Thomas P Russell

List of Publications by Citations

Source: https://exaly.com/author-pdf/662448/thomas-p-russell-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

77,178 963 238 140 h-index g-index citations papers 8.06 82,527 1,013 10.3 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
963	Nanoparticle polymer composites: where two small worlds meet. <i>Science</i> , 2006 , 314, 1107-10	33.3	2117
962	Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. <i>Science</i> , 2000 , 290, 2126-9	33.3	1876
961	Single-junction polymer solar cells with high efficiency and photovoltage. <i>Nature Photonics</i> , 2015 , 9, 17	43137 9	1495
960	Controlling Polymer-Surface Interactions with Random Copolymer Brushes. <i>Science</i> , 1997 , 275, 1458-14	469 3.3	1117
959	Self-assembly of nanoparticles into structured spherical and network aggregates. <i>Nature</i> , 2000 , 404, 746-8	50.4	1010
958	Self-directed self-assembly of nanoparticle/copolymer mixtures. <i>Nature</i> , 2005 , 434, 55-9	50.4	861
957	Nanoparticle assembly and transport at liquid-liquid interfaces. <i>Science</i> , 2003 , 299, 226-9	33.3	858
956	Highly Oriented and Ordered Arrays from Block Copolymers via Solvent Evaporation. <i>Advanced Materials</i> , 2004 , 16, 226-231	24	831
955	Controlled Synthesis of Polymer Brushes by LivinglFree Radical Polymerization Techniques. <i>Macromolecules</i> , 1999 , 32, 1424-1431	5.5	825
954	A series of simple oligomer-like small molecules based on oligothiophenes for solution-processed solar cells with high efficiency. <i>Journal of the American Chemical Society</i> , 2015 , 137, 3886-93	16.4	722
953	Burnout and career satisfaction among American surgeons. <i>Annals of Surgery</i> , 2009 , 250, 463-71	7.8	715
952	Small-molecule solar cells with efficiency over 9%. <i>Nature Photonics</i> , 2015 , 9, 35-41	33.9	701
951	Electrically induced structure formation and pattern transfer. <i>Nature</i> , 2000 , 403, 874-7	50.4	677
950	Local Control of Microdomain Orientation in Diblock Copolymer Thin Films with Electric Fields. <i>Science</i> , 1996 , 273, 931-3	33.3	677
949	Macroscopic 10-terabit-per-square-inch arrays from block copolymers with lateral order. <i>Science</i> , 2009 , 323, 1030-3	33.3	653
948	Block copolymer nanolithography: translation of molecular level control to nanoscale patterns. <i>Advanced Materials</i> , 2009 , 21, 4769-92	24	585
947	Block Copolymer Lithography: Merging B ottom-Uplwith T op-DownlProcesses. <i>MRS Bulletin</i> , 2005 , 30, 952-966	3.2	569

(1989-2000)

946	Nanoscopic Templates from Oriented Block Copolymer Films. Advanced Materials, 2000, 12, 787-791	24	565
945	Holey silicon as an efficient thermoelectric material. <i>Nano Letters</i> , 2010 , 10, 4279-83	11.5	559
944	P3HT/PCBM bulk heterojunction organic photovoltaics: correlating efficiency and morphology. <i>Nano Letters</i> , 2011 , 11, 561-7	11.5	511
943	Nanoporous Membranes with Ultrahigh Selectivity and Flux for the Filtration of Viruses. <i>Advanced Materials</i> , 2006 , 18, 709-712	24	497
942	A generalized approach to the modification of solid surfaces. <i>Science</i> , 2005 , 308, 236-9	33.3	467
941	Self-assembly of nanoparticles at interfaces. <i>Soft Matter</i> , 2007 , 3, 1231-1248	3.6	466
940	Surface-responsive materials. <i>Science</i> , 2002 , 297, 964-7	33.3	451
939	Polymers on Nanoperiodic, Heterogeneous Surfaces. <i>Physical Review Letters</i> , 1999 , 82, 2602-2605	7.4	406
938	Fluoro-Substituted n-Type Conjugated Polymers for Additive-Free All-Polymer Bulk Heterojunction Solar Cells with High Power Conversion Efficiency of 6.71. <i>Advanced Materials</i> , 2015 , 27, 3310-7	24	400
937	Neutron reflectivity studies of the surface-induced ordering of diblock copolymer films. <i>Physical Review Letters</i> , 1989 , 62, 1852-1855	7.4	400
936	Deep absorbing porphyrin small molecule for high-performance organic solar cells with very low energy losses. <i>Journal of the American Chemical Society</i> , 2015 , 137, 7282-5	16.4	396
935	Capillary wrinkling of floating thin polymer films. <i>Science</i> , 2007 , 317, 650-3	33.3	385
934	Temperature dependence of the interaction parameter of polystyrene and poly(methyl methacrylate). <i>Macromolecules</i> , 1990 , 23, 890-893	5.5	370
933	Structurally Diverse Dendritic Libraries: A Highly Efficient Functionalization Approach Using Click Chemistry. <i>Macromolecules</i> , 2005 , 38, 3663-3678	5.5	338
932	Near-surface alignment of polymers in rubbed films. <i>Nature</i> , 1995 , 374, 709-711	50.4	332
931	Curving and frustrating flatland. <i>Science</i> , 2004 , 306, 76	33.3	326
930	Hierarchical nanoparticle assemblies formed by decorating breath figures. <i>Nature Materials</i> , 2004 , 3, 302-6	27	323
929	Surface-induced orientation of symmetric, diblock copolymers: a secondary ion mass-spectrometry study. <i>Macromolecules</i> , 1989 , 22, 2581-2589	5.5	323

928	Integration of self-assembled diblock copolymers for semiconductor capacitor fabrication. <i>Applied Physics Letters</i> , 2001 , 79, 409-411	3.4	317
927	26 mA cm2 Jsc from organic solar cells with a low-bandgap nonfullerene acceptor. <i>Science Bulletin</i> , 2017 , 62, 1494-1496	10.6	316
926	Orthogonal approaches to the simultaneous and cascade functionalization of macromolecules using click chemistry. <i>Journal of the American Chemical Society</i> , 2005 , 127, 14942-9	16.4	311
925	The morphology of symmetric diblock copolymers as revealed by neutron reflectivity. <i>Journal of Chemical Physics</i> , 1990 , 92, 5677-5691	3.9	311
924	Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability. Journal of the American Chemical Society, 2015 , 137, 13130-7	16.4	308
923	Observed surface energy effects in confined diblock copolymers. <i>Physical Review Letters</i> , 1996 , 76, 250)3 7 2450€	5 303
922	Synergistic effect of fluorination on both donor and acceptor materials for high performance non-fullerene polymer solar cells with 13.5% efficiency. <i>Science China Chemistry</i> , 2018 , 61, 531-537	7.9	302
921	Single-layered organic photovoltaics with double cascading charge transport pathways: 18% efficiencies. <i>Nature Communications</i> , 2021 , 12, 309	17.4	302
920	Polymer Mobility in Thin Films. <i>Macromolecules</i> , 1996 , 29, 6531-6534	5.5	300
919	A Highly Efficient Non-Fullerene Organic Solar Cell with a Fill Factor over 0.80 Enabled by a Fine-Tuned Hole-Transporting Layer. <i>Advanced Materials</i> , 2018 , 30, e1801801	24	299
918	Efficient polymer solar cells based on benzothiadiazole and alkylphenyl substituted benzodithiophene with a power conversion efficiency over 8%. <i>Advanced Materials</i> , 2013 , 25, 4944-9	24	298
917	Entropy-driven segregation of nanoparticles to cracks in multilayered composite polymer structures. <i>Nature Materials</i> , 2006 , 5, 229-233	27	297
916	On exfoliation of montmorillonite in epoxy. <i>Polymer</i> , 2001 , 42, 5947-5952	3.9	290
915	Improving the ordering and photovoltaic properties by extending Leonjugated area of electron-donating units in polymers with D-A structure. <i>Advanced Materials</i> , 2012 , 24, 3383-9	24	289
914	DonorAcceptor Poly(thiophene-block-perylene diimide) Copolymers: Synthesis and Solar Cell Fabrication. <i>Macromolecules</i> , 2009 , 42, 1079-1082	5.5	286
913	On the morphology of polymer-based photovoltaics. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2012 , 50, 1018-1044	2.6	285
912	Using Surface Active Random Copolymers To Control the Domain Orientation in Diblock Copolymer Thin Films. <i>Macromolecules</i> , 1998 , 31, 7641-7650	5.5	280
911	Characteristics of the surface-induced orientation for symmetric diblock PS/PMMA copolymers. Macromolecules, 1989, 22, 4600-4606	5.5	280

(2013-2018)

91	An Unfused-Core-Based Nonfullerene Acceptor Enables High-Efficiency Organic Solar Cells with Excellent Morphological Stability at High Temperatures. <i>Advanced Materials</i> , 2018 , 30, 1705208	24	272	
90	9 Nanodomain control in copolymer thin films. <i>Nature</i> , 1998 , 395, 757-758	50.4	272	
90	Defect-free nanoporous thin films from ABC triblock copolymers. <i>Journal of the American Chemical Society</i> , 2006 , 128, 7622-9	16.4	269	
90	Simultaneous SAXS-DSC study of multiple endothermic behavior in polyether-based polyurethane block copolymers. <i>Macromolecules</i> , 1986 , 19, 714-720	5.5	269	
90	6 A Free Energy Model for Confined Diblock Copolymers. <i>Macromolecules</i> , 1994 , 27, 6225-6228	5.5	265	
90	Bulk heterojunction photovoltaic active layers via bilayer interdiffusion. <i>Nano Letters</i> , 2011 , 11, 2071-8	11.5	264	
90	Overcoming Interfacial Interactions with Electric Fields. <i>Macromolecules</i> , 2000 , 33, 3250-3253	5.5	262	
90	Improved cathode materials for microbial electrosynthesis. <i>Energy and Environmental Science</i> , 2013 , 6, 217-224	35.4	260	
90	Block Copolymers under Cylindrical Confinement. <i>Macromolecules</i> , 2004 , 37, 5660-5664	5.5	257	
90	Stabilizing liquid drops in nonequilibrium shapes by the interfacial jamming of nanoparticles. Science, 2013 , 342, 460-3	33.3	255	
90	Enhanced mobility of confined polymers. <i>Nature Materials</i> , 2007 , 6, 961-5	27	254	
89	Ultrathin cross-linked nanoparticle membranes. <i>Journal of the American Chemical Society</i> , 2003 , 125, 12690-1	16.4	253	
89	8 Electrohydrodynamic instabilities in polymer films. <i>Europhysics Letters</i> , 2001 , 53, 518-524	1.6	251	
89	Effect of Interfacial Interactions on the Glass Transition of Polymer Thin Films. <i>Macromolecules</i> , 2001 , 34, 5535-5539	5.5	250	
89	Hierarchical structure formation and pattern replication induced by an electric field. <i>Nature Materials</i> , 2003 , 2, 48-52	27	244	
89	5 Chain conformation in ultrathin polymer films. <i>Nature</i> , 1999 , 400, 146-149	50.4	242	
89.	Fulleropyrrolidine interlayers: tailoring electrodes to raise organic solar cell efficiency. <i>Science</i> , 2014 , 346, 441-4	33.3	238	
89	Characterization of the morphology of solution-processed bulk heterojunction organic photovoltaics. <i>Progress in Polymer Science</i> , 2013 , 38, 1990-2052	29.6	237	

892	Ordered Diblock Copolymer Films on Random Copolymer Brushes. <i>Macromolecules</i> , 1997 , 30, 6810-681	1 3 5.5	237
891	Observed frustration in confined block copolymers. <i>Physical Review Letters</i> , 1994 , 72, 2899-2902	7.4	235
890	Solvent-Induced Ordering in Thin Film Diblock Copolymer/Homopolymer Mixtures. <i>Advanced Materials</i> , 2004 , 16, 2119-2123	24	234
889	Ternary Organic Solar Cells Based on Two Compatible Nonfullerene Acceptors with Power Conversion Efficiency >10. <i>Advanced Materials</i> , 2016 , 28, 10008-10015	24	234
888	11% Efficient Ternary Organic Solar Cells with High Composition Tolerance via Integrated Near-IR Sensitization and Interface Engineering. <i>Advanced Materials</i> , 2016 , 28, 8184-8190	24	227
887	Self-assembly and cross-linking of bionanoparticles at liquid-liquid interfaces. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 2420-6	16.4	225
886	Efficient Semitransparent Solar Cells with High NIR Responsiveness Enabled by a Small-Bandgap Electron Acceptor. <i>Advanced Materials</i> , 2017 , 29, 1606574	24	224
885	High-Efficiency Nonfullerene Polymer Solar Cells with Medium Bandgap Polymer Donor and Narrow Bandgap Organic Semiconductor Acceptor. <i>Advanced Materials</i> , 2016 , 28, 8288-8295	24	224
884	Interfacial Segregation in Disordered Block Copolymers: Effect of Tunable Surface Potentials. <i>Physical Review Letters</i> , 1997 , 79, 237-240	7.4	223
883	Nanoparticle assembly at fluid interfaces: structure and dynamics. <i>Langmuir</i> , 2005 , 21, 191-4	4	223
882	Entanglements at Polymer Surfaces and Interfaces. <i>Macromolecules</i> , 1996 , 29, 798-800	5.5	222
881	A Simple Route to Metal Nanodots and Nanoporous Metal Films. <i>Nano Letters</i> , 2002 , 2, 933-936	11.5	221
880	Multi-Length-Scale Morphologies Driven by Mixed Additives in Porphyrin-Based Organic Photovoltaics. <i>Advanced Materials</i> , 2016 , 28, 4727-33	24	219
879	A Rapid Route to Arrays of Nanostructures in Thin Films. <i>Advanced Materials</i> , 2002 , 14, 1373-1376	24	217
878	Structural studies of semifluorinated n-alkanes. 1. Synthesis and characterization of F(CF2)n(CH2)mH in the solid state. <i>Macromolecules</i> , 1984 , 17, 2786-2794	5.5	213
877	Wetting Transition in Cylindrical Alumina Nanopores with Polymer Melts. <i>Nano Letters</i> , 2006 , 6, 1075-1	0 79 .5	210
876	High-Performance As-Cast Nonfullerene Polymer Solar Cells with Thicker Active Layer and Large Area Exceeding 11% Power Conversion Efficiency. <i>Advanced Materials</i> , 2018 , 30, 1704546	24	210
875	Highly aligned ultrahigh density arrays of conducting polymer nanorods using block copolymer templates. <i>Nano Letters</i> , 2008 , 8, 2315-20	11.5	207

(2010-2010)

874	Adsorption energy of nano- and microparticles at liquid-liquid interfaces. <i>Langmuir</i> , 2010 , 26, 12518-22	4	206
873	Kinetics of crystallization in semicrystalline/amorphous polymer mixtures. <i>Macromolecules</i> , 1986 , 19, 1143-1152	5.5	204
872	Small-angle x-ray and light scattering studies of the morphology of blends of poly(?-caprolactone) with poly(vinyl chloride). <i>Journal of Polymer Science, Polymer Physics Edition,</i> 1976 , 14, 1391-1424		204
871	The Crystallization of PEDOT:PSS Polymeric Electrodes Probed In Situ during Printing. <i>Advanced Materials</i> , 2015 , 27, 3391-7	24	203
870	"Self-corralling" nanorods under an applied electric field. <i>Nano Letters</i> , 2006 , 6, 2066-9	11.5	203
869	Efficient polymer solar cells based on a low bandgap semi-crystalline DPP polymer-PCBM blends. <i>Advanced Materials</i> , 2012 , 24, 3947-51	24	193
868	Surface-functionalized CdSe nanorods for assembly in diblock copolymer templates. <i>Journal of the American Chemical Society</i> , 2006 , 128, 3898-9	16.4	189
867	Reconfigurable ferromagnetic liquid droplets. <i>Science</i> , 2019 , 365, 264-267	33.3	188
866	A simple route to highly oriented and ordered nanoporous block copolymer templates. <i>ACS Nano</i> , 2008 , 2, 766-72	16.7	188
865	Understanding the Morphology of PTB7:PCBM Blends in Organic Photovoltaics. <i>Advanced Energy Materials</i> , 2014 , 4, 1301377	21.8	187
864	Microdomain Orientation of PS-b-PMMA by Controlled Interfacial Interactions. <i>Macromolecules</i> , 2008 , 41, 6431-6437	5.5	187
863	From Cylinders to Helices upon Confinement. <i>Macromolecules</i> , 2005 , 38, 1055-1056	5.5	184
862	One-Step Formation of Functionalized Block Copolymers. <i>Macromolecules</i> , 2000 , 33, 1505-1507	5.5	182
861	Morphological changes in polyesters and polyamides induced by blending with small concentrations of polymer diluents. <i>Macromolecules</i> , 1989 , 22, 666-675	5.5	179
860	Surface modification of tobacco mosaic virus with "click" chemistry. ChemBioChem, 2008, 9, 519-23	3.8	176
859	Phase-Separation-Induced Surface Patterns in Thin Polymer Blend Films. <i>Macromolecules</i> , 1998 , 31, 857	-862	176
858	Series of Multifluorine Substituted Oligomers for Organic Solar Cells with Efficiency over 9% and Fill Factor of 0.77 by Combination Thermal and Solvent Vapor Annealing. <i>Journal of the American Chemical Society</i> , 2016 , 138, 7687-97	16.4	176
857	Synthesis of nano/microstructures at fluid interfaces. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 10052-66	16.4	174

Electric field induced instabilities at liquid/liquid interfaces. Journal of Chemical Physics, 2001, 114, 2377-2381 171 856 Well-Defined Random Copolymers by a living Free-Radical Polymerization Process. 855 171 5.5 Macromolecules, 1996, 29, 2686-2688 Charge-Carrier Balance for Highly Efficient Inverted Planar Heterojunction Perovskite Solar Cells. 854 24 170 Advanced Materials, 2016, 28, 10718-10724 A Route to Nanoscopic SiO2 Posts via Block Copolymer Templates. Advanced Materials, 2001, 13, 795-7974 853 170 Block Copolymer Surface Reconstuction: A Reversible Route to Nanoporous Films. Advanced 168 852 15.6 Functional Materials, 2003, 13, 698-702 Neutron and x-ray scattering studies on semicrystalline polymer blends. Macromolecules, 1988, 21, 1703-1709 167 851 A high mobility conjugated polymer based on dithienothiophene and diketopyrrolopyrrole for 850 164 35.4 organic photovoltaics. Energy and Environmental Science, 2012, 5, 6857 Multi-Length-Scale Morphologies in PCPDTBT/PCBM Bulk-Heterojunction Solar Cells. Advanced 849 21.8 163 Energy Materials, 2012, 2, 683-690 Cylindrically Confined Diblock Copolymers. Macromolecules, 2009, 42, 9082-9088 848 163 5.5 Semi-crystalline random conjugated copolymers with panchromatic absorption for highly efficient 847 160 35.4 polymer solar cells. Energy and Environmental Science, 2013, 6, 3301 Ordering of thin diblock copolymer films. Physical Review Letters, 1992, 68, 67-70 846 7.4 160 High-Performance Inverted Planar Heterojunction Perovskite Solar Cells Based on Lead Acetate 845 15.6 159 Precursor with Efficiency Exceeding 18%. Advanced Functional Materials, 2016, 26, 3508-3514 Understanding Interface Engineering for High-Performance Fullerene/Perovskite Planar 844 21.8 156 Heterojunction Solar Cells. Advanced Energy Materials, 2016, 6, 1501606 A lower critical ordering transition in a diblock copolymer melt. Nature, 1994, 368, 729-731 843 50.4 154 Long-Range Ordering of Diblock Copolymers Induced by Droplet Pinning. Langmuir, 2003, 19, 9910-99134 842 151 Large-Area Domain Alignment in Block Copolymer Thin Films Using Electric Fields. Macromolecules, 841 5.5 149 **1998**, 31, 4399-4401 Cellular responses to substrate topography: role of myosin II and focal adhesion kinase. Biophysical 840 2.9 148 Journal, 2006, 90, 3774-82 In-plane orientation of polyimide. Journal of Polymer Science, Polymer Physics Edition, 1983, 21, 1745-1756 839 148

(2010-1986)

