrene/Poly(butyl methacrylate) Homopolymer Blend Mixtures. <i>Macromolecules</i> , 1994 , 27, 2357-2359	5.5	25
134	Resonance Enhanced Neutron Standing Waves in Thin Films. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 376, 259		
133	Evolution of Ordering in Thin Films of Symmetric Diblock Copolymers 1994 , 217-223		7
132	Thin films of diblock copolymers: windows into bulk and reduced dimensional phenomena. <i>Physica A: Statistical Mechanics and Its Applications</i> , 1993 , 200, 713-721	3.3	7
131	Pressure/temperature phase diagram of hexanitrohexaazaisowurtzitane. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 1993-1997		90
130	Small-angle x-ray scattering and pulsed NMR studies of polyurethane interpenetrating polymer networks. <i>Macromolecules</i> , 1993 , 26, 1922-1929	5.5	14
129	Segment distributions in lamellar diblock copolymers. <i>Macromolecules</i> , 1993 , 26, 3929-3936	5.5	140
128	Grazing incidence x-ray scattering studies of thin films of an aromatic polyimide. <i>Macromolecules</i> , 1993 , 26, 2847-2859	5.5	117
127	Segregation of chain ends to polymer melt surfaces and interfaces. <i>Macromolecules</i> , 1993 , 26, 561-562	5.5	77
126	Changes in polystyrene and poly(methyl methacrylate) interactions with isotopic substitution. <i>Macromolecules</i> , 1993 , 26, 5819-5819	5.5	58
125	On the birefringence of multilayered symmetric diblock copolymer films. <i>Macromolecules</i> , 1993 , 26, 543	3 6. 544	02
124	Distributions of chain ends and junction points in ordered block copolymers. <i>Macromolecules</i> , 1993 , 26, 1047-1052	5.5	46
123	Reversal of the isotopic effect in the surface behavior of binary polymer blends. <i>Journal of Chemical Physics</i> , 1993 , 98, 4163-4173	3.9	101
122	Free surfaces of polymer blends. II. Effects of molecular weight and applications to asymmetric polymer blends. <i>Journal of Chemical Physics</i> , 1993 , 99, 4041-4050	3.9	39
121	Topological coarsening of symmetric diblock copolymer films: Model 2D systems. <i>Physical Review Letters</i> , 1993 , 71, 1716-1719	7.4	68
12 0	Experimental study of the surface structure of diblock copolymer films using microscopy and x-ray scattering. <i>Journal of Chemical Physics</i> , 1993 , 98, 2376-2386	3.9	43
119	Russell et al. reply. <i>Physical Review Letters</i> , 1993 , 70, 1352	7.4	2

118	The effect of finite film thickness on the surface segregation in symmetric binary polymer mixtures. Journal of Chemical Physics, 1993 , 99, 656-663	3.9	59
117	Free surfaces of polymer blends. I. Theoretical framework and application to symmetric polymer blends. <i>Journal of Chemical Physics</i> , 1993 , 98, 6516-6525	3.9	19
116	Profiling Polyimide-Polyimide Interfaces. <i>Materials Research Society Symposia Proceedings</i> , 1993 , 305, 153		
115	Very thin films of symmetric diblock copolymers 1993 , 88-92		
114	The ordering of thin films of symmetric diblock copolymers 1993 , 97-100		2
113	Solvent and isomer effects on the imidization of pyromellitic dianhydride-oxydianiline-based poly(amic ethyl ester)s. <i>Polymer</i> , 1993 , 34, 4524-4530	3.9	28
112	High temperature polymer foams. <i>Polymer</i> , 1993 , 34, 4717-4726	3.9	91
111	Direct observation of reptation at polymer interfaces. <i>Nature</i> , 1993 , 365, 235-237	50.4	68
110	Macro- vs microphase separation in copolymer/homopolymer mixtures. <i>Macromolecules</i> , 1993 , 26, 2860)- <u>3,8</u> 65	26
109	Configuration of grafted polystyrene chains in the melt: Temperature and concentration dependence. <i>Physical Review Letters</i> , 1992 , 69, 776-779	7.4	34
108	Studies of surface and interface segregation in polymer blends by secondary ion mass spectrometry. <i>Molecular Physics</i> , 1992 , 76, 937-950	1.7	82
107	High-pressure phase transition in .gammahexanitrohexaazaisowurtzitane. <i>The Journal of Physical Chemistry</i> , 1992 , 96, 5509-5512		57
106	Thin film order of symmetric diblock copolymers. <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1992 , 62, 157-165		6
105	Ordering of thin diblock copolymer films. <i>Physical Review Letters</i> , 1992 , 68, 67-70	7.4	160
104	Homopolymer distributions in ordered block copolymers. <i>Macromolecules</i> , 1992 , 25, 6523-6531	5.5	112
103	Hairpin configurations of triblock copolymers at homopolymer interfaces. <i>Macromolecules</i> , 1992 , 25, 5783-5789	5.5	14
102	Adsorption of copolymer chains from a melt onto a flat surface. <i>Macromolecules</i> , 1992 , 25, 783-787	5.5	26
101	Interdiffusion at polyimide interfaces. <i>Polymer</i> , 1992 , 33, 3382-3387	3.9	16