838	Structural characterization of semifluorinated n-alkanes. 2. Solid-solid transition behavior. <i>Macromolecules</i> , 1986 , 19, 1135-1143	5.5	148
837	In situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from [PbI] cage nanoparticles. <i>Nature Communications</i> , 2017 , 8, 15688	17.4	147
836	Interactions in mixtures of poly(ethylene oxide) and poly(methyl methacrylate). <i>Macromolecules</i> , 1987 , 20, 2213-2220	5.5	147
835	Structure Formation at the Interface of Liquid/Liquid Bilayer in Electric Field. <i>Macromolecules</i> , 2002 , 35, 3971-3976	5.5	146
834	Intercalibration of small-angle X-ray and neutron scattering data. <i>Journal of Applied Crystallography</i> , 1988 , 21, 629-638	3.8	146
833	Controlled placement of CdSe nanoparticles in diblock copolymer templates by electrophoretic deposition. <i>Nano Letters</i> , 2005 , 5, 357-61	11.5	145
832	Surface Relaxations in Polymers. <i>Macromolecules</i> , 1997 , 30, 7768-7771	5.5	144
831	Macromolecules at surfaces: Research challenges and opportunities from tribology to biology. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 2755-2793	2.6	144
830	The influence of molecular weight on nanoporous polymer films. <i>Polymer</i> , 2001 , 42, 9091-9095	3.9	144
829	Facile Routes to Patterned Surface Neutralization Layers for Block Copolymer Lithography. <i>Advanced Materials</i> , 2007 , 19, 4552-4557	24	142
828	Subtle Balance Between Length Scale of Phase Separation and Domain Purification in Small-Molecule Bulk-Heterojunction Blends under Solvent Vapor Treatment. <i>Advanced Materials</i> , 2015 , 27, 6296-302	24	141
827	Highly Efficient Parallel-Like Ternary Organic Solar Cells. <i>Chemistry of Materials</i> , 2017 , 29, 2914-2920	9.6	140
826	Bistetracene: an air-stable, high-mobility organic semiconductor with extended conjugation. <i>Journal of the American Chemical Society</i> , 2014 , 136, 9248-51	16.4	140
825	Electric Field Alignment of Asymmetric Diblock Copolymer Thin Films. <i>Macromolecules</i> , 2005 , 38, 10788	3-305798	8 140
824	Segment distributions in lamellar diblock copolymers. <i>Macromolecules</i> , 1993 , 26, 3929-3936	5.5	140
823	Pathways toward Electric Field Induced Alignment of Block Copolymers. <i>Macromolecules</i> , 2002 , 35, 810)6 ₅ 8 5 11(137
822	Directed self-assembly of block copolymers in the extreme: guiding microdomains from the small to the large. <i>Soft Matter</i> , 2013 , 9, 9059	3.6	135
821	Confinement Effects on Crystallization and Curie Transitions of Poly(vinylidene fluoride-co-trifluoroethylene). <i>Macromolecules</i> , 2010 , 43, 3844-3850	5.5	135

820	Solvent-Induced Transition from Micelles in Solution to Cylindrical Microdomains in Diblock Copolymer Thin Films. <i>Macromolecules</i> , 2007 , 40, 9059-9063	5.5	135
819	An in situ grazing incidence X-ray scattering study of block copolymer thin films during solvent vapor annealing. <i>Advanced Materials</i> , 2014 , 26, 273-81	24	133
818	Directed Deposition of Nanoparticles Using Diblock Copolymer Templates. <i>Advanced Materials</i> , 2003 , 15, 221-224	24	133
817	On the kinetics of nanoparticle self-assembly at liquid/liquid interfaces. <i>Physical Chemistry Chemical Physics</i> , 2007 , 9, 6351-8	3.6	132
816	Salt Complexation in Block Copolymer Thin Films. <i>Macromolecules</i> , 2006 , 39, 8473-8479	5.5	130
815	Effect of Fluorine Content in Thienothiophene-Benzodithiophene Copolymers on the Morphology and Performance of Polymer Solar Cells. <i>Chemistry of Materials</i> , 2014 , 26, 3009-3017	9.6	128
814	Graft Copolymers from Poly(vinylidene fluoride-co-chlorotrifluoroethylene) via Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2006 , 39, 3531-3539	5.5	128
813	Expansion of Polystyrene Using Supercritical Carbon Dioxide: Effects of Molecular Weight, Polydispersity, and Low Molecular Weight Components. <i>Macromolecules</i> , 1999 , 32, 7610-7616	5.5	128
812	Tailoring exchange bias with magnetic nanostructures. <i>Physical Review B</i> , 2001 , 63,	3.3	127
811	Enhancement in the Orientation of the Microdomain in Block Copolymer Thin Films upon the Addition of Homopolymer. <i>Advanced Materials</i> , 2004 , 16, 533-536	24	126
810	Defining the nanostructured morphology of triblock copolymers using resonant soft X-ray scattering. <i>Nano Letters</i> , 2011 , 11, 3906-11	11.5	124
809	Fabrication and Characterization of Nanoelectrode Arrays Formed via Block Copolymer Self-Assembly. <i>Langmuir</i> , 2001 , 17, 6396-6398	4	124
808	Spiro Linkage as an Alternative Strategy for Promising Nonfullerene Acceptors in Organic Solar Cells. <i>Advanced Functional Materials</i> , 2015 , 25, 5954-5966	15.6	123
807	Spontaneous Vertical Ordering and Pyrolytic Formation of Nanoscopic Ceramic Patterns from Poly(styrene-b-ferrocenylsilane). <i>Advanced Materials</i> , 2003 , 15, 297-300	24	123
806	The influence of confinement and curvature on the morphology of block copolymers. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2005 , 43, 3377-3383	2.6	123
805	Ternary non-fullerene polymer solar cells with 13.51% efficiency and a record-high fill factor of 78.13%. <i>Energy and Environmental Science</i> , 2018 , 11, 3392-3399	35.4	122
804	Fluorination of Polythiophene Derivatives for High Performance Organic Photovoltaics. <i>Chemistry of Materials</i> , 2014 , 26, 4214-4220	9.6	122
803	Propagation of Nanopatterned Substrate Templated Ordering of Block Copolymers in Thick Films. <i>Macromolecules</i> , 2001 , 34, 1487-1492	5.5	122

(2005-2012)

802	P3HT nanopillars for organic photovoltaic devices nanoimprinted by AAO templates. <i>ACS Nano</i> , 2012 , 6, 1479-85	16.7	121
801	Solvent-Driven Evolution of Block Copolymer Morphology under 3D Confinement. <i>Macromolecules</i> , 2010 , 43, 7807-7812	5.5	121
800	Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 14290-4	3.6	120
799	Fabrication of Highly Ordered Silicon Oxide Dots and Stripes from Block Copolymer Thin Films. <i>Advanced Materials</i> , 2008 , 20, 681-685	24	120
798	NEXAFS Studies on the Surface Orientation of Buffed Polyimides. <i>Macromolecules</i> , 1996 , 29, 8334-8342	5.5	120
797	Synthesis and photophysical property of well-defined donor acceptor diblock copolymer based on regioregular poly (3-hexylthiophene) and fullerene. <i>Journal of Materials Chemistry</i> , 2009 , 19, 1483		119
796	Nanostructured magnetic thin films from organometallic block copolymers: pyrolysis of self-assembled polystyrene-block-poly(ferrocenylethylmethylsilane). <i>ACS Nano</i> , 2008 , 2, 263-70	16.7	119
795	Instabilities in nanoporous media. <i>Nano Letters</i> , 2007 , 7, 183-7	11.5	119
794	Crosslinked Capsules of Quantum Dots by Interfacial Assembly and Ligand Crosslinking. <i>Advanced Materials</i> , 2005 , 17, 2082-2086	24	119
793	Controlling the location and spatial extent of nanobubbles using hydrophobically nanopatterned surfaces. <i>Nano Letters</i> , 2005 , 5, 1751-6	11.5	118
792	Grazing incidence x-ray scattering studies of thin films of an aromatic polyimide. <i>Macromolecules</i> , 1993 , 26, 2847-2859	5.5	117
791	Nanoparticle Assembly at Liquid-Liquid Interfaces: From the Nanoscale to Mesoscale. <i>Advanced Materials</i> , 2018 , 30, e1800714	24	116
790	Solvent Annealed Thin Films of Asymmetric Polyisoprene P olylactide Diblock Copolymers. <i>Macromolecules</i> , 2007 , 40, 1181-1186	5.5	116
789	Responsive Assemblies: Gold Nanoparticles with Mixed Ligands in Microphase Separated Block Copolymers. <i>Advanced Materials</i> , 2008 , 20, 1462-1466	24	116
788	Mobility of Polymers at the Air/Polymer Interface. <i>Macromolecules</i> , 2001 , 34, 3484-3492	5.5	116
787	Neutrality Conditions for Block Copolymer Systems on Random Copolymer Brush Surfaces. <i>Macromolecules</i> , 1999 , 32, 5299-5303	5.5	115
786	11.2% Efficiency all-polymer solar cells with high open-circuit voltage. <i>Science China Chemistry</i> , 2019 , 62, 845-850	7.9	114
785	High-Quality Single-Walled Carbon Nanotubes with Small Diameter, Controlled Density, and Ordered Locations Using a Polyferrocenylsilane Block Copolymer Catalyst Precursor. <i>Chemistry of Materials</i> , 2005 , 17, 2227-2231	9.6	114

784	Highly Ordered Nanoporous Thin Films from Cleavable Polystyrene-block-poly(ethylene oxide). <i>Advanced Materials</i> , 2007 , 19, 1571-1576	24	112
783	Inorganic Nanodots from Thin Films of Block Copolymers. <i>Nano Letters</i> , 2004 , 4, 1841-1844	11.5	112
782	Homopolymer distributions in ordered block copolymers. <i>Macromolecules</i> , 1992 , 25, 6523-6531	5.5	112
781	A lattice model for the surface segregation of polymer chains due to molecular weight effects. <i>Macromolecules</i> , 1990 , 23, 3584-3592	5.5	111
78o	Synthesis of C60-end capped P3HT and its application for high performance of P3HT/PCBM bulk heterojunction solar cells. <i>Journal of Materials Chemistry</i> , 2010 , 20, 3287		110
779	Relating chemical structure to device performance via morphology control in diketopyrrolopyrrole-based low band gap polymers. <i>Journal of the American Chemical Society</i> , 2013 , 135, 19248-59	16.4	109
778	Electric Field Alignment of Symmetric Diblock Copolymer Thin Films. <i>Macromolecules</i> , 2004 , 37, 2625-26	5 3 95	108
777	Phase Behavior of Mixtures of Block Copolymer and Homopolymers in Thin Films and Bulk. <i>Macromolecules</i> , 2003 , 36, 3626-3634	5.5	108
776	Self-assembly of symmetric brush diblock copolymers. ACS Nano, 2013, 7, 2551-8	16.7	107
775	Lateral Ordering of Cylindrical Microdomains Under Solvent Vapor. <i>Macromolecules</i> , 2009 , 42, 1278-128	45 .5	107
774	Assembly of graphene oxide at water/oil interfaces: tessellated nanotiles. <i>Langmuir</i> , 2013 , 29, 13407-13	34	106
773	New form of an old natural dye: bay-annulated indigo (BAI) as an excellent electron accepting unit for high performance organic semiconductors. <i>Journal of the American Chemical Society</i> , 2014 , 136, 150	9 3 6 1 61	104
772	Ordered arrays of -oriented silicon nanorods by CMOS-compatible block copolymer lithography. <i>Nano Letters</i> , 2007 , 7, 1516-20	11.5	104
771	Synthesis and Characterization of CdSe Nanorods Functionalized with Regioregular Poly(3-hexylthiophene). <i>Chemistry of Materials</i> , 2007 , 19, 3712-3716	9.6	104
770	Diblock Copolymers with Amorphous Atactic Polyferrocenylsilane Blocks: Synthesis, Characterization, and Self-Assembly of Polystyrene-block-poly(ferrocenylethylmethylsilane) in the Bulk State. <i>Macromolecules</i> , 2005 , 38, 6931-6938	5.5	104
7 69	Mixed Lamellar Films: Evolution, Commensurability Effects, and Preferential Defect Formation. <i>Macromolecules</i> , 2000 , 33, 80-88	5.5	104
768	Synchrotron X-ray Scattering Studies of Crystallization of Poly(ether-ether-ketone) from the Glass and Structural Changes during Subsequent Heating-Cooling Processes. <i>Macromolecules</i> , 1995 , 28, 8491-	·85503	104
767	Effect of Humidity on the Ordering of PEO-Based Copolymer Thin Films. <i>Macromolecules</i> , 2007 , 40, 7019	9 ₅ 7925	103

(2008-2019)

766	Enhancing the Performance of a Fused-Ring Electron Acceptor by Unidirectional Extension. <i>Journal of the American Chemical Society</i> , 2019 , 141, 19023-19031	16.4	102
765	Reducing Substrate Pinning of Block Copolymer Microdomains with a Buffer Layer of Polymer Brushes. <i>Macromolecules</i> , 2000 , 33, 857-865	5.5	102
764	Mesoporous PbI2 Scaffold for High-Performance Planar Heterojunction Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2016 , 6, 1501890	21.8	102
763	Reversal of the isotopic effect in the surface behavior of binary polymer blends. <i>Journal of Chemical Physics</i> , 1993 , 98, 4163-4173	3.9	101
762	Fast printing and in situ morphology observation of organic photovoltaics using slot-die coating. <i>Advanced Materials</i> , 2015 , 27, 886-91	24	99
761	Comparison of Two DA Type Polymers with Each Being Fluorinated on D and A Unit for High Performance Solar Cells. <i>Advanced Functional Materials</i> , 2015 , 25, 120-125	15.6	99
760	Highly ordered gold nanotubes using thiols at a cleavable block copolymer interface. <i>Journal of the American Chemical Society</i> , 2009 , 131, 9870-1	16.4	98
759	Interfacial Interaction Dependence of Microdomain Orientation in Diblock Copolymer Thin Films. <i>Macromolecules</i> , 2005 , 38, 2802-2805	5.5	98
758	Solvent annealing thin films of poly(isoprene-b-lactide). <i>Polymer</i> , 2005 , 46, 11635-11639	3.9	98
757	Phase Behavior of Diblock Copolymers between Styrene and n-Alkyl Methacrylates. <i>Macromolecules</i> , 1998 , 31, 8509-8516	5.5	98
756	On the reflectivity of polymers: Neutrons and X-rays. <i>Physica B: Condensed Matter</i> , 1996 , 221, 267-283	2.8	98
755	A simple perylene diimide derivative with a highly twisted geometry as an electron acceptor for efficient organic solar cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 10659-10665	13	97
754	Block-copolymer-based plasmonic nanostructures. ACS Nano, 2009, 3, 3987-92	16.7	97
753	Closed-loop phase behaviour in block copolymers. <i>Nature Materials</i> , 2002 , 1, 114-7	27	97
752	Observations of a gel phase in binary mixtures of semifluorinated n-alkanes with hydrocarbon liquids. <i>Macromolecules</i> , 1985 , 18, 1361-1362	5.5	97
751	A simple small molecule as an acceptor for fullerene-free organic solar cells with efficiency near 8%. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 10409-10413	13	96
750	Kinetically trapped co-continuous polymer morphologies through intraphase gelation of nanoparticles. <i>Nano Letters</i> , 2011 , 11, 1997-2003	11.5	96
749	From nanorings to nanodots by patterning with block copolymers. <i>Nano Letters</i> , 2008 , 8, 1667-72	11.5	96

748	Self-Assembly of MXene-Surfactants at Liquid-Liquid Interfaces: From Structured Liquids to 3D Aerogels. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 18171-18176	16.4	95
747	The Form of the Enriched Surface Layer in Polymer Blends. <i>Europhysics Letters</i> , 1990 , 12, 41-46	1.6	95
746	A small-angle X-ray scattering study of an aromatic polyimide. <i>Journal of Polymer Science, Polymer Physics Edition</i> , 1984 , 22, 1105-1117		95
745	Bicontinuous structured liquids with sub-micrometre domains using nanoparticle surfactants. <i>Nature Nanotechnology</i> , 2017 , 12, 1060-1063	28.7	94
744	High Efficiency Tandem Thin-Perovskite/Polymer Solar Cells with a Graded Recombination Layer. <i>ACS Applied Materials & Discrete ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	94
743	Surface-induced ordering of an aromatic polyimide. <i>Physical Review Letters</i> , 1991 , 66, 1181-1184	7.4	94
742	Finely Tuned Polymer Interlayers Enhance Solar Cell Efficiency. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 11485-9	16.4	93
741	Amorphous Carbon Nanotubes with Tunable Properties via Template Wetting. <i>Advanced Functional Materials</i> , 2006 , 16, 1476-1480	15.6	93
740	Chain Conformation in Ultrathin Polymer Films Using Small-Angle Neutron Scattering. <i>Macromolecules</i> , 2001 , 34, 559-567	5.5	93
739	NDI-Based Small Molecule as Promising Nonfullerene Acceptor for Solution-Processed Organic Photovoltaics. <i>Advanced Energy Materials</i> , 2015 , 5, 1500195	21.8	91
738	Self-assembly of tobacco mosaic virus at oil/water interfaces. <i>Langmuir</i> , 2009 , 25, 4979-87	4	91
737	Electric Field Induced Sphere-to-Cylinder Transition in Diblock Copolymer Thin Films. <i>Macromolecules</i> , 2004 , 37, 6980-6984	5.5	91
736	High temperature polymer foams. <i>Polymer</i> , 1993 , 34, 4717-4726	3.9	91
735	Highly Ordered Nanoporous Thin Films from Photocleavable Block Copolymers. <i>Macromolecules</i> , 2011 , 44, 6433-6440	5.5	90
734	A Novel Approach to Addressable 4 Teradot/in.2 Patterned Media. Advanced Materials, 2009, 21, 2516-2	2 5 1/49	90
733	A Morphological Study of a Semicrystalline Poly(l-lactic acid-b-ethylene oxide-b-l-lactic acid) Triblock Copolymer. <i>Macromolecules</i> , 2005 , 38, 104-109	5.5	90
732	Pressure/temperature phase diagram of hexanitrohexaazaisowurtzitane. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 1993-1997		90
731	Surface segregation in binary polymer mixtures: a lattice model. <i>Macromolecules</i> , 1991 , 24, 4909-4917	5.5	90

730	Reconfigurable Printed Liquids. Advanced Materials, 2018, 30, e1707603	24	89
729	Morphology control of a polythiophene-fullerene bulk heterojunction for enhancement of the high-temperature stability of solar cell performance by a new donor-acceptor diblock copolymer. <i>Nanotechnology</i> , 2010 , 21, 105201	3.4	89
728	Electric Field Induced Dewetting at Polymer/Polymer Interfaces. <i>Macromolecules</i> , 2002 , 35, 6255-6262	5.5	89
727	Conformation Locking on Fused-Ring Electron Acceptor for High-Performance Nonfullerene Organic Solar Cells. <i>Advanced Functional Materials</i> , 2018 , 28, 1705095	15.6	88
726	Smooth cascade of wrinkles at the edge of a floating elastic film. <i>Physical Review Letters</i> , 2010 , 105, 038	339042	88
725	Interfacial Energy Effects on the Electric Field Alignment of Symmetric Diblock Copolymers. <i>Macromolecules</i> , 2003 , 36, 6178-6182	5.5	88
724	Semaphorin 7a+ regulatory T cells are associated with progressive idiopathic pulmonary fibrosis and are implicated in transforming growth factor-#-induced pulmonary fibrosis. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2013 , 187, 180-8	10.2	87
723	Unconventional morphologies of symmetric, diblock copolymers due to film thickness constraints. <i>Macromolecules</i> , 1991 , 24, 6263-6269	5.5	87
722	High Efficiency Ternary Nonfullerene Polymer Solar Cells with Two Polymer Donors and an Organic Semiconductor Acceptor. <i>Advanced Energy Materials</i> , 2017 , 7, 1602215	21.8	86
721	Drying droplets: a window into the behavior of nanorods at interfaces. <i>Small</i> , 2007 , 3, 1214-7	11	86
720	Microcapsules of PEGylated gold nanoparticles prepared by fluid-fluid interfacial assembly. <i>Nano Letters</i> , 2007 , 7, 389-93	11.5	86
719	Molecular weight dependence of the morphology in P3HT:PCBM solar cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 19876-87	9.5	85
718	Morphological Characterization of a Low-Bandgap Crystalline Polymer:PCBM Bulk Heterojunction Solar Cells. <i>Advanced Energy Materials</i> , 2011 , 1, 870-878	21.8	85
717	Specular reflectivity of neutrons by thin polymer films. <i>Macromolecules</i> , 1988 , 21, 1890-1893	5.5	85
716	Approaching Intra- and Interchain Charge Transport of Conjugated Polymers Facilely by Topochemical Polymerized Single Crystals. <i>Advanced Materials</i> , 2017 , 29, 1701251	24	84
715	Ionic aggregation in model ionomers. <i>Macromolecules</i> , 1986 , 19, 2877-2884	5.5	84
714	Conjugated Polymer Zwitterions: Efficient Interlayer Materials in Organic Electronics. <i>Accounts of Chemical Research</i> , 2016 , 49, 2478-2488	24.3	83
713	Copolymers at surfaces and interfaces. <i>Current Opinion in Colloid and Interface Science</i> , 1996 , 1, 107-115	7.6	83