100	Soft x-ray diffraction studies on polymeric Langmuir-Blodgett films. <i>Thin Solid Films</i> , 1991 , 199, 161-172	2 2.2	6
99	Preparation and characterization of thin polymer bilayer films by neutron reflection. <i>Thin Solid Films</i> , 1991 , 202, 345-350	2.2	7
98	Imide-aryl ether phenylquinoxaline random copolymers. <i>Polymer</i> , 1991 , 32, 950-958	3.9	12
97	Thermal Decomposition of Energetic Materials. 43. Fast thermolysis of cubylammonium nitrate and cubane-1,4-diammonium dinitrate. <i>Propellants, Explosives, Pyrotechnics</i> , 1991 , 16, 27-30	1.7	4
96	Thermal decomposition of energetic materials. 44. Rapid thermal decomposition of the propyl-1,3-diammonium salts of NO B and ClO A, and the crystal structure of the ClO B salt. <i>Journal of Crystallographic and Spectroscopic Research</i> , 1991 , 21, 167-171		7
95	Conformation of Grafted Polystyrene Chains in a Melt. <i>Europhysics Letters</i> , 1991 , 15, 725-730	1.6	20
94	Surface-induced ordering of an aromatic polyimide. <i>Physical Review Letters</i> , 1991 , 66, 1181-1184	7.4	94
93	Dynamics of (micro)phase separation during fast, bulk copolymerization: some synchrotron SAXS experiments. <i>Macromolecules</i> , 1991 , 24, 2883-2889	5.5	59
92	Segregation of low molecular weight symmetric diblock copolymers at the interface of high molecular weight homopolymers. <i>Macromolecules</i> , 1991 , 24, 2931-2935	5.5	43
91	Ordering at diblock copolymer surfaces. <i>Macromolecules</i> , 1991 , 24, 252-255	5.5	44
90	Width of homopolymer interfaces in the presence of symmetric diblock copolymers. <i>Macromolecules</i> , 1991 , 24, 5721-5726	5.5	80
89	Imide-aryl ether phenylquinoxaline block copolymers. <i>Macromolecules</i> , 1991 , 24, 4559-4566	5.5	11
88	Behavior of isotopic, binary polymer blends in the vicinity of neutral surfaces: the effects of chain-length disparity. <i>Macromolecules</i> , 1991 , 24, 3816-3820	5.5	42
87	Segment density distribution of symmetric diblock copolymers at the interface between two homopolymers as revealed by neutron reflectivity. <i>Macromolecules</i> , 1991 , 24, 1575-1582	5.5	70
86	Unconventional morphologies of symmetric, diblock copolymers due to film thickness constraints. <i>Macromolecules</i> , 1991 , 24, 6263-6269	5.5	87
85	Surface segregation in binary polymer mixtures: a lattice model. <i>Macromolecules</i> , 1991 , 24, 4909-4917	5.5	90
84	The Characterization of Polymer Interfaces. Annual Review of Materials Research, 1991, 21, 249-268		43
83	Ion beam analysis of the imidization kinetics of polyamic ethyl ester. <i>Polymer</i> , 1990 , 31, 520-523	3.9	12

(1989-1990)