712	Buried Interfaces in Halide Perovskite Photovoltaics. Advanced Materials, 2021, 33, e2006435	24	83
711	Conjugated polymeric zwitterions as efficient interlayers in organic solar cells. <i>Advanced Materials</i> , 2013 , 25, 6868-73	24	82
710	Using a ferrocenylsilane-based block copolymer as a template to produce nanotextured Ag surfaces: uniformly enhanced surface enhanced Raman scattering active substrates. Nanotechnology, 2006, 17, 5792-5797	3.4	82
709	Covalent stabilization of nanostructures: Robust block copolymer templates from novel thermoreactive systems. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 1028-1037	2.5	82
708	Studies of surface and interface segregation in polymer blends by secondary ion mass spectrometry. <i>Molecular Physics</i> , 1992 , 76, 937-950	1.7	82
707	Printed Nonfullerene Organic Solar Cells with the Highest Efficiency of 9.5%. <i>Advanced Energy Materials</i> , 2018 , 8, 1701942	21.8	81
706	Simultaneous Thermoelectric Property Measurement and Incoherent Phonon Transport in Holey Silicon. <i>ACS Nano</i> , 2016 , 10, 124-32	16.7	81
705	Azulene methacrylate polymers: synthesis, electronic properties, and solar cell fabrication. <i>Journal of the American Chemical Society</i> , 2014 , 136, 11043-9	16.4	81
704	Unidirectionally aligned line patterns driven by entropic effects on faceted surfaces. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 1402-6	11.5	81
703	Volume Contractions Induced by Crosslinking: A Novel Route to Nanoporous Polymer Films. <i>Advanced Materials</i> , 2003 , 15, 1247-1250	24	81
702	Precise Control of Nanopore Size in Thin Film Using Mixtures of Asymmetric Block Copolymer and Homopolymer. <i>Macromolecules</i> , 2003 , 36, 10126-10129	5.5	81
701	Influence of Dendrimer Additives on the Dewetting of Thin Polystyrene Films. <i>Langmuir</i> , 2002 , 18, 1877	'- 4 882	81
700	Poly(oxime-ester) Vitrimers with Catalyst-Free Bond Exchange. <i>Journal of the American Chemical Society</i> , 2019 , 141, 13753-13757	16.4	80
699	The Effect of Hydrostatic Pressure on the Lower Critical Ordering Transition in Diblock Copolymers. <i>Macromolecules</i> , 1998 , 31, 6493-6498	5.5	80
698	Width of homopolymer interfaces in the presence of symmetric diblock copolymers. <i>Macromolecules</i> , 1991 , 24, 5721-5726	5.5	80
697	Small-Molecule Solar Cells with Simultaneously Enhanced Short-Circuit Current and Fill Factor to Achieve 11% Efficiency. <i>Advanced Materials</i> , 2017 , 29, 1700616	24	79
696	A Thermal and Manufacturable Approach to Stabilized Diblock Copolymer Templates. <i>Macromolecules</i> , 2005 , 38, 7676-7683	5.5	79
695	Effect of hydrostatic pressure on closed-loop phase behavior of block copolymers. <i>Physical Review Letters</i> , 2003 , 90, 235501	7.4	79

(2015-2002)

694	Synthesis and Thin Film Characterization of Poly(styrene-block-methyl methacrylate) Containing an Anthracene Dimer Photocleavable Junction Point. <i>Macromolecules</i> , 2002 , 35, 4271-4276	5.5	79
693	Low-Bandgap Porphyrins for Highly Efficient Organic Solar Cells: Materials, Morphology, and Applications. <i>Advanced Materials</i> , 2020 , 32, e1906129	24	78
692	Nanoporous block copolymer membranes for ultrafiltration: a simple approach to size tunability. <i>ACS Nano</i> , 2014 , 8, 11745-52	16.7	78
691	Evolution of order in thin block copolymer films. <i>Macromolecules</i> , 1994 , 27, 749-755	5.5	78
690	The structural basis of transitions between highly ordered smectic phases in semifluorinated alkanes. <i>Liquid Crystals</i> , 1989 , 5, 1783-1788	2.3	78
689	Advances in Atomic Force Microscopy for Probing Polymer Structure and Properties. <i>Macromolecules</i> , 2018 , 51, 3-24	5.5	77
688	On the self-assembly of brush block copolymers in thin films. ACS Nano, 2013, 7, 9684-92	16.7	77
687	Homopolymer Interfaces Reinforced with Random Copolymers. <i>Macromolecules</i> , 1996 , 29, 5493-5496	5.5	77
686	Segregation of chain ends to polymer melt surfaces and interfaces. <i>Macromolecules</i> , 1993 , 26, 561-562	5.5	77
685	Multicenter Implementation of a Treatment Bundle for Patients with Sepsis and Intermediate Lactate Values. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2016 , 193, 1264-70	10.2	76
684	Cross-Linked Block Copolymer/Ionic Liquid Self-Assembled Blends for Polymer Gel Electrolytes with High Ionic Conductivity and Mechanical Strength. <i>Macromolecules</i> , 2013 , 46, 9313-9323	5.5	76
683	Scattering Study on the Selective Solvent Swelling Induced Surface Reconstruction. <i>Macromolecules</i> , 2004 , 37, 2972-2977	5.5	76
682	OrganicIhorganic Nanohybridization by Block Copolymer Thin Films. <i>Advanced Functional Materials</i> , 2005 , 15, 1160-1164	15.6	76
681	Surface interaction in solvent-cast polystyrene-poly(methyl methacrylate) diblock copolymers. <i>Macromolecules</i> , 1989 , 22, 2189-2194	5.5	76
680	Short-time relaxation at polymeric interfaces. <i>Physical Review B</i> , 1990 , 42, 6846-6849	3.3	75
679	Controlling the Morphologies of Organometallic Block Copolymers in the 3-Dimensional Spatial Confinement of Colloidal and Inverse Colloidal Crystals. <i>Macromolecules</i> , 2008 , 41, 2250-2259	5.5	74
678	Total integrated light-scattering intensity from polymeric solids. <i>Journal of Polymer Science, Polymer Physics Edition</i> , 1979 , 17, 1719-1730		74
677	Medium Bandgap Conjugated Polymer for High Performance Polymer Solar Cells Exceeding 9% Power Conversion Efficiency. <i>Advanced Materials</i> , 2015 , 27, 7462-8	24	73

676	Study and characterization of tobacco mosaic virus head-to-tail assembly assisted by aniline polymerization. <i>Chemical Communications</i> , 2006 , 3019-21	5.8	73
675	High aspect ratio sub-15 nm silicon trenches from block copolymer templates. <i>Advanced Materials</i> , 2012 , 24, 5688-94	24	7 ²
674	Ordering in thin films of asymmetric diblock copolymers. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2001 , 39, 663-668	2.6	72
673	Following the Morphology Formation In Situ in Printed Active Layers for Organic Solar Cells. <i>Advanced Energy Materials</i> , 2016 , 6, 1501580	21.8	7 2
672	High-Performance Non-Fullerene Organic Solar Cells Based on a Selenium-Containing Polymer Donor and a Twisted Perylene Bisimide Acceptor. <i>Advanced Science</i> , 2016 , 3, 1600117	13.6	72
671	Electrically Induced Patterning in Block Copolymer Films. <i>Macromolecules</i> , 2004 , 37, 5358-5363	5.5	71
670	Synthesis and characterization of a model saturated hydrocarbon diblock copolymer. <i>Macromolecules</i> , 1989 , 22, 2557-2564	5.5	71
669	Building Reconfigurable Devices Using Complex Liquid-Fluid Interfaces. <i>Advanced Materials</i> , 2019 , 31, e1806370	24	70
668	Influence of Ionic Complexes on Phase Behavior of Polystyrene-b-poly(methyl methacrylate) Copolymers. <i>Macromolecules</i> , 2008 , 41, 963-969	5.5	70
667	Nanoporous Polyimides 1999 , 1-43		70
666	Nanoporous Polyimides 1999 , 1-43 Segment density distribution of symmetric diblock copolymers at the interface between two homopolymers as revealed by neutron reflectivity. <i>Macromolecules</i> , 1991 , 24, 1575-1582	5.5	70 70
<u> </u>	Segment density distribution of symmetric diblock copolymers at the interface between two	5·5 5·5	
666	Segment density distribution of symmetric diblock copolymers at the interface between two homopolymers as revealed by neutron reflectivity. <i>Macromolecules</i> , 1991 , 24, 1575-1582 Measuring the Degree of Crystallinity in Semicrystalline Regionegular Poly(3-hexylthiophene).		70
666	Segment density distribution of symmetric diblock copolymers at the interface between two homopolymers as revealed by neutron reflectivity. <i>Macromolecules</i> , 1991 , 24, 1575-1582 Measuring the Degree of Crystallinity in Semicrystalline Regioregular Poly(3-hexylthiophene). <i>Macromolecules</i> , 2016 , 49, 4501-4509 Fullerene-free small molecule organic solar cells with a high open circuit voltage of 1.15 V. <i>Chemical</i>	5.5	7° 69
666 665 664	Segment density distribution of symmetric diblock copolymers at the interface between two homopolymers as revealed by neutron reflectivity. <i>Macromolecules</i> , 1991 , 24, 1575-1582 Measuring the Degree of Crystallinity in Semicrystalline Regioregular Poly(3-hexylthiophene). <i>Macromolecules</i> , 2016 , 49, 4501-4509 Fullerene-free small molecule organic solar cells with a high open circuit voltage of 1.15 V. <i>Chemical Communications</i> , 2016 , 52, 465-8 Functionalization of nanoparticles for dispersion in polymers and assembly in fluids. <i>Journal of</i>	5.5 5.8	70 69 69
666 665 664	Segment density distribution of symmetric diblock copolymers at the interface between two homopolymers as revealed by neutron reflectivity. <i>Macromolecules</i> , 1991 , 24, 1575-1582 Measuring the Degree of Crystallinity in Semicrystalline Regioregular Poly(3-hexylthiophene). <i>Macromolecules</i> , 2016 , 49, 4501-4509 Fullerene-free small molecule organic solar cells with a high open circuit voltage of 1.15 V. <i>Chemical Communications</i> , 2016 , 52, 465-8 Functionalization of nanoparticles for dispersion in polymers and assembly in fluids. <i>Journal of Polymer Science Part A</i> , 2006 , 44, 5076-5086 Fabrication of densely packed, well-ordered, high-aspect-ratio silicon nanopillars over large areas	5.5 5.8 2.5	70 69 69
666 665 664 663	Segment density distribution of symmetric diblock copolymers at the interface between two homopolymers as revealed by neutron reflectivity. <i>Macromolecules</i> , 1991 , 24, 1575-1582 Measuring the Degree of Crystallinity in Semicrystalline Regioregular Poly(3-hexylthiophene). <i>Macromolecules</i> , 2016 , 49, 4501-4509 Fullerene-free small molecule organic solar cells with a high open circuit voltage of 1.15 V. <i>Chemical Communications</i> , 2016 , 52, 465-8 Functionalization of nanoparticles for dispersion in polymers and assembly in fluids. <i>Journal of Polymer Science Part A</i> , 2006 , 44, 5076-5086 Fabrication of densely packed, well-ordered, high-aspect-ratio silicon nanopillars over large areas using block copolymer lithography. <i>Thin Solid Films</i> , 2006 , 513, 289-294 Pressure Effects on the Phase Behavior of Styrene/n-Alkyl Methacrylate Block Copolymers.	5.5 5.8 2.5	70 69 69 69

658	Role of semaphorin 7a signaling in transforming growth factor II-induced lung fibrosis and scleroderma-related interstitial lung disease. <i>Arthritis and Rheumatism</i> , 2011 , 63, 2484-94		68
657	Topological coarsening of symmetric diblock copolymer films: Model 2D systems. <i>Physical Review Letters</i> , 1993 , 71, 1716-1719	7.4	68
656	Direct observation of reptation at polymer interfaces. <i>Nature</i> , 1993 , 365, 235-237	50.4	68
655	A non-fullerene electron acceptor modified by thiophene-2-carbonitrile for solution-processed organic solar cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 3777-3783	13	67
654	Dissolution and dissolved state of cytochrome C in a neat, hydrophilic ionic liquid. <i>Biomacromolecules</i> , 2010 , 11, 2944-8	6.9	67
653	Diffusion and self-adhesion of the polyimide PMDA-ODA. <i>Polymer</i> , 1988 , 29, 1807-1811	3.9	67
652	A low band-gap polymer based on unsubstituted benzo[1,2-b:4,5-b']dithiophene for high performance organic photovoltaics. <i>Chemical Communications</i> , 2012 , 48, 6933-5	5.8	66
651	Multiple Roles of a Non-fullerene Acceptor Contribute Synergistically for High-Efficiency Ternary Organic Photovoltaics. <i>Joule</i> , 2018 , 2, 2154-2166	27.8	66
650	Structure Development during Crystallization of Homogeneous Copolymers of Ethene and 1-Octene: Time-Resolved Synchrotron X-ray and SALS Measurements. <i>Macromolecules</i> , 1999 , 32, 765-7	7 8∙5	65
649	Equilibrium surface composition of diblock copolymers. <i>Journal of Chemical Physics</i> , 1990 , 92, 1478-148	3 2 3.9	65
648	A Small Molecule Composed of Dithienopyran and Diketopyrrolopyrrole as Versatile Electron Donor Compatible with Both Fullerene and Nonfullerene Electron Acceptors for High Performance Organic Solar Cells. <i>Chemistry of Materials</i> , 2015 , 27, 4865-4870	9.6	64
647	Ion-Complexation-Induced Changes in the Interaction Parameter and the Chain Conformation of PS-b-PMMA Copolymers. <i>Macromolecules</i> , 2008 , 41, 4904-4907	5.5	64
646	Structural Evolution of Multilayered, CrystallineAmorphous Diblock Copolymer Thin Films. <i>Macromolecules</i> , 2001 , 34, 2876-2883	5.5	64
645	Small Molecules Based on Alkyl/Alkylthio-thieno[3,2-b]thiophene-Substituted Benzo[1,2-b:4,5-b?]dithiophene for Solution-Processed Solar Cells with High Performance. <i>Chemistry of Materials</i> , 2015 , 27, 8414-8423	9.6	63
644	Fine-Tuning Nanoparticle Packing at Water-Oil Interfaces Using Ionic Strength. <i>Nano Letters</i> , 2017 , 17, 6453-6457	11.5	63
643	Surface Modification with Cross-Linked Random Copolymers: Minimum Effective Thickness. <i>Macromolecules</i> , 2007 , 40, 4296-4300	5.5	63
642	Nanofabrication of integrated magnetoelectronic devices using patterned self-assembled copolymer templates. <i>Applied Physics Letters</i> , 2002 , 81, 3479-3481	3.4	63
641	Curvature-induced stiffness and the spatial variation of wavelength in wrinkled sheets. <i>Proceedings</i> of the National Academy of Sciences of the United States of America, 2016 , 113, 1144-9	11.5	62

640	ABC triblock copolymer vesicles with mesh-like morphology. ACS Nano, 2011, 5, 486-92	16.7	62
639	Mixed monolayer coverage on gold nanoparticles for interfacial stabilization of immiscible fluids. <i>Chemical Communications</i> , 2005 , 4050-2	5.8	62
638	Using Janus Nanoparticles To Trap Polymer Blend Morphologies during Solvent-Evaporation-Induced Demixing. <i>Macromolecules</i> , 2015 , 48, 4220-4227	5.5	61
637	Liquid Letters. Advanced Materials, 2018, 30, 1705800	24	61
636	Manipulating Backbone Structure to Enhance Low Band Gap Polymer Photovoltaic Performance. <i>Advanced Energy Materials</i> , 2013 , 3, 930-937	21.8	61
635	Functionalized Nanoporous Thin Films and Fibers from Photocleavable Block Copolymers Featuring Activated Esters. <i>Macromolecules</i> , 2013 , 46, 5195-5201	5.5	61
634	Interdiffusion of Polymers at Short Times. <i>Macromolecules</i> , 1994 , 27, 6973-6979	5.5	61
633	An investigation of the compatibility and morphology of semicrystalline poly(Etaprolactone) poly(vinyl chloride) blends. <i>Journal of Polymer Science, Polymer Physics Edition</i> , 1983 , 21, 999-1010		61
632	Structured Liquids with pH-Triggered Reconfigurability. <i>Advanced Materials</i> , 2016 , 28, 6612-8	24	61
631	Cylindrical Microdomain Orientation of PS-b-PMMA on the Balanced Interfacial Interactions: Composition Effect of Block Copolymers. <i>Macromolecules</i> , 2009 , 42, 4902-4906	5.5	60
630	Interfacial assembly of turnip yellow mosaic virus nanoparticles. <i>Langmuir</i> , 2009 , 25, 5168-76	4	59
629	The effect of finite film thickness on the surface segregation in symmetric binary polymer mixtures. <i>Journal of Chemical Physics</i> , 1993 , 99, 656-663	3.9	59
628	Dynamics of (micro)phase separation during fast, bulk copolymerization: some synchrotron SAXS experiments. <i>Macromolecules</i> , 1991 , 24, 2883-2889	5.5	59
627	New insight of molecular interaction, crystallization and phase separation in higher performance small molecular solar cells via solvent vapor annealing. <i>Nano Energy</i> , 2016 , 30, 639-648	17.1	58
626	Synthesis of pyridine-capped diketopyrrolopyrrole and its use as a building block of low band-gap polymers for efficient polymer solar cells. <i>Chemical Communications</i> , 2013 , 49, 8495-7	5.8	58
625	Capillary deformations of bendable films. <i>Physical Review Letters</i> , 2013 , 111, 014301	7.4	58
624	Ion complexation: a route to enhanced block copolymer alignment with electric fields. <i>Physical Review Letters</i> , 2006 , 96, 128301	7.4	58
623	Changes in polystyrene and poly(methyl methacrylate) interactions with isotopic substitution. <i>Macromolecules</i> , 1993 , 26, 5819-5819	5.5	58

(2017-2015)

622	Donor-Acceptor Copolymers Based on Thermally Cleavable Indigo, IsoIndigo, and DPP Units: Synthesis, Field Effect Transistors, and Polymer Solar Cells. <i>ACS Applied Materials & Description</i> (1997) 2015, 7, 9038-51	9.5	57	
621	The role of additive in diketopyrrolopyrrole-based small molecular bulk heterojunction solar cells. <i>Advanced Materials</i> , 2013 , 25, 6519-25	24	57	
620	Polyimide Nanofoams from Aliphatic Polyester-Based Copolymers. <i>Chemistry of Materials</i> , 1998 , 10, 39-	- 49 .6	57	
619	High-pressure phase transition in .gammahexanitrohexaazaisowurtzitane. <i>The Journal of Physical Chemistry</i> , 1992 , 96, 5509-5512		57	
618	The microstructure of block copolymers formed via ionic interactions. <i>Macromolecules</i> , 1988 , 21, 1709-7	1 75.157	57	
617	High-Performance Polymer Solar Cells Based on a Wide-Bandgap Polymer Containing Pyrrolo[3,4-]benzotriazole-5,7-dione with a Power Conversion Efficiency of 8.63. <i>Advanced Science</i> , 2016 , 3, 1600032	13.6	57	
616	Adaptive Structured Pickering Emulsions and Porous Materials Based on Cellulose Nanocrystal Surfactants. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 13560-13564	16.4	56	
615	Guided crystallization of P3HT in ternary blend solar cell based on P3HT:PCPDTBT:PCBM. <i>Energy and Environmental Science</i> , 2014 , 7, 3782-3790	35.4	56	
614	Morphology Evolution in High-Performance Polymer Solar Cells Processed from Nonhalogenated Solvent. <i>Advanced Science</i> , 2015 , 2, 1500095	13.6	56	
613	Silica Nanostructures Templated by Oriented Block Copolymer Thin Films Using Pore-Filling and Selective-Mineralization Routes. <i>Chemistry of Materials</i> , 2005 , 17, 4743-4749	9.6	56	
612	On the Replication of Block Copolymer Templates by Poly(dimethylsiloxane) Elastomers. <i>Advanced Materials</i> , 2003 , 15, 811-814	24	56	
611	High temperature nanofoams derived from rigid and semi-rigid polyimides. <i>Polymer</i> , 1995 , 36, 2685-269	93.9	56	
610	Harnessing liquid-in-liquid printing and micropatterned substrates to fabricate 3-dimensional all-liquid fluidic devices. <i>Nature Communications</i> , 2019 , 10, 1095	17.4	55	
609	Relaxation of Thin Films of Polystyrene Floating on Ionic Liquid Surface. <i>Macromolecules</i> , 2009 , 42, 911	1 -9 . 1 17	55	
608	Growth of Silicon Oxide in Thin Film Block Copolymer Scaffolds. <i>Advanced Materials</i> , 2004 , 16, 702-706	24	55	
607	Block Copolymer Mixtures As Revealed By Neutron Reflectivity. <i>Macromolecules</i> , 1994 , 27, 7447-7453	5.5	55	
606	Controlling Domain Spacing and Grain Size in Cylindrical Block Copolymer Thin Films by Means of Thermal and Solvent Vapor Annealing. <i>Macromolecules</i> , 2016 , 49, 3373-3381	5.5	55	
605	Circumventing UV Light Induced Nanomorphology Disorder to Achieve Long Lifetime PTB7-Th:PCBM Based Solar Cells. <i>Advanced Energy Materials</i> , 2017 , 7, 1701201	21.8	54	

604	Liquid Tubule Formation and Stabilization Using Cellulose Nanocrystal Surfactants. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 12594-12598	16.4	54
603	Room temperature magnetic materials from nanostructured diblock copolymers. <i>Nature Communications</i> , 2011 , 2, 482	17.4	54
602	Structure of End-Grafted Polymer Brushes in Liquid and Supercritical Carbon Dioxide: A Neutron Reflectivity Study. <i>Macromolecules</i> , 2003 , 36, 3365-3373	5.5	54
601	Electric field and dewetting induced hierarchical structure formation in polymer/polymer/air trilayers. <i>Chaos</i> , 2005 , 15, 047506	3.3	54
600	Anthracene-Based Medium Bandgap Conjugated Polymers for High Performance Polymer Solar Cells Exceeding 8% PCE Without Additive and Annealing Process. <i>Advanced Energy Materials</i> , 2015 , 5, 1500065	21.8	53
599	Optimal wrapping of liquid droplets with ultrathin heets. <i>Nature Materials</i> , 2015 , 14, 1206-9	27	53
598	A simple model for baroplastic behavior in block copolymer melts. <i>Journal of Chemical Physics</i> , 2001 , 114, 8205-8209	3.9	53
597	Nonfullerene Small Molecular Acceptors with a Three-Dimensional (3D) Structure for Organic Solar Cells. <i>Chemistry of Materials</i> , 2016 , 28, 6770-6778	9.6	52
596	Self-assembly of nanomaterials at fluid interfaces. European Physical Journal E, 2016, 39, 57	1.5	52
595	Probing and repairing damaged surfaces with nanoparticle-containing microcapsules. <i>Nature Nanotechnology</i> , 2012 , 7, 87-90	28.7	52
594	A simple route for the preparation of mesoporous nanostructures using block copolymers. <i>ACS Nano</i> , 2009 , 3, 2827-33	16.7	52
593	Directed self-assembly of block copolymers on two-dimensional chemical patterns fabricated by electro-oxidation nanolithography. <i>Advanced Materials</i> , 2010 , 22, 2268-72	24	52
592	Structural Properties of Ammonium Perchlorate Compressed to 5.6 GPa. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 11188-11193	2.8	52
591	High-Efficiency Organic Photovoltaics using Eutectic Acceptor Fibrils to Achieve Current Amplification. <i>Advanced Materials</i> , 2021 , 33, e2007177	24	52
590	50th Anniversary Perspective: Putting the Squeeze on Polymers: A Perspective on Polymer Thin Films and Interfaces. <i>Macromolecules</i> , 2017 , 50, 4597-4609	5.5	51
589	Pattern transfer using block copolymers. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2013 , 371, 20120306	3	51
588	Insertion of double bond Ebridges of ADA acceptors for high performance near-infrared polymer solar cells. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 22588-22597	13	50
587	Thin Film Instabilities in Blends under Cylindrical Confinement. <i>Macromolecular Rapid Communications</i> , 2009 , 30, 377-83	4.8	50

(2001-2008)

586	Ordering of PS-b-P4VP on patterned silicon surfaces. <i>ACS Nano</i> , 2008 , 2, 1363-70	16.7	50
585	Observation of cluster formation in an ionomer. <i>Macromolecules</i> , 1987 , 20, 3091-3094	5.5	50
584	Chain Length Dependence of the Photovoltaic Properties of Monodisperse Donor Acceptor Oligomers as Model Compounds of Polydisperse Low Band Gap Polymers. <i>Advanced Functional Materials</i> , 2014 , 24, 7538-7547	15.6	49
583	Using nanoparticle-filled microcapsules for site-specific healing of damaged Substrates: creating a "repair-and-go" system. <i>ACS Nano</i> , 2010 , 4, 1115-23	16.7	49
582	Polyimide Nanofoams Based on Ordered Polyimides Derived from Poly(amic alkyl esters): PMDA/4-BDAF. <i>Chemistry of Materials</i> , 1997 , 9, 105-118	9.6	49
581	Self-Assembly of Nanoparticle Topolymer Mixtures: A Kinetic Point of View. <i>Advanced Materials</i> , 2007 , 19, 381-385	24	49
580	Surface modification induced by perovskite quantum dots for triple-cation perovskite solar cells. <i>Nano Energy</i> , 2020 , 67, 104189	17.1	49
579	Ordering in Mixtures of a Triblock Copolymer with a Room Temperature Ionic Liquid. Macromolecules, 2010 , 43, 10528-10535	5.5	48
578	Effective Interaction Parameter for Homologous Series of Deuterated Polystyrene-block-Poly(n-alkyl methacrylate) Copolymers. <i>Macromolecules</i> , 2007 , 40, 7644-7655	5.5	48
577	An Efficient Route to Mesoporous Silica Films with Perpendicular Nanochannels. <i>Advanced Materials</i> , 2008 , 20, 246-251	24	48
576	Sequential, Orthogonal Fields: A Path to Long-Range, 3-D Order in Block Copolymer Thin Films. Macromolecules, 2003, 36, 7296-7300	5.5	48
575	Atomic structure of solid and liquid polyethylene oxide. <i>Journal of Chemical Physics</i> , 1998 , 109, 7005-701	9 9	48
574	Observation of x-ray speckle by coherent scattering at grazing incidence. <i>Physical Review Letters</i> , 1994 , 73, 82-85	7-4	48
573	Simultaneous differential scanning calorimetry and small-angle x-ray scattering. <i>Journal of Polymer Science, Polymer Physics Edition</i> , 1985 , 23, 1109-1115		48
572	Osmotically driven formation of double emulsions stabilized by amphiphilic block copolymers. Angewandte Chemie - International Edition, 2014 , 53, 8240-5	16.4	47
571	Core/shell biocomposites from the hierarchical assembly of bionanoparticles and polymer. <i>Small</i> , 2008 , 4, 1624-9	11	47
57°	Novel 3-D structures in polymer films by coupling external and internal fields. <i>Langmuir</i> , 2006 , 22, 4315-8	¥	47
569	Dynamic Structure of a Protein Hydrogel: A Solid-State NMR Study. <i>Macromolecules</i> , 2001 , 34, 8675-868	5 .5	47

568	Phase Separation in Polymer Blends and Diblock Copolymers Induced by Compressible Solvents. <i>Macromolecules</i> , 1999 , 32, 7737-7740	5.5	47
567	High temperature polymer nanofoams based on amorphous, high Tg polyimides. <i>Polymer</i> , 1995 , 36, 987	'-3.602	47
566	Rheology of the Lower Critical Ordering Transition. <i>Macromolecules</i> , 1995 , 28, 1129-1134	5.5	47
565	A Polymer Hole Extraction Layer for Inverted Perovskite Solar Cells from Aqueous Solutions. Advanced Energy Materials, 2016 , 6, 1600664	21.8	46
564	Directed Self-Assembly of Poly(2-vinylpyridine)-b-polystyrene-b-poly(2-vinylpyridine) Triblock Copolymer with Sub-15 nm Spacing Line Patterns Using a Nanoimprinted Photoresist Template. <i>Advanced Materials</i> , 2015 , 27, 4364-70	24	46
563	A Study on the Correlation Between Structure and Hole Transport in Semi-Crystalline Regioregular P3HT. <i>Advanced Energy Materials</i> , 2013 , 3, 263-270	21.8	46
562	Distributions of chain ends and junction points in ordered block copolymers. <i>Macromolecules</i> , 1993 , 26, 1047-1052	5.5	46
561	Small-angle x-ray scattering study of ionomer deformation. <i>Journal of Polymer Science, Polymer Physics Edition</i> , 1980 , 18, 1497-1512		46
560	Improving Efficiency and Stability of Perovskite Solar Cells Enabled by A Near-Infrared-Absorbing Moisture Barrier. <i>Joule</i> , 2020 , 4, 1575-1593	27.8	46
559	Multiscale active layer morphologies for organic photovoltaics through self-assembly of nanospheres. <i>Nano Letters</i> , 2014 , 14, 5238-43	11.5	45
558	Block Copolymer Domain Reorientation in an Electric Field: An in-Situ Small-Angle X-ray Scattering Study. <i>Macromolecules</i> , 2004 , 37, 2538-2543	5.5	45
557	Closed-Loop Phase Behavior of Polystyrene-block-poly(n-pentyl methacrylate) Copolymers with Various Block Length Ratios. <i>Macromolecules</i> , 2004 , 37, 3717-3724	5.5	45
556	Phase Behavior of Polystyrene-block-poly(n-alkyl methacrylate)s Dilated with Carbon Dioxide. <i>Macromolecules</i> , 2003 , 36, 4029-4036	5.5	45
555	Phase Coherence and Microphase Separation Transitions in Diblock Copolymer Thin Films. <i>Macromolecules</i> , 1999 , 32, 4832-4837	5.5	45
554	Interdiffusion of polymers across interfaces. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1996 , 34, 2919-2940	2.6	45
553	Time-resolved SAXS studies of morphological changes in cold crystallized poly(ethylene terephthalate) during annealing and heating. <i>Colloid and Polymer Science</i> , 1994 , 272, 1344-1351	2.4	45
552	Thermal decomposition of energetic materials 31Hast thermolysis of ammonium nitrate, ethylenediammonium dinitrate and hydrazinium nitrate and the relationship to the burning rate. <i>Combustion and Flame</i> , 1989 , 76, 393-401	5.3	45
551	Neutron reflectivity study of block copolymers adsorbed from solution. <i>Macromolecules</i> , 1990 , 23, 3860)- <u>3</u> .864	45

(2008-2020)

550	Butterfly Effects Arising from Starting Materials in Fused-Ring Electron Acceptors. <i>Journal of the American Chemical Society</i> , 2020 , 142, 20124-20133	16.4	45	
549	Donor-Acceptor Conjugated Macrocycles: Synthesis and Host-Guest Coassembly with Fullerene toward Photovoltaic Application. <i>ACS Nano</i> , 2017 , 11, 11701-11713	16.7	44	
548	New insights into morphology of high performance BHJ photovoltaics revealed by high resolution AFM. <i>Nano Letters</i> , 2014 , 14, 5727-32	11.5	44	
547	Realizing 5.4 nm Full Pitch Lamellar Microdomains by a Solid-State Transformation. <i>Macromolecules</i> , 2017 , 50, 7148-7154	5.5	44	
546	Nano- to Macro-Sized Heterogeneities Using Cleavable Diblock Copolymers. <i>Macromolecules</i> , 2004 , 37, 9639-9645	5.5	44	
545	Ordering at diblock copolymer surfaces. <i>Macromolecules</i> , 1991 , 24, 252-255	5.5	44	
544	Fabrication of ordered anodic aluminum oxide using a solvent-induced array of block-copolymer micelles. <i>Small</i> , 2007 , 3, 1869-72	11	43	
543	Experimental study of the surface structure of diblock copolymer films using microscopy and x-ray scattering. <i>Journal of Chemical Physics</i> , 1993 , 98, 2376-2386	3.9	43	
542	Segregation of low molecular weight symmetric diblock copolymers at the interface of high molecular weight homopolymers. <i>Macromolecules</i> , 1991 , 24, 2931-2935	5.5	43	
541	The Characterization of Polymer Interfaces. <i>Annual Review of Materials Research</i> , 1991 , 21, 249-268		43	
540	Three-dimensional hierarchical metal oxideflarbon electrode materials for highly efficient microbial electrosynthesis. <i>Sustainable Energy and Fuels</i> , 2017 , 1, 1171-1176	5.8	42	
539	Indentation of ultrathin elastic films and the emergence of asymptotic isometry. <i>Physical Review Letters</i> , 2015 , 114, 014301	7.4	42	
538	Systematic Variation of Fluorinated Diketopyrrolopyrrole Low Bandgap Conjugated Polymers: Synthesis by Direct Arylation Polymerization and Characterization and Performance in Organic Photovoltaics and Organic Field-Effect Transistors. <i>Macromolecules</i> , 2015 , 48, 6978-6986	5.5	42	
537	Energy-effectively printed all-polymer solar cells exceeding 8.61% efficiency. <i>Nano Energy</i> , 2018 , 46, 428-435	17.1	42	
536	Interfacial Assembly and Jamming Behavior of Polymeric Janus Particles at Liquid Interfaces. <i>ACS Applied Materials & District Material</i>	9.5	42	
535	Self-Diffusion of Polystyrene in a CO2-Swollen Polystyrene Matrix: A Real Time Study Using Neutron Reflectivity. <i>Macromolecules</i> , 2003 , 36, 346-352	5.5	42	
534	Behavior of isotopic, binary polymer blends in the vicinity of neutral surfaces: the effects of chain-length disparity. <i>Macromolecules</i> , 1991 , 24, 3816-3820	5.5	42	
533	Polymer Thin Films. Series in Sof Condensed Matter, 2008,		42	

532	Multi-Length Scaled Silver Nanowire Grid for Application in Efficient Organic Solar Cells. <i>Advanced Functional Materials</i> , 2016 , 26, 4822-4828	15.6	42
531	Efficient Naphthalenediimide-Based Hole Semiconducting Polymer with Vinylene Linkers between Donor and Acceptor Units. <i>Chemistry of Materials</i> , 2016 , 28, 8580-8590	9.6	41
530	Isomeric Effects of Solution Processed Ladder-Type Non-Fullerene Electron Acceptors. <i>Solar Rrl</i> , 2017 , 1, 1700107	7.1	41
529	Fabrication of Pt/Au concentric spheres from triblock copolymer. <i>ACS Nano</i> , 2010 , 4, 1124-30	16.7	41
528	Transition Behavior of Block Copolymer Thin Films on Preferential Surfaces. <i>Macromolecules</i> , 2008 , 41, 9140-9145	5.5	41
527	Thin Films of Block Copolymers as Planar Optical Waveguides. <i>Advanced Materials</i> , 2005 , 17, 2442-2446	24	41
526	Orientationally Registered Crystals in Thin Film Crystalline/Amorphous Block Copolymers. <i>Macromolecules</i> , 2001 , 34, 2398-2399	5.5	41
525	Grazing incidence prompt gamma emissions and resonance-enhanced neutron standing waves in a thin film. <i>Physical Review Letters</i> , 1994 , 72, 3044-3047	7.4	41
524	Evaluation of Small Molecules as Front Cell Donor Materials for High-Efficiency Tandem Solar Cells. <i>Advanced Materials</i> , 2016 , 28, 7008-12	24	41
523	A solution-processed high performance organic solar cell using a small molecule with the thieno[3,2-b]thiophene central unit. <i>Chemical Communications</i> , 2015 , 51, 15268-71	5.8	40
522	Sequential deposition: optimization of solvent swelling for high-performance polymer solar cells. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 7, 653-61	9.5	40
521	Reconfigurable Microfluidic Droplets Stabilized by Nanoparticle Surfactants. ACS Nano, 2018, 12, 2365-	2 <i>36</i> 7. 7	40
520	Assembly of acid-functionalized single-walled carbon nanotubes at oil/water interfaces. <i>Langmuir</i> , 2014 , 30, 1072-9	4	40
519	Atomic Force Microscopy Nanomechanics Visualizes Molecular Diffusion and Microstructure at an Interface. <i>ACS Macro Letters</i> , 2013 , 2, 757-760	6.6	40
518	Toward High Efficiency Polymer Solar Cells: Influence of Local Chemical Environment and Morphology. <i>Advanced Energy Materials</i> , 2017 , 7, 1601081	21.8	40
517	Controlling Orientation and Order in Block Copolymer Thin Films. Advanced Materials, 2008, 20, 4851-48	8 5 6	40
516	A Photoactive Polymer with Azobenzene Chromophore in the Side Chains. <i>Macromolecules</i> , 2007 , 40, 2267-2270	5.5	40
515	Early Stages in the Growth of Electric Field-Induced Surface Fluctuations. <i>Macromolecules</i> , 2005 , 38, 486	5 §.4 87	340

514	Capillary filling of anodized alumina nanopore arrays. <i>Physical Review Letters</i> , 2006 , 97, 175503	7.4	40
513	Synthesis and Microphase Separation of Poly(styrene-b-acrylonitrile) Prepared by Sequential Anionic and ATRP Techniques. <i>Macromolecules</i> , 2006 , 39, 1766-1770	5.5	40
512	Highly Crystalline Low Band Gap Polymer Based on Thieno[3,4-c]pyrrole-4,6-dione for High-Performance Polymer Solar Cells with a >400 nm Thick Active Layer. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 13666-74	9.5	39
511	Precise placements of metal nanoparticles from reversible block copolymer nanostructures. Journal of Materials Chemistry, 2010 , 20, 5047		39
510	Separating membrane and surface tension contributions in Pickering droplet deformation. <i>Soft Matter</i> , 2008 , 4, 2259	3.6	39
509	Phase Behavior of Polystyrene and Poly(n-pentyl methacrylate) Blend. <i>Macromolecules</i> , 2002 , 35, 8676-	8 6. §0	39
508	Free surfaces of polymer blends. II. Effects of molecular weight and applications to asymmetric polymer blends. <i>Journal of Chemical Physics</i> , 1993 , 99, 4041-4050	3.9	39
507	Transitions to Liquid Crystalline Phases in a Semifluorinated Alkane. <i>Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics</i> , 1989 , 168, 63-82		39
506	High performance bio-based elastomers: energy efficient and sustainable materials for tires. Journal of Materials Chemistry A, 2016 , 4, 13058-13062	13	39
505	Chemical and Morphological Control of Interfacial Self-Doping for Efficient Organic Electronics. <i>Advanced Materials</i> , 2018 , 30, e1705976	24	38
504	Efficient charge transport in assemblies of surfactant-stabilized semiconducting nanoparticles. <i>Advanced Materials</i> , 2013 , 25, 6411-5	24	38
503	Self-Regulated Nanoparticle Assembly at Liquid/Liquid Interfaces: A Route to Adaptive Structuring of Liquids. <i>Langmuir</i> , 2017 , 33, 7994-8001	4	38
502	Ternary Solar Cells Based on Two Small Molecule Donors with Same Conjugated Backbone: The Role of Good Miscibility and Hole Relay Process. <i>ACS Applied Materials & Donors & D</i>	29 523	38
501	Liquid Tubule Formation and Stabilization Using Cellulose Nanocrystal Surfactants. <i>Angewandte Chemie</i> , 2017 , 129, 12768-12772	3.6	38
500	Block copolymer self-assembly in chemically patterned squares. Soft Matter, 2011, 7, 3915	3.6	38
499	Self-assembled electrical contact to nanoparticles using metallic droplets. <i>Small</i> , 2009 , 5, 1974-7	11	38
498	Synthesis and photovoltaic properties of low-bandgap alternating copolymers consisting of 3-hexylthiophene and [1,2,5]thiadiazolo[3,4-g]quinoxaline derivatives. <i>Organic Electronics</i> , 2010 , 11, 846	5 - 8 5 3	38
497	Effect of Nanoparticles on the Electrohydrodynamic Instabilities of Polymer/Nanoparticle Thin Films. <i>Macromolecules</i> , 2008 , 41, 2722-2726	5.5	38

496	Grain Rotation in Ion-Complexed Symmetric Diblock Copolymer Thin Films under an Electric Field. <i>Macromolecules</i> , 2006 , 39, 8487-8491	5.5	38
495	X-PEEM Study on Surface Orientation of Stylized and Rubbed Polyimides. <i>Macromolecules</i> , 1998 , 31, 4957-62	5.5	38
494	Adhesion of Polymer Interfaces Reinforced with Random and Diblock Copolymers as a Function of Geometry. <i>Macromolecules</i> , 1999 , 32, 6254-6260	5.5	38
493	Pressure, Temperature Reaction Phase Diagram for Ammonium Dinitramide. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 3248-3251		38
492	Phase separation in low molecular weight polymer mixtures. <i>Macromolecules</i> , 1985 , 18, 78-83	5.5	38
491	Wrapping with a splash: High-speed encapsulation with ultrathin sheets. <i>Science</i> , 2018 , 359, 775-778	33.3	37
490	Near-complete depolymerization of polyesters with nano-dispersed enzymes. <i>Nature</i> , 2021 , 592, 558-5	6 3 0.4	37
489	Rational design of advanced elastomer nanocomposites towards extremely energy-saving tires based on macromolecular assembly strategy. <i>Nano Energy</i> , 2018 , 48, 180-188	17.1	36
488	Demonstration of feasibility of X-ray free electron laser studies of dynamics of nanoparticles in entangled polymer melts. <i>Scientific Reports</i> , 2014 , 4, 6017	4.9	36
487	The good host: formation of discrete one-dimensional fullerene "channels" in well-ordered poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene) oligomers. <i>Journal of the American Chemical Society</i> , 2014 , 136, 18120-30	16.4	36
486	Fabrication of hierarchical structures by wetting porous templates with polymer microspheres. <i>Langmuir</i> , 2009 , 25, 4331-5	4	36
485	Orientationally Controlled Nanoporous Cylindrical Domains in Polystyrene-b-poly(ferrocenylethylmethylsilane) Block Copolymer Films. <i>Macromolecules</i> , 2007 , 40, 37	90 - 379	6 ³⁶
484	Contact of elastic solids with rough surfaces. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2001 , 39, 1848-1854	2.6	36
483	The Next 100 Years of Polymer Science. <i>Macromolecular Chemistry and Physics</i> , 2020 , 221, 2000216	2.6	36
482	An in situ GISAXS study of selective solvent vapor annealing in thin block copolymer films: Symmetry breaking of in-plane sphere order upon deswelling. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2016 , 54, 331-338	2.6	36
481	High-Efficiency Small Molecule-Based Bulk-Heterojunction Solar Cells Enhanced by Additive Annealing. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 21495-502	9.5	35
480	Fabrication of co-continuous nanostructured and porous polymer membranes: spinodal decomposition of homopolymer and random copolymer blends. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 4089-94	16.4	35
479	Polymeric gate dielectric interlayer of cross-linkable poly(styrene-r-methylmethacrylate) copolymer for ferroelectric PVDF-TrFE field effect transistor memory. <i>Organic Electronics</i> , 2009 , 10, 849-856	3.5	35

(2012-2010)