82	Thermal Decomposition of energetic materials. 39. Fast thermolysis patterns of poly(methyl), poly(ethyl), and primary alkylammonium mononitrate salts. <i>Propellants, Explosives, Pyrotechnics</i> , 1990 , 15, 66-72	1.7	9
81	Thermal Decomposition of Energetic Materials. 40. Fast thermolysis patterns of Alkanediammonium dinitrate salts. <i>Propellants, Explosives, Pyrotechnics</i> , 1990 , 15, 77-80	1.7	11
8o	Thermal Decomposition of Energetic Materials 41. Fast thermolysis of cyclic and acyclic ethanediammonium dinitrate salts and their oxonium nitrate double salts, and the crystal structure of piperazinium dinitrate. <i>Propellants, Explosives, Pyrotechnics</i> , 1990 , 15, 81-86	1.7	6
79	Thermal Decomposition of Energetic Materials. 42. Fast thermal decomposition of five N-Methyl substituted ethanediammonium dinitrate salts. <i>Propellants, Explosives, Pyrotechnics</i> , 1990 , 15, 123-126	1.7	8
78	Imide-aryl ether benzoxazole random copolymers. <i>Polymer</i> , 1990 , 31, 2384-2392	3.9	19
77	The Form of the Enriched Surface Layer in Polymer Blends. <i>Europhysics Letters</i> , 1990 , 12, 41-46	1.6	95
76	Short-time relaxation at polymeric interfaces. <i>Physical Review B</i> , 1990 , 42, 6846-6849	3.3	75
75	Equilibrium surface composition of diblock copolymers. <i>Journal of Chemical Physics</i> , 1990 , 92, 1478-1482	2 3.9	65
74	The morphology of symmetric diblock copolymers as revealed by neutron reflectivity. <i>Journal of Chemical Physics</i> , 1990 , 92, 5677-5691	3.9	311
73	Temperature dependence of the interaction parameter of polystyrene and poly(methyl methacrylate). <i>Macromolecules</i> , 1990 , 23, 890-893	5.5	370
7 2	Microphase separation transition of a triblock copolymer. <i>Macromolecules</i> , 1990 , 23, 877-881	5.5	28
71	Concentration fluctuations in mixtures of linear and star-shaped polymers. <i>Macromolecules</i> , 1990 , 23, 654-659	5.5	24
70	A lattice model for the surface segregation of polymer chains due to molecular weight effects. <i>Macromolecules</i> , 1990 , 23, 3584-3592	5.5	111
69	Neutron reflectivity study of block copolymers adsorbed from solution. <i>Macromolecules</i> , 1990 , 23, 3860	- <u>3.8</u> 64	45
68	Phase-separation kinetics of mixtures of linear and star-shaped polymers. <i>Macromolecules</i> , 1990 , 23, 4452-4455	5.5	10
67	Liquid Crystalline Phases Formed by Iodine Derivatives of Semifluorinated Alkanes. <i>Molecular Crystals and Liquid Crystals</i> , 1990 , 182, 291-297	0.5	20
66	Behavior of Block Copolymers in Thin Films. <i>MRS Bulletin</i> , 1989 , 14, 33-37	3.2	6
65	Transitions to Liquid Crystalline Phases in a Semifluorinated Alkane. <i>Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics</i> , 1989 , 168, 63-82		39

64	The structural basis of transitions between highly ordered smectic phases in semifluorinated alkanes. <i>Liquid Crystals</i> , 1989 , 5, 1783-1788	2.3	78
63	Thermal decomposition of energetic materials 31Hast thermolysis of ammonium nitrate, ethylenediammonium dinitrate and hydrazinium nitrate and the relationship to the burning rate. <i>Combustion and Flame</i> , 1989 , 76, 393-401	5.3	45
62	Structural studies of Langmuir-Blodgett multilayers by means of soft X-ray diffraction. <i>Thin Solid Films</i> , 1989 , 170, 309-319	2.2	17
61	Swelling behavior of an aromatic polyimide. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1989 , 27, 2131-2144	2.6	29
60	Investigation of the microphase separation transition in low-molecular-weight diblock copolymers. <i>Macromolecules</i> , 1989 , 22, 3380-3387	5.5	69
59	Surface interaction in solvent-cast polystyrene-poly(methyl methacrylate) diblock copolymers. <i>Macromolecules</i> , 1989 , 22, 2189-2194	5.5	76
58	Temperature dependence of tracer diffusion of homopolymers into nonequilibrium diblock copolymer structures. <i>Macromolecules</i> , 1989 , 22, 908-913	5.5	17
57	Morphological changes in polyesters and polyamides induced by blending with small concentrations of polymer diluents. <i>Macromolecules</i> , 1989 , 22, 666-675	5.5	179
56	Structural modifications in hydroxy ether-dimethyldiphenylsiloxane copolymers. <i>Macromolecules</i> , 1989 , 22, 4470-4477	5.5	24
55	Neutron reflectivity studies of the surface-induced ordering of diblock copolymer films. <i>Physical Review Letters</i> , 1989 , 62, 1852-1855	7.4	400
54	Surface-induced orientation of symmetric, diblock copolymers: a secondary ion mass-spectrometry study. <i>Macromolecules</i> , 1989 , 22, 2581-2589	5.5	323
53	Characteristics of the surface-induced orientation for symmetric diblock PS/PMMA copolymers. <i>Macromolecules</i> , 1989 , 22, 4600-4606	5.5	280
52	Order-disorder transitions in mixtures of homopolymers with diblock copolymers. <i>Macromolecules</i> , 1989 , 22, 3388-3394	5.5	25
51	Synthesis and characterization of a model saturated hydrocarbon diblock copolymer. <i>Macromolecules</i> , 1989 , 22, 2557-2564	5.5	71
50	Interfacial Segregation Effects in Mixtures of Homopolymers with Copolymers <i>Materials Research Society Symposia Proceedings</i> , 1989 , 171, 343		1
49	Solvent and Curing Effects on Diffusion at Polyimide Interfaces. <i>Materials Research Society Symposia Proceedings</i> , 1989 , 153, 239		5
48	Solvent and Curing Effects on Diffusion at Polyimide Interfaces. <i>Materials Research Society Symposia Proceedings</i> , 1989 , 154, 283		1
47	The Morphology of Symietric Diblock Copolymers as Revealed by Neutron Reflectivity. <i>Materials Research Society Symposia Proceedings</i> , 1989 , 166, 139		