478	Ferritin Polymer Conjugates: Grafting Chemistry and Integration into Nanoscale Assemblies. <i>Advanced Functional Materials</i> , 2010 , 20, 3603-3612	15.6	35
477	Decomposition of 5-Nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO): Energetics Associated with Several Proposed Initiation Routes. <i>Journal of Physical Chemistry A</i> , 1998 , 102, 471-477	2.8	35
476	Diffusion of homopolymers into nonequilibrium block copolymer structures. 1. Molecular weight dependence. <i>Macromolecules</i> , 1988 , 21, 3266-3273	5.5	35
475	Photoresponsive Structured Liquids Enabled by Molecular Recognition at Liquid-Liquid Interfaces. Journal of the American Chemical Society, 2020 , 142, 8591-8595	16.4	35
474	Atomic Force Microscopy Nanomechanical Mapping Visualizes Interfacial Broadening between Networks Due to Chemical Exchange Reactions. <i>Journal of the American Chemical Society</i> , 2018 , 140, 6793-6796	16.4	35
473	Solution-processed bulk heterojunction solar cells based on porphyrin small molecules with very low energy losses comparable to perovskite solar cells and high quantum efficiencies. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 3843-3850	7.1	34
472	Dual Functional Zwitterionic Fullerene Interlayer for Efficient Inverted Polymer Solar Cells. <i>Advanced Energy Materials</i> , 2015 , 5, 1500405	21.8	34
471	An optical waveguide study on the nanopore formation in block copolymer/homopolymer thin films by selective solvent swelling. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 15381-8	3.4	34
470	Configuration of grafted polystyrene chains in the melt: Temperature and concentration dependence. <i>Physical Review Letters</i> , 1992 , 69, 776-779	7.4	34
469	Intermolecular polarization transfer study of polymer blend compatibility. <i>Journal of Polymer Science, Part C: Polymer Letters</i> , 1987 , 25, 61-65		34
469 468		11.5	34
	Science, Part C: Polymer Letters, 1987, 25, 61-65 Effect of Nanoparticle Surfactants on the Breakup of Free-Falling Water Jets during Continuous	11. 5	
468	Science, Part C: Polymer Letters, 1987, 25, 61-65 Effect of Nanoparticle Surfactants on the Breakup of Free-Falling Water Jets during Continuous Processing of Reconfigurable Structured Liquid Droplets. Nano Letters, 2017, 17, 3119-3125 Interplay between Ion Transport, Applied Bias, and Degradation under Illumination in Hybrid		33
468 467	Science, Part C: Polymer Letters, 1987, 25, 61-65 Effect of Nanoparticle Surfactants on the Breakup of Free-Falling Water Jets during Continuous Processing of Reconfigurable Structured Liquid Droplets. Nano Letters, 2017, 17, 3119-3125 Interplay between Ion Transport, Applied Bias, and Degradation under Illumination in Hybrid Perovskite p-i-n Devices. Journal of Physical Chemistry C, 2018, 122, 13986-13994 Templated nanostructured PS-b-PEO nanotubes. Journal of Polymer Science, Part B: Polymer Physics,	3.8	33
468 467 466	Effect of Nanoparticle Surfactants on the Breakup of Free-Falling Water Jets during Continuous Processing of Reconfigurable Structured Liquid Droplets. <i>Nano Letters</i> , 2017 , 17, 3119-3125 Interplay between Ion Transport, Applied Bias, and Degradation under Illumination in Hybrid Perovskite p-i-n Devices. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 13986-13994 Templated nanostructured PS-b-PEO nanotubes. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2007 , 45, 2912-2917 Enhancement of Diblock Copolymer Ordering Kinetics by Supercritical Carbon Dioxide Annealing.	3.8 2.6	333333
468 467 466 465	Effect of Nanoparticle Surfactants on the Breakup of Free-Falling Water Jets during Continuous Processing of Reconfigurable Structured Liquid Droplets. Nano Letters, 2017, 17, 3119-3125 Interplay between Ion Transport, Applied Bias, and Degradation under Illumination in Hybrid Perovskite p-i-n Devices. Journal of Physical Chemistry C, 2018, 122, 13986-13994 Templated nanostructured PS-b-PEO nanotubes. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 2912-2917 Enhancement of Diblock Copolymer Ordering Kinetics by Supercritical Carbon Dioxide Annealing. Macromolecules, 2001, 34, 7923-7925	3.8 2.6 5.5	33333333
468 467 466 465 464	Effect of Nanoparticle Surfactants on the Breakup of Free-Falling Water Jets during Continuous Processing of Reconfigurable Structured Liquid Droplets. Nano Letters, 2017, 17, 3119-3125 Interplay between Ion Transport, Applied Bias, and Degradation under Illumination in Hybrid Perovskite p-i-n Devices. Journal of Physical Chemistry C, 2018, 122, 13986-13994 Templated nanostructured PS-b-PEO nanotubes. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 2912-2917 Enhancement of Diblock Copolymer Ordering Kinetics by Supercritical Carbon Dioxide Annealing. Macromolecules, 2001, 34, 7923-7925 Polyimide Nanofoams from Caprolactone-Based Copolymers. Macromolecules, 1996, 29, 3642-3646 Directed Self-Assembly of Block Copolymer Thin Films Using Minimal Topographic Patterns. ACS	3.8 2.6 5.5	3333333333

460	Optimizing Light-Harvesting Polymers via Side Chain Engineering. <i>Advanced Functional Materials</i> , 2015 , 25, 6458-6469	15.6	32
459	Nanoscale structure and superhydrophobicity of sp(2)-bonded boron nitride aerogels. <i>Nanoscale</i> , 2015 , 7, 10449-58	7.7	32
458	Fabrication of silicon oxide nanodots with an areal density beyond 1 teradots inch(-2). <i>Advanced Materials</i> , 2011 , 23, 5755-61	24	32
457	Highly ordered nanoporous template from triblock copolymer. <i>ACS Nano</i> , 2011 , 5, 1207-14	16.7	32
456	Circular nanopatterns over large areas from the self-assembly of block copolymers guided by shallow trenches. <i>ACS Nano</i> , 2011 , 5, 2855-60	16.7	32
455	Synthesis and characterization of bionanoparticleBilica composites and mesoporous silica with large pores. <i>Nano Research</i> , 2009 , 2, 474-483	10	32
454	Preparation of metallic line patterns from functional block copolymers. <i>Small</i> , 2009 , 5, 1343-8	11	32
453	High-temperature resistant, ordered gold nanoparticle arrays. <i>Nanotechnology</i> , 2006 , 17, 2122-2126	3.4	32
452	Simultaneous spin-coating and solvent annealing: manipulating the active layer morphology to a power conversion efficiency of 9.6% in polymer solar cells. <i>Materials Horizons</i> , 2015 , 2, 592-597	14.4	31
451	Combining Fullerenes and Zwitterions in Non-Conjugated Polymer Interlayers to Raise Solar Cell Efficiency. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 9675-9678	16.4	31
450	Size control and registration of nano-structured thin films by cross- units. <i>Soft Matter</i> , 2008 , 4, 475-479	3.6	31
449	Phase Behavior of a Weakly Interacting Block Copolymer by Temperature-Dependent FTIR Spectroscopy. <i>Macromolecules</i> , 2006 , 39, 408-412	5.5	31
448	Evaluation of the Interaction Parameter for Poly(solketal methacrylate)-block-polystyrene Copolymers. <i>Macromolecules</i> , 2018 , 51, 1031-1040	5.5	30
447	Sculpting Liquids with Two-Dimensional Materials: The Assembly of TiCT MXene Sheets at Liquid-Liquid Interfaces. <i>ACS Nano</i> , 2019 , 13, 12385-12392	16.7	30
446	Controlled orientation of block copolymers on defect-free faceted surfaces. <i>Advanced Materials</i> , 2012 , 24, 4278-83	24	30
445	A route to rapid carbon nanotube growth. <i>Chemical Communications</i> , 2013 , 49, 5159-61	5.8	30
444	Segmental dynamics of polymers during capillary flow into nanopores. Soft Matter, 2010, 6, 1111	3.6	30
443	Polyimide Nanofoams For Low Dielectric Applications. <i>Materials Research Society Symposia</i> Proceedings, 1995 , 381, 79		30

442	Conformational Entropy as a Means to Control the Behavior of Poly(diketoenamine) Vitrimers In and Out of Equilibrium. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 735-739	16.4	30	
441	A low-bandgap dimeric porphyrin molecule for 10% efficiency solar cells with small photon energy loss. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 18469-18478	13	29	
440	Visualization and Quantification of the Chemical and Physical Properties at a Diffusion-Induced Interface Using AFM Nanomechanical Mapping. <i>Macromolecules</i> , 2014 , 47, 3761-3765	5.5	29	
439	Photocleavable Triblock Copolymers Featuring an Activated Ester Middle Block: "One-Step" Synthesis and Application as Locally Reactive Nanoporous Thin Films <i>ACS Macro Letters</i> , 2013 , 2, 966-96	69 ⁶	29	
438	Solvent-Polarity-Induced Active Layer Morphology Control in Crystalline Diketopyrrolopyrrole-Based Low Band Gap Polymer Photovoltaics. <i>Advanced Energy Materials</i> , 2014 , 4, 1300834	21.8	29	
437	Chirality in block copolymer melts: mesoscopic helicity from intersegment twist. <i>Physical Review Letters</i> , 2013 , 110, 058301	7.4	29	
436	Swelling behavior of an aromatic polyimide. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1989 , 27, 2131-2144	2.6	29	
435	High Short-Circuit Current Density via Integrating the Perovskite and Ternary Organic Bulk Heterojunction. <i>ACS Energy Letters</i> , 2019 , 4, 2535-2536	20.1	28	
434	Naphthalene-Diimide-Based Ionenes as Universal Interlayers for Efficient Organic Solar Cells. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 18131-18135	16.4	28	
433	Interfacial Assembly and Jamming of Polyelectrolyte Surfactants: A Simple Route To Print Liquids in Low-Viscosity Solution. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> , 12, 18116-18122	9.5	28	
432	A simple top-down/bottom-up approach to sectored, ordered arrays of nanoscopic elements using block copolymers. <i>Small</i> , 2009 , 5, 1064-9	11	28	
431	Self-assembly of metallo-supramolecular block copolymers in thin films. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 4719-4724	2.5	28	
430	Solvent and isomer effects on the imidization of pyromellitic dianhydride-oxydianiline-based poly(amic ethyl ester)s. <i>Polymer</i> , 1993 , 34, 4524-4530	3.9	28	
429	Microphase separation transition of a triblock copolymer. <i>Macromolecules</i> , 1990 , 23, 877-881	5.5	28	
428	Head-to-Head Linkage Containing Dialkoxybithiophene-Based Polymeric Semiconductors for Polymer Solar Cells with Large Open-Circuit Voltages. <i>Macromolecules</i> , 2017 , 50, 137-150	5.5	27	
427	Polymer design to promote low work function surfaces in organic electronics. <i>Progress in Polymer Science</i> , 2020 , 103, 101222	29.6	27	
426	The Interfacial Assembly of Polyoxometalate Nanoparticle Surfactants. <i>Nano Letters</i> , 2018 , 18, 2525-252	29 1.5	27	
425	Role of Ionic Functional Groups on Ion Transport at Perovskite Interfaces. <i>Advanced Energy Materials</i> , 2017 , 7, 1701235	21.8	27	

424	Connecting quantum dots and bionanoparticles in hybrid nanoscale ultra-thin films. <i>Soft Matter</i> , 2009 , 5, 1048	3.6	27
423	Transition behavior of PS-b-PMMA films on the balanced interfacial interactions. <i>Polymer</i> , 2010 , 51, 631	3 ₅ .69318	B 27
422	Complex Phase Behavior of a Weakly Interacting Binary Polymer Blend. <i>Macromolecules</i> , 2004 , 37, 5851	- 5 &55	27
421	Self-Assembly and Cross-Linking of Bionanoparticles at Liquid Interfaces. <i>Angewandte Chemie</i> , 2005 , 117, 2472-2478	3.6	27
420	Short-Time Interdiffusion at Polymer Interfaces. <i>Macromolecules</i> , 1994 , 27, 4407-4409	5.5	27
419	Orientation transitions during the growth of imine covalent organic framework thin films. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 5090-5095	7.1	26
418	Compartmentalized, All-Aqueous Flow-Through-Coordinated Reaction Systems. <i>CheM</i> , 2019 , 5, 2678-26	96.2	26
417	Polymer-Modified ZnO Nanoparticles as Electron Transport Layer for Polymer-Based Solar Cells. <i>Advanced Functional Materials</i> , 2020 , 30, 2002932	15.6	26
416	Janus MXene nanosheets for macroscopic assemblies. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 910-917	7.8	26
415	Phase transition behavior in thin films of block copolymers by use of immiscible solvent vapors. <i>Soft Matter</i> , 2011 , 7, 443-447	3.6	26
414	Guided assemblies of ferritin nanocages: highly ordered arrays of monodisperse nanoscopic elements. <i>Advanced Materials</i> , 2010 , 22, 2583-7	24	26
413	Synthese von Nano-/Mikrostrukturen an fluiden Grenzf lä hen. <i>Angewandte Chemie</i> , 2010 , 122, 10250-10	265	26
412	Density fluctuations and phase transitions of ferroelectric polymer nanowires. Small, 2010, 6, 1822-6	11	26
411	Controlled Structure in Artificial Protein Hydrogels. <i>Macromolecules</i> , 2005 , 38, 7470-7475	5.5	26
410	Controlled Adsorption of End-Functionalized Polystyrene to Silicon-Supported Tris(trimethylsiloxy)silyl Monolayers. <i>Langmuir</i> , 2001 , 17, 6547-6552	4	26
409	Adsorption of copolymer chains from a melt onto a flat surface. <i>Macromolecules</i> , 1992 , 25, 783-787	5.5	26
408	Macro- vs microphase separation in copolymer/homopolymer mixtures. <i>Macromolecules</i> , 1993 , 26, 2860	- 3 .865	26
407	Using block copolymer architecture to achieve sub-10[hm periods. <i>Polymer</i> , 2017 , 121, 297-303	3.9	25

406	Confinement Effects on the Crystallization of Poly(3-hydroxybutyrate). <i>Macromolecules</i> , 2018 , 51, 5732	?- 5 741	25
405	High-efficiency quaternary polymer solar cells enabled with binary fullerene additives to reduce nonfullerene acceptor optical band gap and improve carriers transport. <i>Science China Chemistry</i> , 2018 , 61, 1609-1618	7.9	25
404	Carboxylated Fullerene at the Oil/Water Interface. ACS Applied Materials & Carboxylated Fullerene at the Oil/Water Interface. ACS Applied Materials & Carboxylated Fullerene at the Oil/Water Interface.	8 9. 343	19 ∑5
403	Lamellar microdomain orientation and phase transition of polystyrene-b-poly(methyl methacrylate) films by controlled interfacial interactions. <i>Soft Matter</i> , 2012 , 8, 3463	3.6	25
402	Fibroblast adhesion to micro- and nano-heterogeneous topography using diblock copolymers and homopolymers. <i>Journal of Biomedical Materials Research Part B</i> , 2004 , 71, 462-9		25
401	Nanostructures and the proximity effect. <i>Journal Physics D: Applied Physics</i> , 2002 , 35, 2398-2402	3	25
400	Block copolymers as nanoscopic templates. <i>Macromolecular Symposia</i> , 2000 , 159, 77-88	0.8	25
399	MATERIALS SCIENCE:Tacka Sticky Subject. <i>Science</i> , 1999 , 285, 1219-1220	33.3	25
398	Small Angle Neutron Scattering Studies on Ultrathin Films. <i>Macromolecules</i> , 1995 , 28, 787-789	5.5	25
397	Small-Angle Neutron Scattering from Deuterated Polystyrene/Poly(butyl methacrylate) Homopolymer Blend Mixtures. <i>Macromolecules</i> , 1994 , 27, 2357-2359	5.5	25
396	Order-disorder transitions in mixtures of homopolymers with diblock copolymers. <i>Macromolecules</i> , 1989 , 22, 3388-3394	5.5	25
395	Unraveling the Crystallization Kinetics of 2D Perovskites with Sandwich-Type Structure for High-Performance Photovoltaics. <i>Advanced Materials</i> , 2020 , 32, e2002784	24	25
394	Systematic Fluorination of P3HT: Synthesis of P(3HT-co-3H4FT)s by Direct Arylation Polymerization, Characterization, and Device Performance in OPVs. <i>Macromolecules</i> , 2016 , 49, 3028-3037	5.5	25
393	Reversible Surface Patterning by Dynamic Crosslink Gradients: Controlling Buckling in 2D. <i>Advanced Materials</i> , 2018 , 30, e1803463	24	24
392	Thickness Dependence of the Young Modulus of Polymer Thin Films. <i>Macromolecules</i> , 2018 , 51, 6764-6	6 <i>7571</i> 9	24
391	Multi-Length Scale Porous Polymers. <i>Advanced Functional Materials</i> , 2014 , 24, 1483-1489	15.6	24
390	Orienting block copolymer microdomains with block copolymer brushes. ACS Nano, 2012, 6, 10250-7	16.7	24
389	Dewetting on Curved Interfaces: A Simple Route to Polymer Nanostructures. <i>Macromolecules</i> , 2011 , 44, 8020-8027	5.5	24

388	Amorphous Diblock Copolymers with a High Organometallic Block Volume Fraction: Synthesis, Characterization and Self-Assembly of Polystyrene-block-Poly(ferrocenylethylmethylsilane) in the Bulk State. <i>Macromolecules</i> , 2008 , 41, 9474-9479	5.5	24
387	Role of AlD2 chemistry in the laser-induced vaporization of Al films in air. <i>Journal of Chemical Physics</i> , 1999 , 111, 445-448	3.9	24
386	Structural modifications in hydroxy ether-dimethyldiphenylsiloxane copolymers. <i>Macromolecules</i> , 1989 , 22, 4470-4477	5.5	24
385	Concentration fluctuations in mixtures of linear and star-shaped polymers. <i>Macromolecules</i> , 1990 , 23, 654-659	5.5	24
384	Reaction: Polymer Chemistries Enabling Cradle-to-Cradle Life Cycles for Plastics. <i>CheM</i> , 2016 , 1, 816-81	816.2	24
383	Efficient and thermally stable all-polymer solar cells based on a fluorinated wide-bandgap polymer donor with high crystallinity. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 16403-16411	13	23
382	Synthesis of Semicrystalline/Fluorinated Side-Chain Crystalline Block Copolymers and Their Bulk and Thin Film Nanoordering. <i>Macromolecules</i> , 2013 , 46, 3737-3745	5.5	23
381	Disorder-to-Order Transition of Diblock Copolymers Induced by Alkyne/Azide Click Chemistry. <i>Macromolecules</i> , 2010 , 43, 6234-6236	5.5	23
380	Pulse electrodeposition and electrochemical quartz crystal microbalance techniques for high perpendicular magnetic anisotropy cobalt nanowire arrays. <i>Journal of Applied Physics</i> , 2005 , 97, 10J322	2.5	23
379	Monte Carlo simulations of the free surface of polymer melts. <i>Chemical Engineering Science</i> , 1994 , 49, 2899-2906	4.4	23
378	X-ray studies on the deformation of an aromatic polyimide. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1987 , 25, 1129-1148	2.6	23
377	Preparation of Low Band Gap Fibrillar Structures by Solvent-Induced Crystallization. <i>ACS Macro Letters</i> , 2014 , 3, 30-34	6.6	22
376	Morphologies of ABC triblock terpolymer melts containing poly(cyclohexadiene): effects of conformational asymmetry. <i>Langmuir</i> , 2013 , 29, 1995-2006	4	22
375	Aligned nanowires and nanodots by directed block copolymer assembly. <i>Nanotechnology</i> , 2011 , 22, 305	30.2	22
374	Self-assembly of block copolymers on flexible substrates. <i>Advanced Materials</i> , 2010 , 22, 1882-4	24	22
373	Fabrication of a gradient heterogeneous surface using homopolymers and diblock copolymers. <i>Langmuir</i> , 2004 , 20, 5952-7	4	22
372	Photolysis of Compressed Sodium Azide (NaN3) as a Synthetic Pathway to Nitrogen Materials. Journal of Physical Chemistry A, 2003 , 107, 944-947	2.8	22
371	Concerning voids in polyimide. <i>Polymer Engineering and Science</i> , 1984 , 24, 345-349	2.3	22

370	Dielectric screening in perovskite photovoltaics. <i>Nature Communications</i> , 2021 , 12, 2479	17.4	22
369	Conductive Composite Materials Fabricated from Microbially Produced Protein Nanowires. <i>Small</i> , 2018 , 14, e1802624	11	22
368	Low band-gap conjugated polymer based on diketopyrrolopyrrole units and its application in organic photovoltaic cells. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 10416-10423	13	21
367	Transition in Dynamics as Nanoparticles Jam at the Liquid/Liquid Interface. <i>Nano Letters</i> , 2017 , 17, 6855	5- <u>68</u> 62	21
366	Observation of dynamical heterogeneities and their time evolution on the surface of an amorphous polymer. <i>Soft Matter</i> , 2015 , 11, 1425-33	3.6	21
365	Triggered in situ disruption and inversion of nanoparticle-stabilized droplets. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 6620-3	16.4	21
364	Photocontrol over the disorder-to-order transition in thin films of polystyrene-block-poly(methyl methacrylate) block copolymers containing photodimerizable anthracene functionality. <i>Journal of the American Chemical Society</i> , 2011 , 133, 17217-24	16.4	21
363	Lamellae orientation in block copolymer films with ionic complexes. <i>Langmuir</i> , 2008 , 24, 3545-50	4	21
362	Sizing nanoparticle-covered droplets by extrusion through track-etch membranes. <i>Langmuir</i> , 2007 , 23, 965-9	4	21
361	Effect of ionic impurities on the electric field alignment of diblock copolymer thin films. <i>Colloid and Polymer Science</i> , 2004 , 282, 927-931	2.4	21
360	Rutherford backscattering spectrometry studies of iodine diffusion in polyimide. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1986 , 24, 263-277	2.6	21
359	Geometry-Driven Folding of a Floating Annular Sheet. <i>Physical Review Letters</i> , 2017 , 118, 048004	7.4	20
358	Tuning charge transport from unipolar (n-type) to ambipolar in bis(naphthalene diimide) derivatives by introducing Leonjugated heterocyclic bridging moieties. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 7230-7240	7.1	20
357	Adaptive Structured Pickering Emulsions and Porous Materials Based on Cellulose Nanocrystal Surfactants. <i>Angewandte Chemie</i> , 2018 , 130, 13748-13752	3.6	20
356	Solvent-assisted directed self-assembly of spherical microdomain block copolymers to high areal density arrays. <i>Advanced Materials</i> , 2013 , 25, 3677-82	24	20
355	Nanomechanical Imaging of the Diffusion of Fullerene into Conjugated Polymer. <i>ACS Nano</i> , 2017 , 11, 8660-8667	16.7	20
354	Spatial control of dewetting: highly ordered Teflon nanospheres. <i>Journal of Colloid and Interface Science</i> , 2010 , 348, 416-23	9.3	20
353	Morphological Study on an Azobenzene-Containing Liquid Crystalline Diblock Copolymer. <i>Macromolecules</i> , 2008 , 41, 1897-1900	5.5	20