46	Temperature Dependence of the Morphology of Thin Diblock Copolymer Films as Revealed by Neutron Reflectivity. <i>Materials Research Society Symposia Proceedings</i> , 1989 , 166, 145		1
45	Diblock Copolymers at Surfaces. <i>Materials Research Society Symposia Proceedings</i> , 1989 , 171, 317		
44	Synthesis and properties of segmented poly(hydroxyether-siloxane). <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1989 , 25, 155-166		
43	Intercalibration of small-angle X-ray and neutron scattering data. <i>Journal of Applied Crystallography</i> , 1988 , 21, 629-638	3.8	146
42	Diffusion and self-adhesion of the polyimide PMDA-ODA. <i>Polymer</i> , 1988 , 29, 1807-1811	3.9	67
41	Neutron and x-ray scattering studies on semicrystalline polymer blends. <i>Macromolecules</i> , 1988 , 21, 1703	3 5 1₹09	167
40	The microstructure of block copolymers formed via ionic interactions. <i>Macromolecules</i> , 1988 , 21, 1709-1	<i>7</i> 51 <i>5</i> 7	57
39	Specular reflectivity of neutrons by thin polymer films. <i>Macromolecules</i> , 1988 , 21, 1890-1893	5.5	85
38	Diffusion of homopolymers into nonequilibrium block copolymer structures. 1. Molecular weight dependence. <i>Macromolecules</i> , 1988 , 21, 3266-3273	5.5	35
37	Synthesis and properties of segmented and block poly(hydroxyether-siloxane) copolymers. <i>Macromolecules</i> , 1988 , 21, 1967-1977	5.5	15
36	Reflectivity of Soft X-Rays by Polymer Mixtures. <i>Materials Research Society Symposia Proceedings</i> , 1988 , 143, 265		2
35	Concentration fluctuations of polystyrene-polybutadiene blends. <i>Physical Review B</i> , 1987 , 35, 8566-857	1 3.3	3
34	Interactions in mixtures of poly(ethylene oxide) and poly(methyl methacrylate). <i>Macromolecules</i> , 1987 , 20, 2213-2220	5.5	147
33	Small-angle x-ray scattering studies of polymer colloids: nonaqueous dispersions of poly(isobutylene)-stabilized poly(methyl methacrylate) particles. <i>Macromolecules</i> , 1987 , 20, 899-901	5.5	10
32	Observation of cluster formation in an ionomer. <i>Macromolecules</i> , 1987 , 20, 3091-3094	5.5	50
31	Intermolecular polarization transfer study of polymer blend compatibility. <i>Journal of Polymer Science, Part C: Polymer Letters</i> , 1987 , 25, 61-65		34
30	X-ray studies on the deformation of an aromatic polyimide. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1987 , 25, 1129-1148	2.6	23
29	Interdiffusion in Polyimide Thin Films. <i>Materials Research Society Symposia Proceedings</i> , 1986 , 72, 195		1

Scattering Studies on Mixtures of Poly(Ethylene Oxide) with Poly(Methyl Methacrylate). *Materials Research Society Symposia Proceedings*, **1986**, 79, 87