352	Selective growth of Ge islands on nanometer-scale patterned SiO2Bi substrate by molecular beam epitaxy. <i>Applied Physics Letters</i> , 2006 , 89, 063107	3.4	20
351	Teflon and Teflon/Al (nanocrystalline) decomposition chemistry at high pressures. <i>AIP Conference Proceedings</i> , 2000 ,	0	20
350	Nanofoam porosity by infrared spectroscopy. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1995 , 33, 253-257	2.6	20
349	Free Structure Confinement of Diblock Copolymer Multilayers. <i>Macromolecules</i> , 1995 , 28, 8092-8095	5.5	20
348	Conformation of Grafted Polystyrene Chains in a Melt. <i>Europhysics Letters</i> , 1991 , 15, 725-730	1.6	20
347	Liquid Crystalline Phases Formed by Iodine Derivatives of Semifluorinated Alkanes. <i>Molecular Crystals and Liquid Crystals</i> , 1990 , 182, 291-297	0.5	20
346	All polymer solar cells with diketopyrrolopyrrole-polymers as electron donor and a naphthalenediimide-polymer as electron acceptor. <i>RSC Advances</i> , 2016 , 6, 35677-35683	3.7	20
345	Dichlorinated Dithienylethene-Based Copolymers for Air-Stable n-Type Conductivity and Thermoelectricity. <i>Advanced Functional Materials</i> , 2021 , 31, 2005901	15.6	20
344	Phenylene-bridged perylenediimide-porphyrin acceptors for non-fullerene organic solar cells. <i>Sustainable Energy and Fuels</i> , 2018 , 2, 2616-2624	5.8	20
343	1,3-Bis(thieno[3,4-b]thiophen-6-yl)-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione-Based Small-Molecule Donor for Efficient Solution-Processed Solar Cells. <i>ACS Applied Materials & Donor for Efficient Solution-Processed Solar Cells.</i>	-62 19	19
342	Synergistic Effects of Side-Chain Engineering and Fluorination on Small Molecule Acceptors to Simultaneously Broaden Spectral Response and Minimize Voltage Loss for 13.8% Efficiency Organic Solar Cells. <i>Solar Rrl</i> , 2019 , 3, 1900169	7.1	19
341	Nanomechanical Mapping of a Deformed Elastomer: Visualizing a Self-Reinforcement Mechanism. <i>ACS Macro Letters</i> , 2016 , 5, 839-843	6.6	19
340	Self-assembly of gold nanoparticles on gallium droplets: controlling charge transport through microscopic devices. <i>Langmuir</i> , 2013 , 29, 13640-6	4	19
339	Simple Fabrication of Micropatterned Mesoporous Silica Films Using Photoacid Generators in Block Copolymers <i>Chemistry of Materials</i> , 2008 , 20, 604-606	9.6	19
338	Crosslinked polyimide foams derived from pyromellitic dianhydride and 1,1-bis(4-aminophenyl)-1-phenyl-2,2,3-trifluoroethane with poly(Emethylstyrene). <i>Polymer</i> , 1995 , 36, 1315-1320	3.9	19
337	High-Resolution Profiling of the Polyimide B olyimide Interface. <i>Macromolecules</i> , 1996 , 29, 6880-6891	5.5	19
336	Free surfaces of polymer blends. I. Theoretical framework and application to symmetric polymer blends. <i>Journal of Chemical Physics</i> , 1993 , 98, 6516-6525	3.9	19
335	Imide-aryl ether benzoxazole random copolymers. <i>Polymer</i> , 1990 , 31, 2384-2392	3.9	19

334	Visualizing the Dynamics of Nanoparticles in Liquids by Scanning Electron Microscopy. <i>ACS Nano</i> , 2016 , 10, 6257-64	16.7	19	
333	Efficient and 1,8-diiodooctane-free ternary organic solar cells fabricated via nanoscale morphology tuning using small-molecule dye additive. <i>Nano Research</i> , 2017 , 10, 3765-3774	10	18	
332	Large active layer thickness toleration of high-efficiency small molecule solar cells. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 22274-22279	13	18	
331	Effect of Pendant Functionality in Thieno[3,4-b]thiophene-alt-benzodithiophene Polymers for OPVs. <i>Chemistry of Materials</i> , 2015 , 27, 443-449	9.6	18	
330	Hydrophilic Conjugated Polymers Prepared by Aqueous Horner Wadsworth Emmons Coupling. <i>Macromolecules</i> , 2016 , 49, 2526-2532	5.5	18	
329	Guiding kinetic trajectories between jammed and unjammed states in 2D colloidal nanocrystal-polymer assemblies with zwitterionic ligands. <i>Science Advances</i> , 2018 , 4, eaap8045	14.3	18	
328	Solvent vapor annealing of block copolymer thin films: removal of processing history. <i>Colloid and Polymer Science</i> , 2014 , 292, 1795-1802	2.4	18	
327	Dynamic study of polystyrene-block-poly(4-vinylpyridine) copolymer in bulk and confined in cylindrical nanopores. <i>Polymer</i> , 2014 , 55, 4057-4066	3.9	18	
326	A drop on a floating sheet: boundary conditions, topography and formation of wrinkles. <i>Soft Matter</i> , 2013 , 9, 8289	3.6	18	
325	Bulk charge carrier transport in push-pull type organic semiconductor. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 20904-12	9.5	18	
324	Influence of Interfacial Energy on Electric-Field-Induced Sphere-to-Cylinder Transition in Block Copolymer Thin Films. <i>Macromolecules</i> , 2008 , 41, 7227-7231	5.5	18	
323	On the Influence of Ion Incorporation in Thin Films of Block Copolymers. <i>Advanced Materials</i> , 2007 , 19, 4370-4374	24	18	
322	Solvent Penetration into Ordered Thin Films of Diblock Copolymers. <i>Macromolecules</i> , 1995 , 28, 1470-14	754 5	18	
321	Interphase Mixing in Symmetric Diblock Copolymers Determined by Proton D euterium CP/MAS NMR. <i>Macromolecules</i> , 1996 , 29, 2201-2204	5.5	18	
320	Redox-Responsive, Reconfigurable All-Liquid Constructs. <i>Journal of the American Chemical Society</i> , 2021 , 143, 3719-3722	16.4	18	
319	Ethynylene-linked benzo[1,2-b:4,5-b?]dithiophene-alt-diketopyrrolopyrrole alternating copolymer: optoelectronic properties, film morphology and photovoltaic applications. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 12972-12981	13	17	
318	Stabilizing Liquids Using Interfacial Supramolecular Polymerization. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12112-12116	16.4	17	
317	Reversible, self cross-linking nanowires from thiol-functionalized polythiophene diblock copolymers. <i>ACS Applied Materials & Interfaces</i> , 2014 , 6, 7705-11	9.5	17	

316	Dynamics of Cadmium Sulfide Nanoparticles within Polystyrene Melts. <i>Macromolecules</i> , 2014 , 47, 6483-	6 4 90	17
315	Macroscopic vertical alignment of nanodomains in thin films of semiconductor amphiphilic block copolymers. <i>ACS Nano</i> , 2013 , 7, 6069-78	16.7	17
314	Coassembly Kinetics of Graphene Oxide and Block Copolymers at the Water/Oil Interface. <i>Langmuir</i> , 2017 , 33, 8961-8969	4	17
313	Orientational interactions in block copolymer melts: self-consistent field theory. <i>Journal of Chemical Physics</i> , 2012 , 137, 104911	3.9	17
312	Line patterns from cylinder-forming photocleavable block copolymers. <i>Advanced Materials</i> , 2013 , 25, 4690-5	24	17
311	The challenges in guided self-assembly of Ge and InAs quantum dots on Si. <i>Thin Solid Films</i> , 2006 , 508, 195-199	2.2	17
310	Structural studies of Langmuir-Blodgett multilayers by means of soft X-ray diffraction. <i>Thin Solid Films</i> , 1989 , 170, 309-319	2.2	17
309	Temperature dependence of tracer diffusion of homopolymers into nonequilibrium diblock copolymer structures. <i>Macromolecules</i> , 1989 , 22, 908-913	5.5	17
308	Small-angle x-ray and neutron scattering studies of amorphous polymer blends. <i>Journal of Polymer Science, Polymer Physics Edition</i> , 1982 , 20, 1593-1607		17
307	Using Preformed Meisenheimer Complexes as Dopants for n-Type Organic Thermoelectrics with High Seebeck Coefficients and Power Factors. <i>Advanced Functional Materials</i> , 2021 , 31, 2010567	15.6	17
306	Interfacial Activity of Amine-Functionalized Polyhedral Oligomeric Silsesquioxanes (POSS): A Simple Strategy To Structure Liquids. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 10142-10147	, 16.4	16
305	Tuning the energy gap of conjugated polymer zwitterions for efficient interlayers and solar cells. Journal of Polymer Science Part A, 2015, 53, 327-336	2.5	16
304	Morphological Behavior of A2B Block Copolymers in Thin Films. <i>Macromolecules</i> , 2018 , 51, 1181-1188	5.5	16
303	Phase Behavior and Photoresponse of Azobenzene-Containing Polystyrene-block-poly(n-butyl methacrylate) Block Copolymers. <i>Macromolecules</i> , 2011 , 44, 1125-1131	5.5	16
302	Symmetric-to-asymmetric transition in triblock copolymer-homopolymer blends. <i>Physical Review Letters</i> , 2004 , 93, 145701	7.4	16
301	Interdiffusion at polyimide interfaces. <i>Polymer</i> , 1992 , 33, 3382-3387	3.9	16
300	Synthesis of fluorinated diphenyl-diketopyrrolopyrrole derivatives as new building blocks for conjugated copolymers. <i>Polymer Chemistry</i> , 2016 , 7, 3311-3324	4.9	16
299	Nanoscopic Templates from Oriented Block Copolymer Films 2000 , 12, 787		16

(2019-2017)

298	Pendant Chain Effect on the Synthesis, Characterization, and StructureProperty Relations of Poly(di-n-alkyl itaconate-co-isoprene) Biobased Elastomers. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 5214-5223	8.3	15
297	Configurationally Constrained Crystallization of Brush Polymers with Poly(ethylene oxide) Side Chains. <i>Macromolecules</i> , 2019 , 52, 592-600	5.5	15
296	Transforming Ionene Polymers into Efficient Cathode Interlayers with Pendent Fullerenes. Angewandte Chemie - International Edition, 2019 , 58, 5677-5681	16.4	15
295	Low-Dimensional Contact Layers for Enhanced Perovskite Photodiodes. <i>Advanced Functional Materials</i> , 2020 , 30, 2001692	15.6	15
294	A novel complementary absorbing donor acceptor pair in block copolymers based on single material organic photovoltaics. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 2993-2998	13	15
293	Rapid, facile synthesis of conjugated polymer zwitterions in ionic liquids. <i>Chemical Science</i> , 2014 , 5, 236	8 ₉ 2,373	15
292	Crystallinity and morphology effects on a solvent-processed solar cell using a triarylamine-substituted squaraine. <i>ACS Applied Materials & Distributed Squaraine</i> , 6, 11376-84	9.5	15
291	Curie transitions for attograms of ferroelectric polymers. <i>Nano Letters</i> , 2013 , 13, 577-80	11.5	15
290	Materials science. Polymers find plenty of wiggle room at the bottom. <i>Science</i> , 2013 , 341, 1351-2	33.3	15
289	The one that got away. <i>Nature</i> , 1997 , 386, 771-772	50.4	15
289	The one that got away. <i>Nature</i> , 1997 , 386, 771-772 Closed-Loop Phase Behavior for Weakly Interacting Block Copolymers. <i>Macromolecules</i> , 2006 , 39, 5926-		15 15
288	Closed-Loop Phase Behavior for Weakly Interacting Block Copolymers. <i>Macromolecules</i> , 2006 , 39, 5926-Small-Angle Neutron Scattering Studies on Thin Films of Isotopic Polystyrene Blends.	-5930	15
288	Closed-Loop Phase Behavior for Weakly Interacting Block Copolymers. <i>Macromolecules</i> , 2006 , 39, 5926-Small-Angle Neutron Scattering Studies on Thin Films of Isotopic Polystyrene Blends. <i>Macromolecules</i> , 1998 , 31, 9247-9252 Synthesis and properties of segmented and block poly(hydroxyether-siloxane) copolymers.	-5 9 30 5-5	15 15
288 287 286	Closed-Loop Phase Behavior for Weakly Interacting Block Copolymers. <i>Macromolecules</i> , 2006 , 39, 5926-Small-Angle Neutron Scattering Studies on Thin Films of Isotopic Polystyrene Blends. <i>Macromolecules</i> , 1998 , 31, 9247-9252 Synthesis and properties of segmented and block poly(hydroxyether-siloxane) copolymers. <i>Macromolecules</i> , 1988 , 21, 1967-1977	5-5 5-5 5-5	15 15 15
288 287 286 285	Closed-Loop Phase Behavior for Weakly Interacting Block Copolymers. <i>Macromolecules</i> , 2006 , 39, 5926-Small-Angle Neutron Scattering Studies on Thin Films of Isotopic Polystyrene Blends. <i>Macromolecules</i> , 1998 , 31, 9247-9252 Synthesis and properties of segmented and block poly(hydroxyether-siloxane) copolymers. <i>Macromolecules</i> , 1988 , 21, 1967-1977 Thermodynamics of phase separation in polymer mixtures. <i>Macromolecules</i> , 1985 , 18, 665-670 Interfacial stabilization for inverted perovskite solar cells with long-term stability. <i>Science Bulletin</i> ,	5-5 5-5 5-5	15 15 15
288 287 286 285 284	Closed-Loop Phase Behavior for Weakly Interacting Block Copolymers. <i>Macromolecules</i> , 2006 , 39, 5926-Small-Angle Neutron Scattering Studies on Thin Films of Isotopic Polystyrene Blends. <i>Macromolecules</i> , 1998 , 31, 9247-9252 Synthesis and properties of segmented and block poly(hydroxyether-siloxane) copolymers. <i>Macromolecules</i> , 1988 , 21, 1967-1977 Thermodynamics of phase separation in polymer mixtures. <i>Macromolecules</i> , 1985 , 18, 665-670 Interfacial stabilization for inverted perovskite solar cells with long-term stability. <i>Science Bulletin</i> , 2021 , 66, 991-1002	5.5 5.5 5.5 10.6	15 15 15 15

280	In Situ Structure Characterization in Slot-Die-Printed All-Polymer Solar Cells with Efficiency Over 9%. <i>Solar Rrl</i> , 2019 , 3, 1900032	7.1	14
279	High-Performance Perovskite Solar Cells with a Non-doped Small Molecule Hole Transporting Layer. <i>ACS Applied Energy Materials</i> , 2019 , 2, 1634-1641	6.1	14
278	Reconfigurable Liquids Stabilized by DNA Surfactants. <i>ACS Applied Materials & DNA Surfactants</i> , 12, 13551-13557	9.5	14
277	Direct 3-D nanoparticle assemblies in thin films via topographically patterned surfaces. <i>Advanced Materials</i> , 2014 , 26, 2777-81	24	14
276	Dual-Tone Patterned Mesoporous Silicate Films Templated From Chemically Amplified Block Copolymers. <i>Advanced Functional Materials</i> , 2009 , 19, 2728-2734	15.6	14
275	Controlling orientation and functionalization in thin films of block copolymers. <i>Macromolecular Rapid Communications</i> , 2009 , 30, 1674-8	4.8	14
274	All-optical technique for measuring thermal properties of materials at static high pressure. <i>Review of Scientific Instruments</i> , 2000 , 71, 3846	1.7	14
273	Small-angle x-ray scattering and pulsed NMR studies of polyurethane interpenetrating polymer networks. <i>Macromolecules</i> , 1993 , 26, 1922-1929	5.5	14
272	Hairpin configurations of triblock copolymers at homopolymer interfaces. <i>Macromolecules</i> , 1992 , 25, 5783-5789	5.5	14
271	The effect of structural relaxation on the Rayleigh-Brillouin spectra of liquids consisting of chain molecules. <i>Polymer</i> , 1986 , 27, 261-264	3.9	14
270	Rheooptical investigation of the transition behavior of polyphosphazenes. <i>Macromolecules</i> , 1984 , 17, 1795-1799	5.5	14
269	Ternary non-fullerene polymer solar cells with a high crystallinity n-type organic semiconductor as the second acceptor. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 24814-24822	13	14
268	Imidazole-Functionalized Imide Interlayers for High Performance Organic Solar Cells. <i>ACS Energy Letters</i> , 2021 , 6, 3228-3235	20.1	14
267	Applying the heteroatom effect of chalcogen for high-performance small-molecule solar cells. Journal of Materials Chemistry A, 2017 , 5, 3425-3433	13	13
266	Macroscopically ordered hexagonal arrays by directed self-assembly of block copolymers with minimal topographic patterns. <i>Nanoscale</i> , 2017 , 9, 14888-14896	7.7	13
265	Two-Step Chemical Transformation of Polystyrene-block-poly(solketal acrylate) Copolymers for Increasing [[Macromolecules, 2019, 52, 6458-6466]	5.5	13
264	Vapor-induced motion of two pure liquid droplets. <i>Soft Matter</i> , 2019 , 15, 2135-2139	3.6	13
263	Hanging droplets from liquid surfaces. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 8360-8365	11.5	13

(2006-2012)

262	High density and large area arrays of silicon oxide pillars with tunable domain size for mask etch applications. <i>Advanced Materials</i> , 2012 , 24, 5505-11	24	13
261	Arrays of ultrasmall metal rings. <i>Nanotechnology</i> , 2008 , 19, 245305	3.4	13
260	Surface patterning. <i>Methods in Cell Biology</i> , 2007 , 83, 67-87	1.8	13
259	Aspects of electrohydrodynamic instabilities at polymer interfaces. Fibers and Polymers, 2003, 4, 1-7	2	13
258	A Monte Carlo Simulation of Asymmetric Random Copolymers at an Immiscible Interface. <i>Macromolecules</i> , 1996 , 29, 4120-4124	5.5	13
257	Scattering studies from polymer blends. <i>Journal of Macromolecular Science - Physics</i> , 1980 , 17, 617-624	1.4	13
256	Hysteresis-Free Nanoparticle-Reinforced Hydrogels. Advanced Materials, 2021, e2108243	24	13
255	Direct observation of nanoparticle-surfactant assembly and jamming at the water-oil interface. <i>Science Advances</i> , 2020 , 6,	14.3	13
254	Interfacial rheology of polymer/carbon nanotube films co-assembled at the oil/water interface. <i>Soft Matter</i> , 2016 , 12, 8701-8709	3.6	13
253	Improved photocurrent and efficiency of non-fullerene organic solar cells despite higher charge recombination. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 957-962	13	13
252	Morphological Evolution of Poly(solketal methacrylate)-block-polystyrene Copolymers in Thin Films. <i>Macromolecules</i> , 2019 , 52, 3592-3600	5.5	12
251	Understanding the Morphology of High-Performance Solar Cells Based on a Low-Cost Polymer Donor. <i>ACS Applied Materials & Interfaces</i> , 2020 , 12, 9537-9544	9.5	12
250	Soft Polymer Janus Nanoparticles at Liquid-Liquid Interfaces. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 12751-12755	16.4	12
249	Bulk and Surface Morphologies of ABC Miktoarm Star Terpolymers Composed of PDMS, PI, and PMMA Arms. <i>Macromolecules</i> , 2018 , 51, 1041-1051	5.5	12
248	Directed Self-Assembly of Asymmetric Block Copolymers in Thin Films Driven by Uniaxially Aligned Topographic Patterns. <i>ACS Nano</i> , 2018 , 12, 1642-1649	16.7	12
247	Temperature-triggered micellization of block copolymers on an ionic liquid surface. <i>Langmuir</i> , 2011 , 27, 12443-50	4	12
246	A high pressure optical cell utilizing single crystal cubic zirconia anvil windows. <i>Review of Scientific Instruments</i> , 1997 , 68, 1835-1840	1.7	12
245	Influence of Carbon Dioxide Swelling on the Closed-Loop Phase Behavior of Block Copolymers. Macromolecules, 2006 , 39, 6580-6583	5.5	12

244	Polyimide foams prepared from homopolymer/copolymer mixtures. <i>Polymer</i> , 1995 , 36, 4529-4534	3.9	12
243	Reactions of Benzotriazolo[2,1-a]benzotriazole Derivatives. 2. An Unusual Hydrolysis-Oxidation Reaction. <i>Journal of Organic Chemistry</i> , 1996 , 61, 1898-1900	4.2	12
242	Neutron reflectivity measurements of homopolymer interfaces reinforced with random copolymers. <i>Physica B: Condensed Matter</i> , 1996 , 221, 306-308	2.8	12
241	Imide-aryl ether phenylquinoxaline random copolymers. <i>Polymer</i> , 1991 , 32, 950-958	3.9	12
240	Ion beam analysis of the imidization kinetics of polyamic ethyl ester. <i>Polymer</i> , 1990 , 31, 520-523	3.9	12
239	An absolute intensity standard for small-angle X-ray scattering measured with position-sensitive detectors. <i>Journal of Applied Crystallography</i> , 1983 , 16, 473-478	3.8	12
238	Unexpected Elasticity in Assemblies of Glassy Supra-Nanoparticle Clusters. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 4894-4900	16.4	12
237	Efficient Electron Mobility in an All-Acceptor Napthalenediimide-Bithiazole Polymer Semiconductor with Large Backbone Torsion. <i>ACS Applied Materials & Discrete Semiconductor</i> 2018, 10, 40070-40077	9.5	12
236	Fabrication of compact and stable perovskite films with optimized precursor composition in the fast-growing procedure. <i>Science China Materials</i> , 2017 , 60, 608-616	7.1	11
235	Mechanical Properties of Solidifying Assemblies of Nanoparticle Surfactants at the Oil-Water Interface. <i>Langmuir</i> , 2019 , 35, 13340-13350	4	11
234	Epoxy-polyhedral oligomeric silsesquioxanes (POSS) nanocomposite vitrimers with high strength, toughness, and efficient relaxation. <i>Giant</i> , 2020 , 4, 100035	5.6	11
233	Orthogonally Aligned Block Copolymer Line Patterns on Minimal Topographic Patterns. <i>ACS Applied Materials & Discours (Materials & Discours)</i> 10, 8324-8332	9.5	11
232	Alkylthio substituted thiophene modified benzodithiophene-based highly efficient photovoltaic small molecules. <i>Organic Electronics</i> , 2016 , 28, 263-268	3.5	11
231	Formation of H* Phase in Chiral Block Copolymers: Effects of Solvents and Solution-Cast Conditions. <i>Macromolecules</i> , 2013 , 46, 455-462	5.5	11
230	Morphologies of poly(cyclohexadiene) diblock copolymers: Effect of conformational asymmetry. <i>Polymer</i> , 2012 , 53, 5155-5162	3.9	11
229	Temperature tunable micellization of polystyrene-block-poly(2-vinylpyridine) at Si-ionic liquid interface. <i>Langmuir</i> , 2010 , 26, 17126-32	4	11
228	Preparation of 1 inch gold nanowires from PS-b-P4VP block copolymers. <i>Journal of Materials Chemistry</i> , 2010 , 20, 1198-1202		11
227	A Study on the Kinetics of a Disorder-to-Order Transition Induced by Alkyne/Azide Click Reaction. <i>Macromolecules</i> , 2011 , 44, 4269-4275	5.5	11

226	Solvent mediated assembly of nanoparticles confined in mesoporous alumina. <i>Physical Review B</i> , 2006 , 73,	3.3	11
225	Characterizing Polymer Surfaces and Interfaces. MRS Bulletin, 1996 , 21, 49-53	3.2	11
224	Swelling effects in semidilute block copolymer solutions. <i>Journal of Chemical Physics</i> , 1994 , 101, 5213-5	231.8	11
223	High-pressure matrix isolation of heterogeneous condensed phase chemical reactions under extreme conditions. <i>Chemical Physics Letters</i> , 1995 , 234, 195-202	2.5	11
222	Thermal Decomposition of Energetic Materials. 40. Fast thermolysis patterns of Alkanediammonium dinitrate salts. <i>Propellants, Explosives, Pyrotechnics</i> , 1990 , 15, 77-80	1.7	11
221	Imide-aryl ether phenylquinoxaline block copolymers. <i>Macromolecules</i> , 1991 , 24, 4559-4566	5.5	11
220	Chemical Polishing of Perovskite Surface Enhances Photovoltaic Performances <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	11
219	Visualizing Interfacial Jamming Using an Aggregation-Induced-Emission Molecular Reporter. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 8694-8699	16.4	11
218	Contrasting Chemistry of Block Copolymer Films Controls the Dynamics of Protein Self-Assembly at the Nanoscale. <i>ACS Nano</i> , 2019 , 13, 4018-4027	16.7	10
217	Chemical Stabilization of Perovskite Solar Cells with Functional Fulleropyrrolidines. <i>ACS Central Science</i> , 2018 , 4, 216-222	16.8	10
216	Effects of delayed particle detachment on injectivity decline due to fines migration. <i>Journal of Hydrology</i> , 2018 , 564, 1099-1109	6	10
215	Formation of H* Phase in Chiral Block Copolymers: Morphology Evolution As Revealed by Time-Resolved X-ray Scattering. <i>Macromolecules</i> , 2013 , 46, 474-483	5.5	10
214	Field Emission Tip Array Fabrication Utilizing Geometrical Hindrance in the Oxidation of Si. <i>IEEE Nanotechnology Magazine</i> , 2012 , 11, 999-1003	2.6	10
213	Synthesis of Photoisomerizable Block Copolymers by Atom Transfer Radical Polymerization. <i>Macromolecular Chemistry and Physics</i> , 2009 , 210, 1484-1492	2.6	10
212	Transmission electron microscopy of 3F/PMDA-polypropylene oxide triblock copolymer based nanofoams. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1997 , 35, 1067-1076	2.6	10
211	Time resolved optical spectroscopy to examine chemical decomposition of energetic materials under static high pressure and pulsed heating conditions. <i>Chemical Physics Letters</i> , 1997 , 267, 351-358	2.5	10
210	The effect of molecular architecture on the grain growth kinetics of AnBn star block copolymers. <i>Faraday Discussions</i> , 2005 , 128, 103-12; Discussion 211-29	3.6	10
209	Non-uniform composition profiles in thin film polymeric nanofoams. <i>Polymer</i> , 1999 , 40, 2547-2553	3.9	10

208 Topology of forward scattering of neutrons from imperfect multilayers. *Physical Review B*, **1994**, 50, 956§:956810

207	A method to confine thin solid organic films between flat rigid walls. <i>Thin Solid Films</i> , 1994 , 252, 75-77	2.2	10
206	Phase-separation kinetics of mixtures of linear and star-shaped polymers. <i>Macromolecules</i> , 1990 , 23, 4452-4455	5.5	10
205	Small-angle x-ray scattering studies of polymer colloids: nonaqueous dispersions of poly(isobutylene)-stabilized poly(methyl methacrylate) particles. <i>Macromolecules</i> , 1987 , 20, 899-901	5.5	10
204	Polymer dynamics. Chance encounters. <i>Science</i> , 2001 , 293, 446-7	33.3	10
203	Applying Thienyl Side Chains and Different Ebridge to Aromatic Side-Chain Substituted Indacenodithiophene-Based Small Molecule Donors for High-Performance Organic Solar Cells. <i>ACS Applied Materials & Donors and Solar Cells.</i> 19998-20009	9.5	9
202	One-Dimensional Anomalous Diffusion of Gold Nanoparticles in a Polymer Melt. <i>Physical Review Letters</i> , 2019 , 122, 107802	7·4	9
201	Ternary polymer solar cells based-on two polymer donors with similar HOMO levels and an organic acceptor with absorption extending to 850 nm. <i>Organic Electronics</i> , 2018 , 62, 89-94	3.5	9
200	Improving the efficiencies of small molecule solar cells by solvent vapor annealing to enhance J-aggregation. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 9618-9624	7.1	9
199	Stabilizing Liquids Using Interfacial Supramolecular Polymerization. <i>Angewandte Chemie</i> , 2019 , 131, 127	2 4 <u>6</u> 512	.2 9 4
198	Solvent-Assisted Orientation of Poly(3-hexylthiophene)-Functionalized CdSe Nanorods Under an Electric Field. <i>Macromolecular Chemistry and Physics</i> , 2014 , 215, 1647-1653	2.6	9
197	Finely Tuned Polymer Interlayers Enhance Solar Cell Efficiency. <i>Angewandte Chemie</i> , 2015 , 127, 11647-	136651	9
196	Enhanced crystalline morphology of a ladder-type polymer bulk-heterojunction device by blade-coating. <i>Nanoscale</i> , 2015 , 7, 10936-9	7.7	9
195	Multiple-level threshold switching behavior of In2Se3 confined in a nanostructured silicon substrate. <i>Applied Physics Letters</i> , 2010 , 97, 092114	3.4	9
194	Fabrication of Nanoporous Block Copolymer Thin Films through Mediation of Interfacial Interactions with UV Cross-Linked Polystyrene. <i>Macromolecules</i> , 2009 , 42, 7213-7216	5.5	9
193	Forward recoil spectrometry study of the diffusion of PMDA/ODA-based poly(amic ethyl esters). <i>Polymer</i> , 1997 , 38, 5073-5078	3.9	9
192	Imidization and interdiffusion of poly(amic ethyl ester) precursors of PMDA/3,4?-ODA. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1998 , 36, 2247-2258	2.6	9
191	Atomic force microscopy study of rubbed polyimide films. <i>Journal of Applied Polymer Science</i> , 2001 , 80, 1470-1477	2.9	9

(2020-1990)

190	Thermal Decomposition of energetic materials. 39. Fast thermolysis patterns of poly(methyl), poly(ethyl), and primary alkylammonium mononitrate salts. <i>Propellants, Explosives, Pyrotechnics</i> , 1990 , 15, 66-72	1.7	9
189	Gated Molecular Diffusion at Liquid-Liquid Interfaces. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 17394-17397	16.4	9
188	Assessing Pair Interaction Potentials of Nanoparticles on Liquid Interfaces. ACS Nano, 2019, 13, 3075-30)8 Ø.7	9
187	Overcoming the morphological and efficiency limit in all-polymer solar cells by designing conjugated random copolymers containing a naphtho[1,2-c:5,6-c?]bis([1,2,5]thiadiazole)] moiety. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 23295-23300	13	9
186	Studies on the 3-Lamellar Morphology of Miktoarm Terpolymers. <i>Macromolecules</i> , 2018 , 51, 7491-7499	5.5	9
185	Self-Assembly of MXene-Surfactants at Liquidliquid Interfaces: From Structured Liquids to 3D Aerogels. <i>Angewandte Chemie</i> , 2019 , 131, 18339-18344	3.6	8
184	Electronic and Morphological Studies of Conjugated Polymers Incorporating a Disk-Shaped Polycyclic Aromatic Hydrocarbon Unit. <i>ACS Applied Materials & Disk-Shaped Materials &</i>	9.5	8
183	Manipulating Film Morphology of All-Polymer Solar Cells by Incorporating Polymer Compatibilizer. <i>Solar Rrl</i> , 2020 , 4, 2000148	7.1	8
182	UV-enhanced Ordering in Azobenzene-Containing Polystyrene-block-Poly(n-Butyl Methacrylate) Copolymer Blends. <i>Macromolecules</i> , 2011 , 44, 278-285	5.5	8
181	Microstructure analysis of epitaxially grown self-assembled Ge islands on nanometer-scale patterned SiO2Bi substrates by high-resolution transmission electron microscopy. <i>Journal of Applied Physics</i> , 2007 , 102, 104306	2.5	8
180	Resistance heating of the gasket in a gem-anvil high pressure cell. <i>Review of Scientific Instruments</i> , 1999 , 70, 4316-4323	1.7	8
179	Thermal Decomposition of Energetic Materials. 42. Fast thermal decomposition of five N-Methyl substituted ethanediammonium dinitrate salts. <i>Propellants, Explosives, Pyrotechnics</i> , 1990 , 15, 123-126	1.7	8
178	Enhanced Charge Carrier Transport in 2D Perovskites by Incorporating Single-Walled Carbon Nanotubes or Graphene. <i>ACS Energy Letters</i> , 2020 , 5, 109-116	20.1	8
177	Biobased Dynamic Polymer Networks with Rapid Stress Relaxation. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 11091-11099	8.3	8
176	In situ grazing incidence small-angle X-ray scattering study of solvent vapor annealing in lamellae-forming block copolymer thin films: Trade-off of defects in deswelling. <i>Journal of Polymer Science, Part B: Polymer Physics,</i> 2017 , 55, 980-989	2.6	7
175	Interfacial Activity of Amine-Functionalized Polyhedral Oligomeric Silsesquioxanes (POSS): A Simple Strategy To Structure Liquids. <i>Angewandte Chemie</i> , 2019 , 131, 10248-10253	3.6	7
174	Rapid Multilevel Compartmentalization of Stable All-Aqueous Blastosomes by Interfacial Aqueous-Phase Separation. <i>ACS Nano</i> , 2020 , 14, 11215-11224	16.7	7
173	Comparison of Fused-Ring Electron Acceptors with One- and Multidimensional Conformations. <i>ACS Applied Materials & Description (Materials & Description)</i> 12, 23976-23983	9.5	7

172	Triggered In situ Disruption and Inversion of Nanoparticle-Stabilized Droplets. <i>Angewandte Chemie</i> , 2013 , 125, 6752-6755	3.6	7
171	Thin Films of Semifluorinated Block Copolymers Prepared by ATRP. <i>Macromolecular Chemistry and Physics</i> , 2011 , 212, 2399-2405	2.6	7
170	Pressure/Temperature and Reaction Phase Diagram for Dinitro Azetidinium Dinitramide. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 3566-3570	3.4	7
169	Grain Growth Kinetics of AnBnStar Block Copolymers in Supercritical Carbon Dioxide. Macromolecules, 2005, 38, 4719-4728	5.5	7
168	Thick film positive photoresist: Development and resolution enhancement technique. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 1995 , 13, 3000		7
167	Thin films of diblock copolymers: windows into bulk and reduced dimensional phenomena. <i>Physica A: Statistical Mechanics and Its Applications</i> , 1993 , 200, 713-721	3.3	7
166	On the microphase separation kinetics of symmetric diblock copolymers. <i>Colloid and Polymer Science</i> , 1994 , 272, 1373-1379	2.4	7
165	Preparation and characterization of thin polymer bilayer films by neutron reflection. <i>Thin Solid Films</i> , 1991 , 202, 345-350	2.2	7
164	Thermal decomposition of energetic materials. 44. Rapid thermal decomposition of the propyl-1,3-diammonium salts of NO B and ClO A, and the crystal structure of the ClO A salt. <i>Journal of Crystallographic and Spectroscopic Research</i> , 1991 , 21, 167-171		7
163	Nanoparticle/Polyelectrolyte Complexes for Biomimetic Constructs. Advanced Functional Materials, 210	08 89 .6	7
162	Evolution of Ordering in Thin Films of Symmetric Diblock Copolymers 1994 , 217-223		7
161	Molecular Brush Surfactants: Versatile Emulsifiers for Stabilizing and Structuring Liquids. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 19626-19630	16.4	7
160	Stresses in thin sheets at fluid interfaces. <i>Nature Materials</i> , 2020 , 19, 690-693	27	7
159	Bifunctional Bis-benzophenone as A Solid Additive for Non-Fullerene Solar Cells. <i>Advanced Functional Materials</i> , 2021 , 31, 2008699	15.6	7
158	Surfactant-Induced Interfacial Aggregation of Porphyrins for Structuring Color-Tunable Liquids. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 2871-2876	16.4	7
157	Manipulating the Crystallization Kinetics by Additive Engineering toward High-Efficient Photovoltaic Performance. <i>Advanced Functional Materials</i> , 2021 , 31, 2009103	15.6	7
156	Molecular Brush Surfactants: Versatile Emulsifiers for Stabilizing and Structuring Liquids. <i>Angewandte Chemie</i> , 2021 , 133, 19778-19782	3.6	7
155	Understanding Hole Extraction of Inverted Perovskite Solar Cells. <i>ACS Applied Materials & Amp;</i> Interfaces, 2020 , 12, 56068-56075	9.5	6

154	Perspective: Ferromagnetic Liquids. <i>Materials</i> , 2020 , 13,	3.5	6
153	Probing the structural evolution in deformed isoprene rubber by in situ synchrotron X-ray diffraction and atomic force microscopy. <i>Polymer</i> , 2019 , 185, 121926	3.9	6
152	Interpenetrating morphology based on highly crystalline small molecule and PCBM blends. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 9368-9374	7.1	6
151	Lattice deformation and domain distortion in the self-assembly of block copolymer thin films on chemical patterns. <i>Small</i> , 2013 , 9, 779-84	11	6
150	Intersubband absorption in p-type Si1\(\text{IG} Gex quantum dots on pre-patterned Si substrates made by a diblock copolymer process. <i>Journal of Crystal Growth</i> , 2007 , 301-302, 833-836	1.6	6
149	Photophysical Properties of Perdeuterated trans-Stilbene Grafted Polystyrene. <i>Macromolecules</i> , 2006 , 39, 6776-6780	5.5	6
148	Growth behavior and microstructure of Ge self-assembled islands on nanometer-scale patterned Si substrate. <i>Journal of Crystal Growth</i> , 2006 , 290, 369-373	1.6	6
147	Fatigue resistance of silane-bonded epoxy/glass interfaces using neat and rubber-toughened epoxies. <i>Journal of Materials Science</i> , 2002 , 37, 3269-3276	4.3	6
146	Surface orientation of liquid crystalline poly(alkylsilanes). Acta Polymerica, 1995, 46, 60-63		6
145	Soft x-ray diffraction studies on polymeric Langmuir-Blodgett films. <i>Thin Solid Films</i> , 1991 , 199, 161-17	2 2.2	6
145	Thin film order of symmetric diblock copolymers. <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1992 , 62, 157-165	2 2.2	6
,,	Thin film order of symmetric diblock copolymers. Makromolekulare Chemie Macromolecular	3.2	
144	Thin film order of symmetric diblock copolymers. <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1992 , 62, 157-165		6
144	Thin film order of symmetric diblock copolymers. <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1992 , 62, 157-165 Behavior of Block Copolymers in Thin Films. <i>MRS Bulletin</i> , 1989 , 14, 33-37 Thermal Decomposition of Energetic Materials 41. Fast thermolysis of cyclic and acyclic ethanediammonium dinitrate salts and their oxonium nitrate double salts, and the crystal structure	3.2	6
144 143	Thin film order of symmetric diblock copolymers. <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1992 , 62, 157-165 Behavior of Block Copolymers in Thin Films. <i>MRS Bulletin</i> , 1989 , 14, 33-37 Thermal Decomposition of Energetic Materials 41. Fast thermolysis of cyclic and acyclic ethanediammonium dinitrate salts and their oxonium nitrate double salts, and the crystal structure of piperazinium dinitrate. <i>Propellants, Explosives, Pyrotechnics</i> , 1990 , 15, 81-86 Self-Assembly Behavior of PS-b-P2VP Block Copolymers and Carbon Quantum Dots at Water/Oil	3.2 1.7 5.5	6 6
144 143 142	Thin film order of symmetric diblock copolymers. <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1992 , 62, 157-165 Behavior of Block Copolymers in Thin Films. <i>MRS Bulletin</i> , 1989 , 14, 33-37 Thermal Decomposition of Energetic Materials 41. Fast thermolysis of cyclic and acyclic ethanediammonium dinitrate salts and their oxonium nitrate double salts, and the crystal structure of piperazinium dinitrate. <i>Propellants, Explosives, Pyrotechnics</i> , 1990 , 15, 81-86 Self-Assembly Behavior of PS-b-P2VP Block Copolymers and Carbon Quantum Dots at Water/Oil Interfaces. <i>Macromolecules</i> , 2020 , 53, 10981-10987 Perovskite Solar Cells: High-Performance Inverted Planar Heterojunction Perovskite Solar Cells Based on Lead Acetate Precursor with Efficiency Exceeding 18% (Adv. Funct. Mater. 20/2016).	3.2 1.7 5.5	6666
144 143 142 141	Thin film order of symmetric diblock copolymers. <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1992 , 62, 157-165 Behavior of Block Copolymers in Thin Films. <i>MRS Bulletin</i> , 1989 , 14, 33-37 Thermal Decomposition of Energetic Materials 41. Fast thermolysis of cyclic and acyclic ethanediammonium dinitrate salts and their oxonium nitrate double salts, and the crystal structure of piperazinium dinitrate. <i>Propellants, Explosives, Pyrotechnics</i> , 1990 , 15, 81-86 Self-Assembly Behavior of PS-b-P2VP Block Copolymers and Carbon Quantum Dots at Water/Oil Interfaces. <i>Macromolecules</i> , 2020 , 53, 10981-10987 Perovskite Solar Cells: High-Performance Inverted Planar Heterojunction Perovskite Solar Cells Based on Lead Acetate Precursor with Efficiency Exceeding 18% (Adv. Funct. Mater. 20/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 3551-3551 Interfacial Broadening Kinetics between a Network and a Linear Polymer and Their Composites	3.2 1.7 5.5 15.6	66666