27	The effect of structural relaxation on the Rayleigh-Brillouin spectra of liquids consisting of chain molecules. <i>Polymer</i> , 1986 , 27, 261-264	3.9	14
26	Rutherford backscattering spectrometry studies of iodine diffusion in polyimide. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1986 , 24, 263-277	2.6	21
25	Ionic aggregation in model ionomers. <i>Macromolecules</i> , 1986 , 19, 2877-2884	5.5	84
24	Structural characterization of semifluorinated n-alkanes. 2. Solid-solid transition behavior. <i>Macromolecules</i> , 1986 , 19, 1135-1143	5.5	148
23	Kinetics of crystallization in semicrystalline/amorphous polymer mixtures. <i>Macromolecules</i> , 1986 , 19, 1143-1152	5.5	204
22	Simultaneous SAXS-DSC study of multiple endothermic behavior in polyether-based polyurethane block copolymers. <i>Macromolecules</i> , 1986 , 19, 714-720	5.5	269
21	Simultaneous differential scanning calorimetry and small-angle x-ray scattering. <i>Journal of Polymer Science, Polymer Physics Edition</i> , 1985 , 23, 1109-1115		48
20	Observations of a gel phase in binary mixtures of semifluorinated n-alkanes with hydrocarbon liquids. <i>Macromolecules</i> , 1985 , 18, 1361-1362	5.5	97
19	Thermodynamics of phase separation in polymer mixtures. <i>Macromolecules</i> , 1985 , 18, 665-670	5.5	15
18	Phase separation in low molecular weight polymer mixtures. <i>Macromolecules</i> , 1985 , 18, 78-83	5.5	38
17	Concerning voids in polyimide. <i>Polymer Engineering and Science</i> , 1984 , 24, 345-349	2.3	22
16	A small-angle X-ray scattering study of an aromatic polyimide. <i>Journal of Polymer Science, Polymer Physics Edition</i> , 1984 , 22, 1105-1117		95
15	Structural studies of semifluorinated n-alkanes. 1. Synthesis and characterization of F(CF2)n(CH2)mH in the solid state. <i>Macromolecules</i> , 1984 , 17, 2786-2794	5.5	213
14	Rheooptical investigation of the transition behavior of polyphosphazenes. <i>Macromolecules</i> , 1984 , 17, 1795-1799	5.5	14
13	An investigation of the compatibility and morphology of semicrystalline poly(Eaprolactone) poly(vinyl chloride) blends. <i>Journal of Polymer Science, Polymer Physics Edition</i> , 1983 , 21, 999-1010		61
12	In-plane orientation of polyimide. <i>Journal of Polymer Science, Polymer Physics Edition</i> , 1983 , 21, 1745-1	756	148
11	An absolute intensity standard for small-angle X-ray scattering measured with position-sensitive detectors. <i>Journal of Applied Crystallography</i> , 1983 , 16, 473-478	3.8	12

LIST OF PUBLICATIONS

10	Small-angle x-ray and neutron scattering studies of amorphous polymer blends. <i>Journal of Polymer Science, Polymer Physics Edition</i> , 1982 , 20, 1593-1607	17
9	Small-angle x-ray scattering study of ionomer deformation. <i>Journal of Polymer Science, Polymer Physics Edition</i> , 1980 , 18, 1497-1512	46
8	Scattering studies from polymer blends. <i>Journal of Macromolecular Science - Physics</i> , 1980 , 17, 617-624 1.4	13
7	Total integrated light-scattering intensity from polymeric solids. <i>Journal of Polymer Science</i> , <i>Polymer Physics Edition</i> , 1979 , 17, 1719-1730	74
6	A calibration procedure for a low-angle light-scattering apparatus. <i>Journal of Polymer Science, Polymer Physics Edition</i> , 1978 , 16, 1879-1882	4
5	Standard potential of the mercury-mercurous benzoate electrode at 20.degree.C. <i>Journal of Chemical & Data</i> , 1977 , 22, 370-371	2
4	Small-angle x-ray and light scattering studies of the morphology of blends of poly(?-caprolactone) with poly(vinyl chloride). <i>Journal of Polymer Science, Polymer Physics Edition</i> , 1976 , 14, 1391-1424	204
3	Manipulating the Crystalline Morphology in the Nonfullerene Acceptor Mixture to Improve the Carrier Transport and Suppress the Energetic Disorder. <i>Small Science</i> ,2100092	1
2	Nanoparticle/Polyelectrolyte Complexes for Biomimetic Constructs. <i>Advanced Functional Materials</i> ,2108 <u>8</u> 96	7
1	Laser-induced recoverable fluorescence quenching of perovskite films at a microscopic grain-scale. Energy and Environmental Materials, 13	1