136	Robust polythiophene nanowires cross-linked with functional fullerenes. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 9674-9682	7.1	5
135	Antibody affinity purification using metallic nickel particles. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2012 , 895-896, 89-93	3.2	5
134	Tailoring block copolymer morphologies via alkyne/azide cycloaddition. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2012 , 50, 55-64	2.6	5
133	Study of growth behaviour and microstructure of epitaxially grown self-assembled Ge quantum dots on nanometer-scale patterned SiO2/Si(001) substrates. <i>Physica Status Solidi (B): Basic Research</i> , 2009, 246, 721-724	1.3	5
132	Globular Organization of Multifunctional Linear Homopolymer Using Trifunctional Molecules. <i>Macromolecules</i> , 2007 , 40, 4267-4275	5.5	5
131	Controlling Subcritical Crack Growth at Epoxy/Glass Interfaces. <i>Journal of Electronic Packaging, Transactions of the ASME</i> , 2002 , 124, 328-333	2	5
130	Terabit Density Cobalt Nanowire Arrays With Tunable Magnetic Properties. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 721, 1		5
129	Bassereau et al. reply. <i>Physical Review Letters</i> , 1995 , 74, 4961	7.4	5
128	Solvent and Curing Effects on Diffusion at Polyimide Interfaces. <i>Materials Research Society Symposia Proceedings</i> , 1989 , 153, 239		5
127	Responsive Interfacial Assemblies Based on Charge-Transfer Interactions. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 26363-26367	16.4	5
126	Fullerene-Based Interlayers for Breaking Energy Barriers in Organic Solar Cells. <i>ChemPlusChem</i> , 2020 , 85, 751-759	2.8	5
125	Guided Assembly of Block Copolymers in Three-Dimensional Woodpile Scaffolds. <i>ACS Applied Materials & </i>	9.5	5
124	Naphthalene-Diimide-Based Ionenes as Universal Interlayers for Efficient Organic Solar Cells. <i>Angewandte Chemie</i> , 2020 , 132, 18288-18292	3.6	4
123	Combining Fullerenes and Zwitterions in Non-Conjugated Polymer Interlayers to Raise Solar Cell Efficiency. <i>Angewandte Chemie</i> , 2018 , 130, 9823-9826	3.6	4
122	Using a Graphene-Polyelectrolyte Complex Reducing Agent To Promote Cracking in Single-Crystalline Gold Nanoplates. <i>ACS Applied Materials & Single-Crystalline Gold Nanoplates</i> . <i>ACS Applied Materials & Single-Crystalline Gold Nanoplates</i> .	9.5	4
121	Synthesis and morphology investigations of a novel alkyne-functionalized diblock copolymer. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2013 , 51, 78-85	2.6	4
120	Osmotically Driven Formation of Double Emulsions Stabilized by Amphiphilic Block Copolymers. <i>Angewandte Chemie</i> , 2014 , 126, 8379-8384	3.6	4
119	Fabrication of Co-continuous Nanostructured and Porous Polymer Membranes: Spinodal Decomposition of Homopolymer and Random Copolymer Blends. <i>Angewandte Chemie</i> , 2012 , 124, 4165	-41 ⁶ 70	4

118	NANOSCALE PATTERNING IN BLOCK COPOLYMER THIN FILMS. <i>Nano</i> , 2010 , 05, 1-11	1.1	4
117	The effects of varied imidization conditions on rubbed polyimide film surface morphology. <i>Journal of Applied Polymer Science</i> , 2004 , 93, 1192-1197	2.9	4
116	Fatigue and Durability of Silane-Bonded Epoxy/Glass Interfaces 2001 , 76, 335-351		4
115	Thermoplastic toughened styrenic thermosets: synthesis, properties and consequences of radical based cure chemistry. <i>Polymer</i> , 1994 , 35, 291-299	3.9	4
114	Thermal Decomposition of Energetic Materials. 43. Fast thermolysis of cubylammonium nitrate and cubane-1,4-diammonium dinitrate. <i>Propellants, Explosives, Pyrotechnics</i> , 1991 , 16, 27-30	1.7	4
113	A calibration procedure for a low-angle light-scattering apparatus. <i>Journal of Polymer Science, Polymer Physics Edition</i> , 1978 , 16, 1879-1882		4
112	Responsive Interfacial Assemblies Based on Charge-Transfer Interactions. <i>Angewandte Chemie</i> , 2021 , 133, 26567	3.6	4
111	Layer-by-Layer Engineered All-Liquid Microfluidic Chips for Enzyme Immobilization. <i>Advanced Materials</i> , 2021 , e2105386	24	4
110	Visualizing Assembly Dynamics of All-Liquid 3D Architectures Small, 2022, 18, e2105017	11	4
109	Spontaneous emulsification induced by nanoparticle surfactants. <i>Journal of Chemical Physics</i> , 2020 , 153, 224705	3.9	4
108	Visualizing Interfacial Jamming Using an Aggregation-Induced-Emission Molecular Reporter. <i>Angewandte Chemie</i> , 2021 , 133, 8776-8781	3.6	4
107	Host G uest Molecular Recognition at Liquid D iquid Interfaces. <i>Engineering</i> , 2021 , 7, 603-614	9.7	4
106	Gated Molecular Diffusion at Liquidliquid Interfaces. <i>Angewandte Chemie</i> , 2021 , 133, 17534-17537	3.6	4
105	Solvent-Induced Assembly of Microbial Protein Nanowires into Superstructured Bundles. <i>Biomacromolecules</i> , 2021 , 22, 1305-1311	6.9	4
104	Reconfigurable structured liquids 2022 , 1, 100013		4
103	Surface and grain boundary carbon heterogeneity in CH3NH3PbI3 perovskites and its impact on optoelectronic properties. <i>Applied Physics Reviews</i> , 2020 , 7, 041412	17.3	3
102	Soft Polymer Janus Nanoparticles at Liquid Liquid Interfaces. <i>Angewandte Chemie</i> , 2020 , 132, 12851-12	855	3
101	Evidence of tunable macroscopic polarization in perovskite films using photo-Kelvin Probe Force Microscopy. <i>Materials Letters</i> , 2018 , 217, 308-311	3.3	3

100	Organic Solar Cells: Multi-Length Scaled Silver Nanowire Grid for Application in Efficient Organic Solar Cells (Adv. Funct. Mater. 27/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 4806-4806	15.6	3
99	Nanoparticle-Stabilized Double Emulsions and Compressed Droplets. <i>Angewandte Chemie</i> , 2012 , 124, 149-153	3.6	3
98	Selective Laser Ablation in Resists and Block Copolymers for High Resolution Lithographic Patterning. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2015 , 28, 663-	668	3
97	Disorder-to-order transitions induced by alkyne/azide click chemistry in diblock copolymer thin films. <i>Soft Matter</i> , 2012 , 8, 5273	3.6	3
96	Polymers: performing under pressure. <i>Nature Nanotechnology</i> , 2009 , 4, 703-4	28.7	3
95	BLOCK COPOLYMER THIN FILMS. Series in Sof Condensed Matter, 2008 , 1-25		3
94	Selective Solvent-Induced Reversible Surface Reconstruction of Diblock Copolymer Thin Films. <i>ACS Symposium Series</i> , 2005 , 158-170	0.4	3
93	Development of Poly(imide-b-amic acid) Multiblock Copolymer Thin Film. <i>Macromolecules</i> , 2003 , 36, 497	′ 6.4 98	23
92	Underwater shock measurements using a ruby pressure gauge. <i>Applied Physics Letters</i> , 2000 , 77, 684-68	63.4	3
91	Concentration fluctuations of polystyrene-polybutadiene blends. <i>Physical Review B</i> , 1987 , 35, 8566-857	13.3	3
90	Interfacial Assembly of Graphene Oxide: From Super Elastic Interfaces to Liquid-in-Liquid Printing. <i>Advanced Materials Interfaces</i> , 2022 , 9, 2101659	4.6	3
89	A randomized trial of a mercaptopurine (6MP) adherence-enhancing intervention in children with acute lymphoblastic leukemia (ALL): A COG ACCL1033 study <i>Journal of Clinical Oncology</i> , 2019 , 37, 100	07- 10	o ð 7
88	Conductive Ionenes Promote Interfacial Self-Doping for Efficient Organic Solar Cells. <i>ACS Applied Materials & Acs Applied & Acs Applied</i>	9.5	3
87	The Static Structure and Dynamics of Cadmium Sulfide Nanoparticles within Poly(styrene-block-isoprene) Diblock Copolymer Melts. <i>Macromolecular Chemistry and Physics</i> , 2016 , 217, 591-598	2.6	3
86	Unexpected Elasticity in Assemblies of Glassy Supra-Nanoparticle Clusters. <i>Angewandte Chemie</i> , 2021 , 133, 4944-4950	3.6	3
85	Polymers with advanced architectures as emulsifiers for multi-functional emulsions. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 1205-1220	7.8	3
84	Surfactant-Induced Interfacial Aggregation of Porphyrins for Structuring Color-Tunable Liquids. <i>Angewandte Chemie</i> , 2021 , 133, 2907-2912	3.6	3
83	On the morphological behavior of ABC miktoarm stars containing poly(cis 1,4-isoprene), poly(styrene), and poly(2-vinylpyridine). <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2018 , 56, 1491-1504	2.6	3

82	Highly oriented and ordered microstructures in block copolymer films. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2018 , 56, 1369-1375	2.6	3
81	Optimizing Vertical Crystallization for Efficient Perovskite Solar Cells by Buried Composite Layers. <i>Solar Rrl</i> , 2021 , 5, 2100457	7.1	3
80	Hall of Fame Article: Building Reconfigurable Devices Using Complex Liquid E luid Interfaces (Adv. Mater. 18/2019). <i>Advanced Materials</i> , 2019 , 31, 1970128	24	2
79	Transforming Ionene Polymers into Efficient Cathode Interlayers with Pendent Fullerenes. <i>Angewandte Chemie</i> , 2019 , 131, 5733-5737	3.6	2
78	Solid particles adsorbed on capillary-bridge-shaped fluid polystyrene surfaces. <i>Langmuir</i> , 2015 , 31, 5299	- ≱ 05	2
77	MRS Communications, Polymers and Soft Matter special issue, Part A The functionality of polymers: fundamentals to technology. <i>MRS Communications</i> , 2015 , 5, 95-95	2.7	2
76	Ionic Liquids as Floatation Media for Cryo-Ultramicrotomy of Soft Polymeric Materials. <i>Microscopy and Microanalysis</i> , 2013 , 19, 1554-1557	0.5	2
75	Nanopatterning and Functionality of Block-Copolymer Thin Films 2011 , 401-474		2
74	Anomalous suppression of the transition temperature of superconducting nanostructured honeycomb films: Electrical transport measurements and Maekawa-Fukuyama model. <i>Physical Review B</i> , 2008 , 77,	3.3	2
73	Fatigue of Silane Bonded Epoxy/Glass Interfaces. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 563, 291		2
72	Polyimide Nanofoams Prepared from Styrenic Block Copolymers. ACS Symposium Series, 1995, 425-438	0.4	2
71	On the birefringence of multilayered symmetric diblock copolymer films. <i>Macromolecules</i> , 1993 , 26, 543	1 6. 544	02
70	Russell et al. reply. <i>Physical Review Letters</i> , 1993 , 70, 1352	7.4	2
69	The ordering of thin films of symmetric diblock copolymers 1993 , 97-100		2
68	Photon tunnelling microscopy of polyethylene single crystals. <i>Polymer</i> , 1994 , 35, 1137-1141	3.9	2
67	Time Resolved Optical Spectroscopy to Examine Chemical Decomposition of Energetic Materials Under Static High Pressure and Pulsed Heating Conditions. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 418, 385		2
66	Reflectivity of Soft X-Rays by Polymer Mixtures. <i>Materials Research Society Symposia Proceedings</i> , 1988 , 143, 265		2
65	Standard potential of the mercury-mercurous benzoate electrode at 20.degree.C. <i>Journal of Chemical & Chemical</i>	2.8	2

64	Phase Transitions in Polymer Blends and Block Copolymers Induced by Selective Dilation with Supercritical CO2 2000 , 277-289		2
63	Size-Dependent Interfacial Assembly of Graphene Oxide at Water-Oil Interfaces. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 4835-4842	3.4	2
62	Stabilizing Aqueous Three-Dimensional Printed Constructs Using Chitosan-Cellulose Nanocrystal Assemblies. <i>ACS Applied Materials & Acs Applied & A</i>	9.5	2
61	Nanomechanical and Chemical Mapping of the Structure and Interfacial Properties in Immiscible Ternary Polymer Systems. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2021 , 39, 651	3.5	2
60	Bimolecular crystal instability and morphology of bulk heterojunction blends in organic and perovskite solar cells. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 11695-11703	7.1	1
59	Wetting, meniscus structure, and capillary interactions of microspheres bound to a cylindrical liquid interface. <i>Soft Matter</i> , 2018 , 14, 2131-2141	3.6	1
58	Cellulose Nanocrystals: Liquid Letters (Adv. Mater. 9/2018). Advanced Materials, 2018, 30, 1870057	24	1
57	Tuning microdomain spacing with light using ortho-nitrobenzyl-linked triblock copolymers. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2018 , 56, 355-361	2.6	1
56	Deviations from bulk morphologies in thin films of block copolymer/additive binary blends. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2013 , 31, 1250-1259	3.5	1
55	Printing Fabrication of Bulk Heterojunction Solar Cells and In Situ Morphology Characterization. Journal of Visualized Experiments, 2017,	1.6	1
54	3D Structural Model of High-Performance Non-Fullerene Polymer Solar Cells as Revealed by High-Resolution AFM. <i>ACS Applied Materials & Interfaces</i> , 2017 , 9, 24451-24455	9.5	1
53	Liquid adsorption at surfaces patterned with cylindrical nano-cavities. Soft Matter, 2013, 9, 10550	3.6	1
52	Patterning: High Aspect Ratio Sub-15 nm Silicon Trenches From Block Copolymer Templates (Adv. Mater. 42/2012). <i>Advanced Materials</i> , 2012 , 24, 5687-5687	24	1
51	Alvine et al. Reply:. <i>Physical Review Letters</i> , 2007 , 98,	7.4	1
50	Effect of Polymer-Substrate Interactions on the Glass Transition of Polymer Thin Films. <i>AIP Conference Proceedings</i> , 2004 ,	Ο	1
49	Nano-patterned Growth of Ge Quantum Dots for Infrared Detector Applications. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 891, 1		1
48	Temperature measurements of a thermal wave at static high pressures. <i>Applied Physics Letters</i> , 2000 , 76, 2460-2462	3.4	1
47	Computational and Experimental Infrared Spectra of 1,4-Dinitropiperazine and Vibrational Mode Assignment. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 8898-8907	2.8	1

46	The laser-induced decomposition of TATB at static high pressure. AIP Conference Proceedings, 2000,	О	1
45	Characterization of thin Polymeric Nanofoam films by Transmission Electron Microscopy and Small Angle Neutron Scattering. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 461, 103		1
44	Time Resolved Emission Studies of Aluminum and Water High Pressure Reactions. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 418, 391		1
43	Interfacial Segregation Effects in Mixtures of Homopolymers with Copolymers <i>Materials Research Society Symposia Proceedings</i> , 1989 , 171, 343		1
42	Solvent and Curing Effects on Diffusion at Polyimide Interfaces. <i>Materials Research Society Symposia Proceedings</i> , 1989 , 154, 283		1
41	Temperature Dependence of the Morphology of Thin Diblock Copolymer Films as Revealed by Neutron Reflectivity. <i>Materials Research Society Symposia Proceedings</i> , 1989 , 166, 145		1
40	Interdiffusion in Polyimide Thin Films. <i>Materials Research Society Symposia Proceedings</i> , 1986 , 72, 195		1
39	Zwitterionic Ammonium Sulfonate Polymers: Synthesis and Properties in Fluids <i>Macromolecular Rapid Communications</i> , 2021 , e2100678	4.8	1
38	Manipulating the Crystalline Morphology in the Nonfullerene Acceptor Mixture to Improve the Carrier Transport and Suppress the Energetic Disorder. <i>Small Science</i> ,2100092		1
37	Shear-sensitive chain extension of dissolved poly(ethylene oxide) by aluminate ions. <i>Journal of Polymer Science</i> , 2021 , 59, 146-152	2.4	1
36	Analytical solution for large-deposit non-linear reactive flows in porous media. <i>Chemical Engineering Journal</i> , 2022 , 430, 132812	14.7	1
35	Conductive Thin Films over Large Areas by Supramolecular Self-Assembly. <i>ACS Applied Materials</i> & amp; Interfaces, 2020,	9.5	1
34	Bidisperse Nanospheres Jammed on a Liquid Surface. ACS Nano, 2020, 14, 10589-10599	16.7	1
33	Interfacial Reaction Induced Disruption and Dissolution of Dynamic Polymer Networks. <i>Macromolecular Rapid Communications</i> , 2021 , 42, e2100023	4.8	1
32	Laser-induced recoverable fluorescence quenching of perovskite films at a microscopic grain-scale. Energy and Environmental Materials,	13	1
31	Characteristics of Non-Fullerene Acceptor-Based Organic Photovoltaic Active Layers Using X-ray Scattering and Solid-State NMR. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 15863-15871	3.8	1
30	Organic Solar Cells: Following the Morphology Formation In Situ in Printed Active Layers for Organic Solar Cells (Adv. Energy Mater. 1/2016). <i>Advanced Energy Materials</i> , 2016 , 6,	21.8	1
29	Uncertainties associated with laboratory-based predictions of well index and formation damage. <i>Measurement: Journal of the International Measurement Confederation</i> , 2021 , 170, 108731	4.6	1

28	The Buckling Spectra of Nanoparticle Surfactant Assemblies. <i>Nano Letters</i> , 2021 , 21, 7116-7122	11.5	1
27	3D effects in two-phase steady-state tests. <i>Journal of Petroleum Science and Engineering</i> , 2021 , 208, 10	9543β	1
26	Nanoscopic Templates from Oriented Block Copolymer Films 2000 , 12, 787		1
25	Hydrolysis-Induced Self-Assembly of High-Dow-N Bottlebrush Copolymers. <i>Macromolecules</i> , 2021 , 54, 11449-11458	5.5	1
24	Boltzmann's colloidal transport in porous media with velocity-dependent capture probability. <i>Physics of Fluids</i> , 2021 , 33, 053306	4.4	0
23	Interfacial Assembly of Graphene Oxide: From Super Elastic Interfaces to Liquid-in-Liquid Printing (Adv. Mater. Interfaces 6/2022). <i>Advanced Materials Interfaces</i> , 2022 , 9, 2270032	4.6	O
22	Impact of Electron Energy and Dose on Particle Dynamics Imaging in the Scanning Electron Microscope. <i>Microscopy and Microanalysis</i> , 2019 , 25, 1670-1671	0.5	
21	Charge Transport: Efficient Charge Transport in Assemblies of Surfactant-Stabilized Semiconducting Nanoparticles (Adv. Mater. 44/2013). <i>Advanced Materials</i> , 2013 , 25, 6410-6410	24	
20	Promoting Network Formation in Nanorod-filled Binary Blends. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1411, 75		
19	Novel transparent nano- to micro-heterogeneous substrates for in-situ cell migration study. <i>Journal of Biomedical Materials Research - Part A</i> , 2007 , 80, 509-12	5.4	
18	Crystalline structure of a liquid crystal forming ligated twin. <i>Journal of Materials Science</i> , 2002 , 37, 389	-32/5	
17	Structures of dinitroazetidine and three of its carbonyl derivatives. <i>Journal of Chemical Crystallography</i> , 2000 , 30, 647-653	0.5	
16	Nanoparticles and Polymers. Bricks and Mortar Self-Assembly of Nanostructures. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 635, C1.3.1		
15	Some Thermodynamic Considerations of the Lower Disorder-to-Order Transition of Diblock Copolymers. <i>ACS Symposium Series</i> , 1999 , 261-269	0.4	
14	Manipulating Copolymers with Confinement and Interfacial Interactions. <i>ACS Symposium Series</i> , 1999 , 140-152	0.4	
13	Nanofoam Porosity Measured by Infrared Spectroscopy and Refractive Index. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 431, 475		
12	Electric Field Induced Control of Thin Film Diblock Copolymer Domain Orientation. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 461, 109		
11	Profiling Polyimide-Polyimide Interfaces. <i>Materials Research Society Symposia Proceedings</i> , 1993 , 305, 153		

LIST OF PUBLICATIONS

10	Very thin films of symmetric diblock copolymers 1993 , 88-92	
9	Resonance Enhanced Neutron Standing Waves in Thin Films. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 376, 259	
8	The Morphology of Symietric Diblock Copolymers as Revealed by Neutron Reflectivity. <i>Materials Research Society Symposia Proceedings</i> , 1989 , 166, 139	
7	Diblock Copolymers at Surfaces. <i>Materials Research Society Symposia Proceedings</i> , 1989 , 171, 317	
6	Synthesis and properties of segmented poly(hydroxyether-siloxane). <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1989 , 25, 155-166	
5	Scattering Studies on Mixtures of Poly(Ethylene Oxide) with Poly(Methyl Methacrylate). <i>Materials Research Society Symposia Proceedings</i> , 1986 , 79, 87	
4	Visualizing Assembly Dynamics of All-Liquid 3D Architectures (Small 6/2022). Small, 2022, 18, 2270028	11
3	Polyimide Nanofoams from Phase Separated Triblock Copolymers 1997 , 529-542	
2	In Situ Electron Microscopy of Poly(ethylene glycol) Crystals Grown in Thin Ionic Liquids Films. <i>Journal of Polymer Science</i> , 2020 , 58, 478-486	2.4
1	Organic Solar Cells: High-Efficiency Organic Photovoltaics using Eutectic Acceptor Fibrils to Achieve Current Amplification (Adv. Mater. 18/2021). <i>Advanced Materials</i> , 2021 , 33, 2170142	24